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Abstract: The way of understanding online higher education has greatly changed due to the world-
wide pandemic situation. Teaching is undertaken remotely, and the faculty incorporate lecture audio
recordings as part of the teaching material. This new online teaching–learning setting has largely
impacted university classes. While online teaching technology that enriches virtual classrooms has
been abundant over the past two years, the same has not occurred in supporting students during
online learning. To overcome this limitation, our aim is to work toward enabling students to easily
access the piece of the lesson recording in which the teacher explains a theoretical concept, solves an
exercise, or comments on organizational issues of the course. To that end, we present a multimodal
classification algorithm that identifies the type of activity that is being carried out at any time of the
lesson by using a transformer-based language model that exploits features from the audio file and
from the automated lecture transcription. The experimental results will show that some academic
activities are more easily identifiable with the audio signal while resorting to the text transcription is
needed to identify others. All in all, our contribution aims to recognize the academic activities of a
teacher during a lesson.

Keywords: intelligent online learning; class recordings; audio processing; natural language process-
ing; text classification; transformer models

1. Introduction

Within the context of education, and more specifically in higher education, the global
pandemic situation over the past two years has led to a widespread use of remote teach-
ing/learning and lecture recordings as part of the teaching material. This new online
teaching–learning setting has largely impacted university classes.

Regardless of the type of educational system prevailing in each country, university
classes typically follow a lecture-based instructional approach where the lecture is verbally
delivered by an instructor who supports their academic discourse by using a slide presen-
tation and/or a writing surface. This has not changed much over the pandemic, with the
most notable exception that lectures are now recorded and so students replace note-taking
by video-watching when studying.

While online teaching technology tools have highly improved over the past two
years, the same has not occurred in supporting students during online learning. Lecture
recordings have become a key learning means for millions of students regardless of the
availability of in-person class attendance. Everyone wishes to have access to a backup
material that one can resort to for post-lecture learning.

The benefits of lesson recordings to support the learning experience of students are
diverse such as providing content that can be reviewed multiple times, accessibility to
material in case of an impossibility to attend in-person or focusing on listening to the
lecturer rather than taking notes. Despite these clear benefits, several investigations have
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revealed that using learning technology is one of the most common challenges that students
face during online learning [1,2].

The impact of lecture videos on students’ academic performance has been investigated
from different perspectives such as analyzing the actual time spent on the usage of recorded
lectures in relation to lecture attendance and the effect on exam performance, or studying
the impact of combining lecture videos with written materials on students’ outcomes [3–5].
There have also been works that explore if the usage of video recordings by the students
varies for different subjects or if it is different for subgroups of students [6]. However,
finding literature on how to support students to engage with the recordings is less frequent,
mostly because students have different learning styles, different study strategies and skills.
There is though one functionality that would be very helpful for post-lecture learning from
class recordings (or any recording in general) and that is the ability to find and view the
desired contents in the recorded lecture video. This becomes particularly relevant when
the recording is used to strengthen the contents acquired during an in-person session.
Moreover, providing class recordings for supplementary use has been lately advised in
regular nonpandemic educational environments, since no negative effect of the use of
recordings has generally been evidenced in university students [7].

The work presented in this paper intends to be a first step toward facilitating the view
of particular contents in a class recording without the need to play the video back and forth
until the desired segment is found. Imagine, for instance, a student who wants to find in
a two-hour video recording the segment where the lecturer delivers a task assignment or
a student who just wants to watch the part of the video in which the lecturer is solving
an exercise. In general, replaying the audio-video recording repeatedly is not an effective
studying method for university students, who need to adjust their study strategies to suit
this mode.

Our contribution puts the focus on a classification model that identifies the type of
teaching activity (solving an exercise, explaining a theoretical concept, talking about a task
assignment, interacting with students, etc.) that is being undertaken by the lecturer at each
instant of the video recording. We believe that classifying the type of academic activity of
the lecturer is a first crucial phase towards the development of a tool to facilitate students
finding specific content in online recordings. To that end, we propose a novel multimodal
classification model that identifies segments of the class recording by jointly exploiting the
audio signal and the automated transcription of the recorded lecture.

This paper is structured as follows. The next section presents a literature review
of approaches that classify the spoken discourse from a recording using audio and text
features. Section 3 presents the materials used for the design of the multimodal classification
model including the proposed classification of teaching activities and a description of the
audio and transcription files of the recordings. Section 4 is devoted to describing the
methods used for the feature extraction as well as the architecture of the classifier. Section 5
presents the results of the experimental evaluation. Section 6 highlights the main results of
our approach in relation to previous studies, and Section 7 concludes and outlines future
research lines.

2. Literature Review

This section outlines the main approaches that use the audio signal and automated
transcriptions of a recorded speech for different educational purposes. Most of the ap-
proaches exploit machine learning models, specifically deep learning (DL) techniques,
which are currently being extensively applied in a large variety of educational tasks such as
predicting student academic performance [8] or assessing the performance of educational
institutions [9].

We divide this section in three parts: the first one is devoted to approaches that only
exploit the audio signal of the recordings, the second one to approaches that use textual
analysis techniques in education, and the third one to hybrid approaches that attempt a
combination of both data sources, audio and text.
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2.1. Audio-Based Classification

Educational tools for analyzing the classroom academic discourse are scarce and the
few existing ones mostly use the audio signal of the recordings with the aim to distinguish
the teacher lecturing from the student participation in class. LENA (Language ENvironment
Analysis) is a system that records and analyzes classroom discourse to provide teachers
a timely feedback that improves their skills in classroom discourse management [10,11].
LENA is particularly oriented to child language development. Teachers using LENA
wear a proprietary wearable audio recorder while teaching a regular math lesson to small
children to collect speech data. LENA implements a speech recognition system aimed
to identify three common discourse activities: teacher lecturing, whole class discussion
and student group work [10], and it has primarily been used to assess small children’s
language environment [12]. No transcription of the words in the recordings is provided
by LENA, instead it produces a diarization of who is talking and when, according to the
predetermined categories [13].

Another interesting audio-based classification system is the project Decibel Analysis
for Research in Teaching (DART) that analyzes the volume and variance of audio recordings
of science technology engineering mathematics (STEM) courses to predict how much time
is spent on single-voice (e.g., lecture), multiple-voice (e.g., pair discussion), and no-voice
(e.g., clicker question thinking) activities [14]. DART aims to identify the types of activities
that are going on in a classroom based exclusively on sound waveforms.

Audio-based classification has also been used for assessing time devoted to lecturing
and student discussion, specifically in a flipped classroom setting [15]. Similar to DART,
in the latter cited work, the authors use multiple audio recorders to detect segments of
lecture that are primarily the lecturer’s speech, while segments of discussion comprise
students’ speech, silence and noise.

All the aforementioned systems apply speech recognition and methods from the field
of audio segmentation with the aim of analyzing signal intensity (volume) and variations in
the sound of a classroom. This analysis is used to identify the speaker or classify the sound
into categories accordingly to detected voices. This way, a single voice is associated to
teacher talk, multiple voices to students talk, no voice to silence, and other indistinguishable
voices to murmuring or overlapping speech. Additionally, both LENA and DART are
supervised learning systems that require human annotations of the recorded speech. LENA
uses a random forest algorithm while DART uses support vector machine techniques.

2.2. Text Analysis in Education

Audio segmentation and classification are helpful to distinguish the lecturer’s speech
from group discussion or teamwork, but they do not provide significant information for
recognizing teaching activities in classes that follow a type of lecture-based learning ap-
proach. The academic lecture is mostly considered an expository genre where interaction
with students is less frequent than in other classroom genres like seminars, tutorials or
oral presentations [16]; yet, it is becoming more and more relevant due to the increas-
ing internationalization of higher education [17] and its simplicity to be adapted to an
online format.

Audio transcription and text classification become increasingly relevant for
analyzing academic discourse. Nowadays there exists a wide range of software that
automatically transcribes audio and video using high-end AI engines. It is even possi-
ble to find transcription tools for particular contexts such as medical transcription or
supporting sales teams. When it comes down to education, many universities offer
their own automated transcription services (some examples of university services of auto-
mated transcriptions include: https://guides.nyu.edu/QDA/transcription; https://www.
nottingham.ac.uk/dts/researcher/applications-and-tools/automated-transcription.aspx;
https://www.bentley.edu/centers/user-experience-center/transcription-tools-qualitative-
data-uxr; https://www.universitytranscriptions.co.uk/) (accessed 18 April 2022), which

https://guides.nyu.edu/QDA/transcription
https://www.nottingham.ac.uk/dts/researcher/applications-and-tools/automated-transcription.aspx
https://www.nottingham.ac.uk/dts/researcher/applications-and-tools/automated-transcription.aspx
https://www.bentley.edu/centers/user-experience-center/transcription-tools-qualitative-data-uxr
https://www.bentley.edu/centers/user-experience-center/transcription-tools-qualitative-data-uxr
https://www.universitytranscriptions.co.uk/
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usually provide transcriptions suited to the technical, scientific, or social language used in
the delivery of classes.

Let us now turn our attention to the analysis of text coming from transcriptions
of university lecture recordings. Linguistics acknowledges that topic-oriented univer-
sity lectures are categorized by features that capture the informational purpose of the
speech (theoretical information and examples of practical application) and features that
display the spoken discourse such as rhythm, intonation, speed of utterance, pausing and
phrasing [18–20]. More recent studies show that university language in academic speech
includes vocabulary patterns, the use of lexical-grammatical syntactic features, discourse
connectors or lexical bundles and formal or informal language when required [21,22].

Textual analysis techniques in education have been successfully applied to analyze
students’ answers and make better judgment on their performance [23], to extract interest-
ing and high-quality information from unstructured text [24] and mainly to topic modeling
for different purposes, such as discovering important themes and patterns for formative
assessment of students’ learning [25], analyzing teachers’ understanding [25] or retrieving
relevant educational material [26].

All the existing approaches for textual analysis employ natural language processing
(NLP) techniques. Recently, the use of transformer-based models has gained great pop-
ularity. The revolution of deep learning has produced a dramatic effect in NLP thanks
to novel end-to-end architectures that do not require any prior knowledge on language
nor the use of traditional language processing tasks such as tokenization, syntactic pars-
ing, stemming, part-of-speech tagging, etc. [27,28]. New architectural models such as the
bidirectional encoder representations from transformers (BERT) family [29] and the genera-
tive pretrained transformers (GPT-2 and GPT-3) [30] are among the most popular models.
These two models, and others recently proposed, are based on the transformer architecture,
a DL model that adopts the self-attention mechanism whereby different importance to
each piece of the input data is given accordingly to its significance [31]. Incorporating the
attention mechanism in network models has generated significant improvements in data
augmentation and text classification [32].

The great advantage of using transformer models in NLP lies in an efficient computa-
tion of sequence-to-sequence tasks while facilitating the handling of long-range dependencies.

2.3. Multimodal Classification of Conversations

There are hardly any investigations that jointly explore the audio signals and the text
of automated transcriptions in the context of education. Most research in multimodal
approaches are oriented toward estimating the speaker’s emotion in an audio conversa-
tion [33,34], using the sound and spoken content of an emotional dialogue to obtain a better
understanding of speech data. Since the focus is on classifying the emotional content of
speech, these approaches typically work with a fixed vocabulary of words that identify
an emotional category (e.g., “happy”, “sad”, “angry”). Therefore, the scope of the content
analysis achievable with these tools is significantly more limited than with the techniques
exposed in Section 2.2, as the language used in these applications is delimited to particular
words with an emotional burden.

Textual-acoustic feature representation has also been applied to sentence-level speech
classification for detecting intention in the speech of a medical setting [35], and to music
genre classification as in the work presented in [36], where authors showed that the learning
of a multimodal feature space increased the performance of pure audio representations.

It is more common, however, to find multimodal educational systems that use human
rather than automated transcriptions. Some studies have evaluated the performance of the
LENA system (see Section 2.1) applied to native French-speaking young children using
audio recordings and their manually transcribed files [37]. For systems devoted to the
language development of small children (children from birth to 3 years as in the case
of LENA), it is affordable to have a professional team to produce accurate and reliable
transcription of the audio recording files [38].
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Broadly speaking, we can conclude that multimodal classification is based on the
audio signal as the primary data source and it is complemented by the extraction of text
features. Furthermore, we can also affirm that this type of classification has mainly been
explored in particular contexts of application (emotional, medical, music) that feature their
own professional or technical jargon.

2.4. State of the Art in Our Approach

In this section, we briefly emphasize the results from the literature review our approach
relies on and how our contribution advances the state of the art.

Similar to the approaches referenced in Section 2.3, we also propose a classification
model that builds on the audio and text of a lecture recording. Even though our system
is designed for the classification of teaching activities in higher education, it is intended
for a broad applicability across a variety of different university subjects such as mathe-
matics, oceanographic physics or electronic devices. Hence, unlike some of the reviewed
approaches, we are not confined to some particularly specific language.

We observe that our classification approach uses automated transcriptions, not manu-
ally transcribed text. This introduces a higher degree of difficulty due to the general lack of
accuracy of automated transcription vs. human transcriptions but, on the other hand, it
creates a widespread tool, as it can be used with any automated transcription service.

Finally, we highlight that our aim is to recognize teaching activities across courses of
different nature delivered in a technical university, thus our focus is not on topic modeling
but on discourse analysis, that is, on analyzing the used vocabulary, the grammar or the
way that sentences are constructed and the structure of the text that creates the narrative.

3. Materials

This section is structured in two parts: Section 3.1 presents the classification of teaching
activities that we use in this work; then, Section 3.2 details the audio and transcription files
of the class recordings.

3.1. Activities in Spoken Academic Lecture

In this section, we introduce a classification of teaching activities identifiable from
academic spoken discourse in university classes. Specifically, our interest is to come up
with a set of academic labels which characterize teaching STEM subjects and which are
useful for students to be able to access the contents of the syllabus as well as to easily find
any organizational issue related to the course.

Our proposal is inspired by the typical structure of a lecture presented by Malavska
in [22] and the academic labels used by Diosdado et al. in [39]. Our set of labels is organized
according to whether the label identification is more dependent on the audio signal or on
the automated transcription.

Figure 1 shows the hierarchy of labels. The labels under the ’Audio’ category are used
to filter out sounds from the audio file which do not feature voices or when the recorded
voices are murmurs, which are meaningless for our task. This includes sections of the
audio file resulting from a muted microphone or microphone feedback (Miscellaneous),
background noise (Indistinct Chat) or periods of silence between segments of speech (Pause).

The right branch of the tree in Figure 1 comprises the activities that come up during a
regular expository class around the syllabus of a subject. The activities classified only under
the category ’Transcription’ denote the nature and communicative purpose of the teacher’s
speech. Under this category we gather the activities that typically involve an extended
speech of the teacher with no interactions from the students: exposition of the theory
(Theory) and illustration of theoretical concepts through concrete examples (Example),
information about organizational issues, grading policy, assignments, scheduling, house-
keeping, etc. (Organization), a shift of the lecturer speech to a more personal discourse or
course-related asides (Digression), or a speech around non-course-related matters (Other).
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Figure 1. Hierarchy of academic labels.

We identified a third group of activities which were not distinguishable by analyzing
separately the audio file and the transcription. Typically, these activities involved an
exchange of communication between the teacher and students. We placed under this
mixed category the label “Interaction”, which represents teacher–student conversations
that come up during the class, and the label “Exercise”, which accounts for a common
activity in scientific/technical courses (in nontechnical contexts this label could be replaced
by “Practical Activity”). Our experience from the visualization of multiples class recordings
is that student engagement is far more frequent during problem and exercise solving than
during theory exposition. This is the reason why “Exercise” is an activity classified under
both Audio and Transcription categories.

3.2. Audio and Transcriptions Files

Our goal was to recognize the teaching activity that a lecturer was doing at any
given time during a class. To this end, we needed to segment the class recording (audio
and transcriptions) and classify each segment in its corresponding activity. A segment
represented a linguistic meaningful unit such as a word, a sentence, a paragraph or any
information unit depending on the task of the text analysis.

We worked with recordings from university lectures delivered in Spanish which were
obtained from a repository at our university (UPV). The classes were recorded using a
camera that focused on the scaffold and the blackboard, and a lapel microphone worn
by the lecturer. With this setup, we obtained a video and audio recording of the lecturer.
The lapel microphone captured the lecturer’s voice with good quality. However, due to the
characteristics of this kind of microphone, it was not possible to obtain a reliable capture of
the students’ voices.

Regarding the automatic transcription of lecture notes, we used the MLLP transcrip-
tion and translation platform for automated and assisted multilingual media subtitling
that provides support for the transcription of video, audio and content of the courses
(https://ttp.mllp.upv.es/index.php?page=faq) (accessed: 20 January 2022) [40,41] .

The final dataset consisted of 34 audio files and automated transcriptions, each cor-
responding to a delivered class, which amounted to a total of 3773 min. We selected
recordings from five male professors and five female professors to ensure gender variety,
and chose a wide range of subjects, such as mathematics, oceanographic physics, digital
signal processing, etc., to ensure subject diversity. A breakdown of the dataset by subject
and gender can be found in Table 1. We manually labeled the automated transcriptions
following the label hierarchy shown in Figure 1.

https://ttp.mllp.upv.es/index.php?page=faq
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Table 1. Breakdown of the dataset by minutes per course and per gender.

Course Name Male Female

Electronic devices - 330 min
Digital signal processing - 360 min

Mathematics 330 min 344 min
Measurement systems - 120

Microprocessed systems 360 min -
Networks and teledetection 564 min -

Oceanographic physics 600 min -
Physics 90 min -

Statistics 225 min 450 min

Total 2169 min 1604 min

We put the primary focus on the contents of the lecture, i.e., on the automated tran-
scription. Our aim was to exploit powerful pretrained language models so that we could
differentiate teaching activities based on a specific vocabulary, the use of dates and the
verbal form employed by the teacher. The reason why we used an online transcription and
translation platform of a research group from our own university UPV was because this
system performed better in the academic speech setting, specifically because it transcribed
scientific and technical expressions as well as mathematical formulae more accurately
than other transcription systems we tried, such as, for instance, the transcription tools of
YouTube or Microsoft Teams.

Even so, the automated transcriptions featured unwanted characteristics such as lack
of punctuation, the absence of capital letters and minor errors. All these issues made our
task more complex because of the noise introduced in the transcription and the absence of
markers that split the transcribed text in smaller units such as, for instance, sentences. Some
transcription files, however, were manually revised and thus have punctuation symbols,
capital letters, etc. Whenever it was possible, we used the manually revised transcription
due to their higher quality.

Regarding the audio signals of the recordings, they provided key features of the
lecturer’s speech, such as the tone, the cadence or the pauses between utterances. In the
following, we show the raw audio waveforms and the corresponding transcription of some
of the teaching activities identified in the class recordings. The waveforms were obtained
with the Audacity tool [42], a free open-source audio editor and recorder. We examined the
raw waveforms of various academic activities and analyzed their differences.

Miscellaneous/Pause/Indistinct Chat: As we can see in Figure 2, a Miscellaneous
audio segment is identified by the lack of audio signal at the beginning of the recording.
Since recordings are scheduled in advance, the scheduled starting time is usually some
minutes before the lecture actually begins, and the end of the class may also be a few
minutes before the scheduled ending time. Consequently, the recordings contain several
minutes where the microphone is off, leaving the recording with muted segments that we
defined as Miscellaneous. We defined as a Pause a segment of audio where the lecturer does
not speak for more than 2 s. However, during this period of silence, students chat among
themselves and, sometimes, they speak loud enough to be captured by the lapel microphone
worn by the lecturer. We defined this occurrence as Indistinct Chat. As can be observed
in Figure 2, Indistinct Chat is clearly distinguishable from segments where the lecturer
speaks, as it happens in Figure 3, in which the teacher makes a digression commenting on
some question of a test (see transcription in Table 2), and in Figure 4, in which the words
of the teacher are concerned with the organization of the class, particularly, the teacher is
announcing a five-minute break (see transcription in Table 3). One can notice the distinction
between Indistinct Chat and Digression or Organization by comparing the difference in the
amplitude of the corresponding waveforms.
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Figure 2. Audio sample of a Miscellaneous segment followed by Indistinct Chat.

Figure 3. Audio sample of a Digression segment.

Table 2. Transcription of Figure 3.

Context: The lecturer makes a comment about a detail of a test

Some of you have told me that I had, I put a minus on the test because I got a minus. It
can’t generate power, OK? It has to dissipate power. In the tables, it will always come
up as dissipated power. Right? If you get a minus, you got one of the minus signs
wrong. OK?

Figure 4. Audio sample of an Organization segment.

Table 3. Transcription of Figure 4.

Context: The lecturer tells the students to take a break and the class will continue in five
minutes

A quarter past I want you here. Five minutes break and we start with the zener,
a quarter past.

Interaction: In Figure 5, and its corresponding transcription in Table 4, we can observe
that this audio sample interleaves segments of short silences with segments of the teacher’s
speech, usually indicating that the lecturer is conversing with a student.
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Figure 5. Audio sample of an Interaction segment.

Table 4. Transcription of Figure 5.

Context: The lecturer answers a question about an exercise

coming this way, which I’m going to call I. I plus I R one will equal I R two. Okay,
that’s going to hold true. But I’m applying Ohm’s law on resistance one. Okay? Yes?
Come on.

Exercise: Figure 6 and its corresponding transcription in Table 5 shows an audio
sample that also interleaves periods of silence with teacher’s speech, like in Interaction,
but in this case the duration of the segments of speech and silence are generally longer
than in Interaction. The silences in Figure 6 mainly happen when the teacher is writing on
the blackboard and stops sporadically in order to check if students are able to follow the
explanation. Looking at the content of Table 5, we can conclude that the lecturer is solving
an Exercise due to the use of variables and formulae and the fact that an equation for a
specific electric circuit is being solved.

Figure 6. Audio sample of a Pause segment between Exercise segments.

Table 5. Transcription of Figure 6.

Context: The lecturer is solving an exercise about the necessary values on an electrical
circuit so that certain diodes conduct electricity or not

it’s going to be off. OK? Because I’ve seen it before. Okay. So, for what values of the
diode is, diode one is on? So I will have to clear. I’m going to put greater than or equal
to. I will clear from there. I’m going to clear E from this equation, to see the values of E
for which the diode conducts. Okay? Values of E for which diode one conducts. Let’s
look at diode two. In this case it wouldn’t be necessary, but I’m going to analyse it so
you can see. I don’t know what it would take, because I’m going to get a negative value.
V of two. What does V of two equal? Look, where is the plus of the voltmeter? At A.
And where is the minus of the voltmeter? At C, which is D. Therefore, it will be V A
minus V D. V A D and V A D is minus V of A.

Theory/Example/Organization/Digression/Other: We grouped all these labels to-
gether because clearly and distinguishable audio features that discriminated among the
teaching activities did not exist, as all of them were consistent with the audio signal of a
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monologue of the lecturer’s speech. This is reflected in Figure 3 (Digression), Figure 4 (Or-
ganization), Figure 7 (Theory), and their corresponding transcriptions in Tables 2, 3 and 6.
We needed to distinguish them based on the content of the speech. In Table 6, we can see
that the lecturer is explaining a concept belonging to the syllabus of the course, specifically,
the main characteristics of the Zener diode (a special type of diode designed to reliably
allow current to flow backwards), and clarifies certain figures on the notes that usually
confuse the students.

Figure 7. Audio sample of a Pause segment between Theory segments.

Table 6. Transcription of Figure 7.

Context: The lecturer is explaining the main properties of the zener

In some books, even in some of the figures in the notes it says this and that confuses you,
OK? It doesn’t mean that this is the negative terminal and this is the positive terminal,
but when it conducts in reverse I have a source of V Z value with that polarity. OK? It’s
different always for the characteristic curve what we take as a reference is V D and D
where the plus D V D is the plus, it’s the anode and the minus is the cathode. OK? Don’t
get confused with this. This simply means that if I’m in reverse I’ve got a source there
with that polarity V Z. OK? Well, the main property of the zener is that it can conduct
in direct. I have a non-zero current when V D is greater than V T H. The diode will be
on, direct, and it behaves like a normal diode. Okay? What does it mean it behaves
like a normal diode? That its equivalent model is a voltage source of the, with the
same polarity. Notice that this is the plus and this is the minus, plus, minus, with the
same polarity as the zener diode, right, and the threshold voltage value. This is direct
conduction, OK? From here to there it would be direct and when the voltage is less than
zero it’s what we call reverse bias. So zener diodes have the property that they can also
conduct the current can be greater than zero, when they’re reverse biased. Okay? This
value here is minus V Z when the diode terminal voltage is smaller than minus V Z.
OK? The datasheets give me the value of positive V Z but but as long as it’s a zener and
I have to know that this zener voltage is negative. OK? And therefore the conditions
that the voltage at the diode terminals has to be less than minus V Z. Because it’s a
negative T.

From the above exposition, we can observe the distinctive audio signals of those
activities that involve some kind of students engagement such as Interaction or Exercise.
We were thus able to extract useful information from the audio recordings related to the
speed of utterance, pitch of voice and pausing and phrasing that helped distinguish this
type of activities from those that were categorized as a monologue-style of the lecturer.
For those activities that represent an extended speech of the teacher, we were able to extract
distinguishable features from the transcribed notes. Hence, we expected that exploiting
together audio features and text features would ease the task of segmenting and classifying
academic activities from class recordings.

4. Methodological Design

In our approach, we started by preprocessing the automated transcription and the
audio signal so as to obtain a rich representation from pretrained models. Then, we used
that information to train our classification system. These two stages are discussed in detail
in the next two subsections.
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4.1. Feature Extraction

We split both our automated transcriptions and the audio files in frames of one second,
so that for each frame we had the part of the transcription that was said in that second
and the corresponding audio of that second. We chose one-second frames as we thought
this offered a good balance between the granularity for the segmentation task and the
computation cost.

Our system used XLM-RoBERTa [43] to generate embeddings of the automated tran-
scriptions. For the audio signal, we used the Wav2Vec 2 feature extractor [44] to obtain the
latent speech representation of the raw audio. The scheme of this preprocessing stage can
be observed in Figure 8. The next two subsections explain this stage in more detail.

Figure 8. Extraction of text and audio embeddings.

4.1.1. Text Feature Extraction

In order to work with the text coming from automated lecture transcriptions, we need
to employ embeddings; i.e., a numerical representation of the text that captures as much of
the linguistic meaning of said text as possible.

Embeddings are learned encodings that convert text data into numerical data. The em-
beddings allow one to capture representative text features such as the meaning or use of a
word and thereby words with similar meaning or words used in the same contexts end up
having similar representations. Word embeddings are the most typical ones when working
with text. We note that our task deals with text coming from automated transcriptions
which may contain some minor errors and lack punctuation.

We used XLM-RoBERTa to obtain embeddings from the transcription. XLM-RoBERTa
is a multilingual language transformer-based model trained on 100 languages that offers
rich text representations. The transformer is a novel neural network architecture designed
to work in sequence-to-sequence tasks with the capability to handle long dependencies
with ease [31]. The reason we used a multilingual model is because our intention is to
extend our processing tool to work with other languages in the future.

Words that start in one frame and end in the next one are repeated, so such words
are the last ones in one frame and the first ones in the subsequent frame. For example,
the phrase “Okay? Values of E for which diode one conducts.” of Figure 5 would be split
this way: Okay? | Values of E | E for which | which diode one | one conducts.

The words of each frame were fed to XLM-RoBERTa and the output corresponding to
the [CLS] token on the last layer was used as an embedding. The [CLS] token is a special
token that is used for sentence-level classification. This token serves as a sort of sentence
embedding as it encodes all the words in the input of XLM-RoBERTa in a single embedding.
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This way, all the words contained in a one-second frame are represented by one embedding
of 1024 values. Finally, we stored all the embeddings in files for later use.

4.1.2. Audio Feature Extraction

We used the Wav2Vec 2 multilayer convolutional feature extractor to obtain latent
speech representations from the raw input audio. Wav2Vec 2 is a transformer-based
model that uses a self-supervised approach to learn representations from raw audio data.
This model first encodes the speech audio via a multilayer convolutional neural network,
obtaining latent speech representation that are later fed to a transformer network in order
to build contextualized representations.

For our task, we used the Wav2Vec 2 feature extractor, which consists of seven con-
secutive one-dimensional convolutions with 512 channels and respective kernel sizes of
(10, 3, 3, 3, 3, 2, 2) and stride of (5, 2, 2, 2, 2, 2, 2). For a more detailed technical description,
we refer the interested reader to the original paper [44]. We split the raw audio signal in
frames of one second, and each of these frames was given as input to the feature extractor.
We then obtained the embeddings from the extractor and saved them on files for later use.
Each one-second frame became an embedding of size (49, 512).

4.2. Classifier Architecture

The architecture of our model is composed of two bidirectional LSTM (BiLSTM)
layers of 512 units, one for processing the audio signals and one for processing the text
transcriptions, and the classifier. A simple diagram of our model can be seen in Figure 9.
The classifier is a fully connected layer of 2048 units with a Gelu activation followed by the
output layer with a Softmax activation.

Figure 9. Diagram of our classifier model.

The model of the processing tool receives as input a sequence of frames, constructed
as { f t−N... f t−1, f t, f t+1... f t+N}, where f t is the frame we want to classify, and we add the
previous and posterior N frames as additional information. Each frame is composed
by its audio embedding and its text embedding. The text and audio embeddings are
divided, and the text embeddings are normalized. The audio embeddings have already
been normalized by the Wav2Vec 2 feature encoder.

We forward each embedding to its corresponding BiLSTM, normalize the outputs
and concatenate them. Then, we forward the result to the classifier. We then normalize
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the classifier’s output of the fully connected layer after the Gelu activation and forward it
to the output layer. The output layer returns the probability that f t belongs to each class
(teaching activities of Figure 1).

We used BiLSTMs to make the most of the context of a frame, i.e., the N previous and
N posterior frames. We chose to simply concatenate the output of both BiLSTMs layers so
that the model was able to learn to identify the activities based on the transcription and
audio information simultaneously.

We tried different values of N, the number of previous and posterior frames that act as
additional information. We started with 120 and tried to reduce it without compromising
the performance of the model. We observed that for N = 15, the results were slightly worse,
but the reduction in use of memory and computational cost was worthwhile. The initial
loss was plotted over a wide range of learning rates and the final selected value for the
initial learning rate was 0.001. We used Adam as the optimizer, and employed a one-cycle
learning rate policy [45].

5. Results

This section presents the results of our work on the recognition of teaching activities
of a lecturer from university class recordings.

In the recordings of the lectures registered at our university prior to 2020, only the
lecturer’s voice was available. As commented before, our dataset was composed of 34
lecture recordings of different courses, such as mathematics, electronic devices, physical
oceanography, statistics, etc. Out of these 34 recordings, the transcriptions of 14 of them
were manually revised. In total, the recordings were approximately 3700 min long, of which
1600 min were lectures given by women and 2100 min by men.

The model was evaluated using a partition of 90% for training and 10% for evaluation.
We shuffled the dataset and stratified the partition, so the evaluation held approximately
one tenth of the data of each class or teaching activity. As the dataset was imbalanced,
a class weight tensor to account for this imbalance was computed. We report the values of
precision, recall and F-score for each class in Table 7 and the confusion matrix of the results
in Figure 10.

In the confusion matrix of Figure 10, rows show the true label of the segments, i.e., the
label we manually assigned to the segments, and columns represent the class predicted by
our model. The values on the diagonal are the number of true positives (TP); for each class,
the values in the columns show the false positives (FP) and the values in the rows show the
number of false negatives (FN).

The best performing class is Miscellaneous, with an F-score of 0.875, followed by
Indistinct Chat, Exercise/Problem and Interaction with F-scores 0.437, 0.391 and 0.367,
respectively. In the confusion matrix, the low values of the last row indicate that Miscel-
laneous is an easily distinguishable class, as our model correctly classifies the majority of
Miscellaneous frames. However, a considerable amount of Pause frames are classified as
Miscellaneous, as shown by the value 0.377 in the last column of Figure 10.

Moreover, the results obtained for the Theory/Concept and Organization classes in-
dicate that, although the values are worse than for the other classes, the model is able to
distinguish Theory/Concept and Organization frames. Specifically, the Organization class
has a distinctive vocabulary (dates, grading system, submitting exercises) that differentiates
it from the other classes. Conversely, the metrics of the classes Digression, Other and
Example/Real Application fall behind the rest of the classes. The reason for the poor per-
formance of Digression and Other can be found in the low number of samples of these two
classes in the dataset, as these activities occurred infrequently during the lectures, and their
duration was usually rather short. In the fourth and fifth column of Figure 10, we can
observe that our model hardly predicts frames as belonging to classes Digression and Other.
Furthermore, frames of Digression are predicted as belonging to Interaction, while Other
frames are misclassified as Organization, Interaction and Indistinct Chat. Furthermore,
in the third column, it should be noted that our model is biased towards Exercise/Problem,
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and predicts a considerable proportion of Theory/Concept, Example/Real Application,
Organization and Interaction as belonging to Exercise/Problem.

Table 7. Precision, recall and F-score by class.

Label Precision Recall F-Score

Theory/Concept 0.279 0.235 0.255
Exercise/Problem 0.330 0.479 0.391
Example/Real Application 0.169 0.052 0.079
Organization 0.195 0.308 0.238
Interaction 0.538 0.279 0.367
Digression 0.037 0.105 0.055
Other 0.013 0.154 0.024
Indistinct Chat 0.381 0.512 0.437
Pause 0.254 0.229 0.241
Miscellaneous 0.889 0.862 0.875

Figure 10. Confusion matrix.

Taking into account these results, it is worth noting that the best performing classes
(Miscellaneous, Indistinct Chat, Exercise/Problem and Interaction), together with Pause, are
the classes that were more readily distinguishable by means of the audio signal. This seems
to indicate that the model is paying more attention to audio features than text features,
as can be observed by the low value of the errors in the confusion matrix, particularly in
the rows and columns of Miscellaneous, Indistinct Chat and Pause.

A possible way to address the audio-skewed behavior of our model would be to
modify the way in which the audio and text features are forwarded to the classifier. Another



Appl. Sci. 2022, 12, 4785 15 of 18

line worth exploring would be to divide the model into two classifiers and classify the
audio-dependent activities first.

6. Discussion

In this section, we attempt to put into perspective the results of our approach. While
comparing to other multimodal systems is not easy because each one addresses a differ-
ent task with different technologies, we can say that the best accuracy results obtained
with multimodal classification across various areas is around 80%. For example, the best
predicted class in the emotion classification of the work by Yoon et al. (2018) was the
class “happy” with an accuracy of 79.08%, and the speech six-intention classification model
achieved a 83.10% average accuracy [35]. Better results around 93% were achieved in
music genre classification when using audio, text and images [36]. As we commented in
Section 2.3, we must also stress that these systems work in limited application contexts and,
more importantly, they use datasets that include professional transcription services [34] or
manually transcribed text [35].

The performance of our model was below the best accuracy achieved by the aforemen-
tioned approaches as we faced several limitations such as the use of a small dataset that
contained a low number of samples (34 lesson recordings), potential labeling errors as well
as the errors inherent in automated transcriptions.

On the other hand, we also offer some advantages over other models:

• Our proposal is independent of the audio recording system and does not need propri-
etary audio recorders such as in LENA [10].

• Our model is independent of the automated transcription tool and can be used with
the transcriptions provided by any service such as YouTube, Apple’s Siri, Zoom video
communications or others. In our case, we used the open-source MLLP transcription
and translation platform [40,41], which turned out to translate scientific and technical
terms better than YouTube.

• The use of transformer-based models broadens the applicability of the classification
architecture to different thematic contexts and different languages. Our model is
thus applicable to a large variety of subjects of different natures and is extensible to
other languages.

7. Conclusions and Future Work

The classification model presented in this paper represents the first step toward a
mechanism that enables students to find specific contents in an audio recording. In a
nutshell, the output of the model can be viewed as the “table of contents” of a lesson given
by a lecturer wherein the different teaching activities along the recording are index-time-
stamped. We identified a set of activities that characterized the spoken academic discourse
and we designed a classifier using a transformer-based language model, specifically a
version of the BERT family transformer models, that exploited both audio and text features.
The classifier architecture was based on two LSTM neural networks to process the audio
signals and the text transcriptions. The results showed that some teaching activities
were better identifiable with the audio signal while others required resorting to the text
transcriptions as the main data source. Overall, the promising obtained results open up
interesting ways of improvement and challenges.

As for future work, we identify two lines of action. In the line of technical improve-
ments, we aim to improve the accuracy of our model by testing different mechanisms.
With the purpose of addressing the lack of attention of the model to the text features, we
propose to address the classifier model hierarchically: first, we will use spectrograms of the
audio segments to distinguish between silence, noise and student talk from the teacher’s
speech. Then, we will classify the teacher’s talk into the different types of activity according
to the transcriptions and the context. We think that this new text classifier will output better
results using a more intelligent segmentation of the input data, splitting the transcripts
according to the small pauses in the speech detected in the audio. Another technique for
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increasing the accuracy is to fine-tune XLM-RoBERTa with the automated transcriptions
on the repository. A further refinement could also be training our own language model
tailored for the spoken academic discourse.

Regarding the scope of the work, our intention is to improve the learning experience of
the student by facilitating the human-recording interaction as well as to boost and enhance
learning from video class recordings, which is the primary learning resource in university
classes. To that end, our multimodal classification algorithm of teaching activities will be
integrated into a tool for both students and academic staff. It will make it easy for students
to view long class recordings, providing direct access to specific contents. Ultimately, we
aim to develop a web application tool that enables students to select the desired type of
teaching activity so that the playback jumps straightforwardly to the desired point. It
will also aid teachers in identifying the type of activity they are doing during a lesson as
well as retrieving valuable information about how long the teacher devotes to explaining
the theory and solving exercises, or how many times the teacher interacts with students
and attempts to engage them in the classroom. These data can then be eventually used to
cross-check the results of the teaching evaluation questionnaires and study correlations
between the use of teaching activities and student satisfaction. This will allow them to
enhance their teaching style and discuss how teaching and learning might be improved in
the class.
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