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Abstract: This paper presents a CMOS wideband amplifier operating in the full Ka-band, with a low
gain variation. An inductive neutralization is applied to the amplifier to compensate for the gain
roll-off in the high-frequency region. Neutralization inductance is carefully determined considering
the tradeoff between stability and gain. To achieve a low gain variation over the full Ka-band, the
amplifier employs the frequency staggering technique in which impedance matching for three gain
stages is performed at different frequencies of 26, 34, and 42 GHz. The experimental results show that
a peak gain of 13.2 dB is achieved at 39.2 GHz. The 3 dB bandwidth is from 23.5 to 41.7 GHz, which
fully covers the Ka-band. Especially, the gain ripple of the amplifier is only 13 ± 0.2 dB over a wide
bandwidth from 26.2 to 40.2 GHz. The input and output return loss values are better than −10 dB
from 26.3 to 40.1 GHz and from 25.3 to 50 GHz, respectively. The DC power consumption is 18.6 mW.

Keywords: Ka-band; CMOS amplifier; inductive neutralization technique; frequency staggering
technique; wideband flat gain

1. Introduction

Owing to the demand for high-speed data transfer, 5G communication based on the
millimeter wave has been actively developed. The global spectrum allocated for the 5G
millimeter wave is mainly distributed in the Ka-band (26.5–40 GHz) [1,2]. Therefore, a
wideband flat-gain amplifier operating in the full Ka-band is needed for implementing
multistandard or ultrawideband radio systems supporting the global spectrum.

Conventionally, wideband amplifiers operating at several gigahertz have been imple-
mented using a resistive feedback technique [3–5]. The resistive feedback makes the input
impedance more resistive, thereby allowing wideband input matching and enhancing the
linearity [6]. However, a disadvantage of the resistive feedback is that the gain decreases in
the upper end of the bandwidth [7]. Therefore, multiple amplifying stages must be cascaded
to compensate for the gain roll-off, which increases the overall DC power consumption.
Recently, a feedback technique based on a transformer balun was proposed to achieve a
wideband gain response with a compact size [8,9]. However, the complicated structure of
the transformer balun makes it challenging to optimize the transformer parameters such as
the primary and secondary inductances and the coupling coefficient to achieve both the
wideband input matching and flat-gain response at the same time.

This paper presents a full Ka-band amplifier with a low gain variation. In the first
gain stage, the inductive neutralization is adopted to compensate for the gain roll-off in the
upper end of the Ka-band, while the frequency staggering is employed in the subsequent
gain stages for wideband and flat-gain responses. In Section 2, the analysis and design of
the amplifier are presented. The experimental results are presented in Section 3. Finally,
the conclusions are drawn in Section 4.

2. Circuit Analysis and Design

Figure 1 shows a schematic of the full Ka-band flat-gain CMOS amplifier using the
inductive neutralization and frequency staggering techniques. Three common-source (CS)
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gain stages (M1, M2, and M3) were cascaded to secure a sufficient gain. To accomplish
a wideband flat-gain response over the full Ka-band, the inductive neutralization was
applied to the first stage, while the frequency staggering was employed in the following
interstage and output matching networks.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 2 of 12 
 

2. Circuit Analysis and Design 
Figure 1 shows a schematic of the full Ka-band flat-gain CMOS amplifier using the 

inductive neutralization and frequency staggering techniques. Three common-source (CS) 
gain stages (M1, M2, and M3) were cascaded to secure a sufficient gain. To accomplish a 
wideband flat-gain response over the full Ka-band, the inductive neutralization was ap-
plied to the first stage, while the frequency staggering was employed in the following 
interstage and output matching networks. 

L1 R1

C1 L2

Lneut

Vg1

Vd1

Cdc Cdc

L3

Vd2

Vd3

TL1 L4

R2

Vg2

L5

L6

L7

Vg3

L8 L9

R1

Cdc

Cdc

Cbypass

Cbypass

Cbypass

Cbypass

M1

M2

M3

RFin

RFout

TL2

CbypassCbypass

 
Figure 1. Schematic of the full Ka-band amplifier with flat gain. 

2.1. Inductive Neutralization Technique 
To achieve a high flat gain, the optimum transistor topology was determined first. 

Figure 2 shows the maximum stable gain (MSG) (or the maximum available gain (MAG)) 
[10] of various transistor topologies in the given 65 nm CMOS technology. 

For a fair comparison, the simulation conditions were set identical: the gate width 
and drain bias current of each transistor are 30 μm and 3.1 mA, respectively. Among the 
CS, common-gate (CG), and cascade topologies, the CS topology provides the highest gain 
beyond 38 GHz. However, the gain of the CS still gradually decreases as the frequency 
increases further than 38 GHz. To achieve a flat gain over the full Ka-band, a gain-boosting 
technique should be used to compensate for the gain roll-off at the upper end of the Ka-
band. 
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Figure 2. Comparison of MSG (or MAG) of different transistor topologies in a 65 nm CMOS tech-
nology. 

Figure 1. Schematic of the full Ka-band amplifier with flat gain.

2.1. Inductive Neutralization Technique

To achieve a high flat gain, the optimum transistor topology was determined first.
Figure 2 shows the maximum stable gain (MSG) (or the maximum available gain (MAG)) [10]
of various transistor topologies in the given 65 nm CMOS technology.
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Figure 2. Comparison of MSG (or MAG) of different transistor topologies in a 65 nm CMOS technology.

For a fair comparison, the simulation conditions were set identical: the gate width
and drain bias current of each transistor are 30 µm and 3.1 mA, respectively. Among the CS,
common-gate (CG), and cascade topologies, the CS topology provides the highest gain beyond
38 GHz. However, the gain of the CS still gradually decreases as the frequency increases
further than 38 GHz. To achieve a flat gain over the full Ka-band, a gain-boosting technique
should be used to compensate for the gain roll-off at the upper end of the Ka-band.

In this research, we adopted the inductive neutralization technique in the CS to boost
the gain. It is well known that the gate-drain capacitance Cgd degrades the forward gain
of the transistor [11]. Therefore, by connecting a neutralization inductor (Lneut) between
the gate and drain, Cgd is resonated with the inductor, and thus the MSG (or MAG) can
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be boosted [12,13]. In Figure 2, the MSG (or MAG) of the CS topology with the inductive
neutralization (Lneut = 1.3 nH) is shown, which is higher than that of other topologies
beyond 31 GHz. Moreover, the inductive neutralization changes the behavior of the MSG
(or MAG) over the frequency. It is observed in Figure 2 that the peak of the MSG (or MAG)
is pushed to a higher frequency region and, thus, can be located almost at the upper end of
the Ka-band. This offsets the high loss of passive matching components and the resulting
gain roll-off at the high frequencies.

While boosting the gain by resonating out the feedback capacitance Cgd, the inductive
neutralization may disrupt the stability of the transistor. This is because positive feedback
can be reinforced when the Cgd–Lneut network operates far from the resonance. Therefore,
the value of Lneut should be carefully determined considering a tradeoff between the gain
and the stability. Figure 3 shows the simulated MSG (or MAG) and stability factor K at
39 GHz versus Lneut. The MSG (or MAG) has two peaks at Lneut = 1.23 and 1.44 nH, respec-
tively. On the other hand, the K has a single peak at Lneut = 1.3 nH and decreases rapidly
as Lneut deviates from 1.3 nH. The K becomes even below unity when Lneut < 1.23 nH or
Lneut > 1.44 nH. Hence, we chose Lneut of 1.3 nH, which results in MAG of 15.1 dB and K of
11.2 at 39 GHz. Notably, both MAG and K are boosted by inductive neutralization. The
inductive neutralization with Lneut of 1.3 nH was applied to the first gain stage (M1), which
presents a high gain at the upper end of the Ka-band. It should be noted that the second
and third gain stages (M2 and M3) have no inductive neutralization because they should
present a high gain at lower frequencies, as described in Section 2.2.
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Figure 3. Simulated MSG (or MAG) and stability factor K at 39 GHz versus Lneut. 

The input matching of the amplifier should operate in a wide bandwidth to suppress 
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swept from 26 to 40 GHz. The Zin1 with no ZL1 and Lneut included is dominantly determined 

Figure 3. Simulated MSG (or MAG) and stability factor K at 39 GHz versus Lneut.

The input matching of the amplifier should operate in a wide bandwidth to suppress
mismatch loss that occurs in the interconnection with other circuit blocks. The inductive
neutralization of the first gain stage alters the input impedance of M1; therefore, it should
be considered in the input matching design shown in Figure 4. Specifically, the Cgd–Lneut
network brings the load impedance of M1 (ZL1) to the input of M1 (Zin1) when the operation
is off the resonance frequency. ZL1 includes the drain bias network of M1 (L3 and Cbypass),
the input impedance looking into M2, and the interstage matching between M1 and M2. In
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Figure 5, the impedances of the input matching network are shown as the frequency is swept
from 26 to 40 GHz. The Zin1 with no ZL1 and Lneut included is dominantly determined by
the gate capacitance and resistance, as expected, shown in line (a). However, Zin1 with ZL1
included, shown in line (b), and with both ZL1 and Lneut included, shown in line (c), are
substantially different from line (a). Fortunately, Lnuet induces a resonance behavior in Zin1,
thereby providing a wideband characteristic to the input reflection coefficient. Finally, the
input impedance at the port (Zin) is matched to 50 Ω with L1, C1, and L2, shown in line (d).
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2.2. Frequency Staggering Technique

To achieve a flat gain over a wide frequency range, the center frequencies of three gain
stages (M1, M2, and M3) are intentionally staggered. Through the interstage and output
impedance matching described below, the peak-gain frequencies of the first, second, and
third stages are tuned to 42, 25.5, and 30.5 GHz, respectively, as shown in Figure 6.
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Figure 6. Gain of the three individual stages and the whole amplifier.

The ac equivalent circuit of the amplifier is drawn in Figure 7a. For the first interstage
matching between M1 and M2, the impedances seen looking into the output of M1 (Zout1)
and the input of M2 (Zin2) are simulated as Zout1 = 48.3 − j89.2 Ω and Zin2 = 14.2 − j71.9 Ω
at 42 GHz. For conjugate matching, Zin2 is transformed to Zout1

* by an L-section network
consisting of L3, L4, and TL1. As shown in Figure 7b, the series inductive components
(L4 and TL1) bring Zin2 to Zin2,1, which is located on a constant conductance circle of
Re{1/Zout1

*}. Then, a shunt inductor (L3) transforms Zin2,1 to Zin2,2, which completes
the conjugate matching to Zout1

*. It should be noted that the value of L3 determines the
frequency at which the conjugate matching is satisfied. In Figure 7b, the locus of Zin2,2
at 42 GHz is depicted as L3 decreases from infinity to 0.1 nH. According to the plot, L3
is chosen as 0.8 nH to achieve conjugate matching at 42 GHz. The final matching point
of Zin2,2 slightly deviates from Zout1

* after fine optimization of the whole amplifier. The
conjugate interstage matching between M1 and M2 at 42 GHz results in the gain peak of
the first gain stage at the same frequency as that shown in Figure 6.

The second interstage matching between M2 and M3 is performed in a similar way to
the first interstage matching. However, the matching frequency is intentionally changed
to 26 GHz. As shown in Figure 7c, the input impedance of M3 (Zin3) is transformed
to the conjugate of the output impedance of M2 (Zout2

*). The center frequency of the
matching is tuned to 26 GHz by choosing the value of a shunt inductor (L5) as 0.3 nH. It is
noted that the second interstage matching is supposed to have the matching performance
sensitive to the adjacent stages more than the first interstage matching. This is because the
adjacent impedances are seen through Cgd of M2 and M3, while Cgd of M1 is diminished
by the neutralization inductor Lneut. Therefore, an extra shunt inductor (L6) is added as an
additional degree of design freedom in the second interstage matching while minimizing
the influence on the adjacent matching. The second interstage matching results in the gain
peak of the second stage at 25.5 GHz, as observed in Figure 6.

The output matching is fulfilled by L8 and L9 at 34 GHz, which leads to the peak gain
of the final stage at 30.5 GHz shown in Figure 6. It is noted that there is a slight difference
between the matching frequency and the peak gain frequency of each individual stage.
This is because the gain and bandwidth of the whole amplifier were re-optimized after
combining the individual stages.
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Through the frequency staggering, the overall gain of the whole amplifier exhibits a
flat response of 12.8 ± 0.5 dB from 25.6 to 42.4 GHz, covering the full Ka-band, as shown in
Figure 6. After full electromagnetic simulation with Keysight ADS Momentum, the values
of the matching components are slightly reoptimized considering the undesired magnetic
and electric coupling between matching components and interconnection lines. The design
parameter values of the full Ka-band amplifier are listed in Table 1.

Table 1. Design parameter values of the full Ka-band amplifier.

Parameters Values Parameters Values

L1 0.6 nH C1 0.41 pF

L2 0.68 nH R1 200 Ω

L3 0.8 nH R2 1000 Ω

L4 0.45 nH TL1 265 µm

L5 0.3 nH TL2 120 µm

L6 0.7 nH M1–M3 1 × 30 µm

L7 0.2 nH Vg1 1.1 V

L8 0.65 nH Vg2 1.1 V

L9 0.27 nH Vg3 0.9 V

Lneut 1.3 nH Vd1 1.1 V

Cbypass 1.36 pF Vd2 1.1 V

Cdc 1.36 pF Vd3 1.1 V

3. Experimental Results

The full Ka-band amplifier was fabricated using a 65 nm CMOS technology. The chip
micrograph is shown in Figure 8. The whole chip area including the probing pads and the
core chip area were 1 × 0.7 and 0.5 × 0.75 mm2, respectively.

The measured S-parameters are shown in Figure 9. A peak gain of 13.2 dB was
measured at 39.2 GHz. The 3 dB bandwidth was 18.2 GHz from 23.5 to 41.7 GHz, which
covered the entire Ka-band frequencies. Specifically, from 26.2 to 40.2 GHz, the gain
exhibited a flat response with a small variation, i.e., 13 ± 0.2 dB. The measured |S11|
and |S22| were smaller than −10 dB from 26.3 to 40.1 GHz. The stability K-factor was
calculated from the measured S-parameters, as shown in Figure 10. It was observed that
the Ka-band amplifier was stable over the frequencies from DC to 50 GHz, which include
both the operation and the out-of-band frequencies. The measured group delay is shown in
Figure 11. The group delay was fairly flat in the frequency range between 22 and 46 GHz.
The power measurement of the amplifier at 34 GHz is shown in Figure 12. The input 1 dB
compression point (IP1dB) was −13.2 dBm. Figure 13 shows the measured IP1dB over the
frequency. The IP1dB ranged from −13.2 to −16.6 dBm between 26 and 40 GHz.

In Table 2, the measured performances are summarized and compared with those of
the previously reported CMOS Ka-band amplifiers. The amplifier in this study exhibited a
superior gain flatness in the full Ka-band frequencies to the other state-of-the-art amplifiers.

Table 2. Performance comparison with previous CMOS-based Ka-band amplifiers.

Ref. Technology Peak Gain
(dB)

|S21|3-dB
BW

(GHz)

|S11|−10
dB BW
(GHz)

Gain Flatness
over Frequency

IP1dB
(dBm)

DC Power
Consumption

(mW)

Core
Chip Area **

(mm2)

This work 65-nm
CMOS 13.2 18.2

(23.5–41.7)
13.8

(26.3–40.1)
13 ± 0.2 dB over
26.2–40.2 GHz −13.2 18.6 0.37
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Table 2. Cont.

Ref. Technology Peak Gain
(dB)

|S21|3-dB
BW

(GHz)

|S11|−10
dB BW
(GHz)

Gain Flatness
over Frequency

IP1dB
(dBm)

DC Power
Consumption

(mW)

Core
Chip Area **

(mm2)

[8] 65-nm
CMOS 13.5 23.4

(19.2–42.6)
22.1

(16.8–38.9)

12.65 ± 0.85 dB
over

21–41 GHz *
−9.8 6.36 0.13

[14] 65-nm
CMOS 22.1 8.5

(24–32.5)
10

(30–40 *)

20.6 ± 1.5 dB
over

24–32.5 GHz
−19 19.3 0.12

[15] 22 nm SOI
CMOS 12.6 17

(23–40)
6

(25–31 *)

20.6 ± 1.5 dB
over

24–32.5 GHz
−6 13 0.12

[16] 22 nm SOI
CMOS 18.2 19

(24–43)
24

(20–44 *)
18 ± 1.1 dB over

24–29 GHz −20.4 12.1 0.21

[17] 28-nm
CMOS 18.6 4.3

(28.2–32.5 *)
7

(30–37)

17.1 ± 1.5 dB
over

28.2–32.5 GHz
−25 9.7 0.23

[18] 40-nm
CMOS 18.4 9.3

(25–34.3 *)
14

(26–40)

16.9 ± 1.5 dB
over

25–34.3 GHz *
−13.4 21.5 0.26

[19] 45 nm SOI
CMOS 20 20

(27–47.5 *)
19

(27–48)
19 ± 1.5 dB over

27–47.5 GHz −19 58 0.2

[20] 90 nm SOI
CMOS 13.8 15

(29–44)
21

(29–50 *)

12.3 ± 1.5 dB
over

29–44 GHz
−10 18 0.48 ***

* Estimated from a plot of the article; ** excluding probing pads; *** including probing pads.
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4. Conclusions

In this research, a full Ka-band amplifier with a flat-gain response was fabricated using
a 65 nm CMOS technology. To compensate for the gain roll-off in the upper end of the
bandwidth, an inductive neutralization technique was used in the first stage. Neutralization
inductance was carefully determined by considering gain and stability. To achieve a
wideband flat gain, three CS stages designed at different center frequencies of 26, 34, and
42 GHz were cascaded. Using the frequency staggering technique, we found that the whole
amplifier exhibited a flat-gain response of 13 ± 0.2 dB over the full Ka-band frequencies.
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