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Abstract: As the number of electric vehicles (EVs) significantly increases, the excessive charging
demand of parked EVs in the charging station may incur an instability problem to the electricity net-
work during peak hours. For the charging station to take a microgrid (MG) structure, an economical
and energy-efficient power management scheme is required for the power provision of EVs while
considering the local load demand of the MG. For these purposes, this study presents the power
management scheme of interdependent MG and EV fleets aided by a novel EV charging/discharging
scheduling algorithm. In this algorithm, the maximum amount of discharging power from parked
EVs is determined based on the difference between local load demand and photovoltaic (PV) power
production to alleviate imbalances occurred between them. For the power management of the MG
with charging/discharging scheduling of parked EVs in the PV-based charging station, multi-objective
optimization is performed to minimize the operating cost and grid dependency. In addition, the
proposed scheme maximizes the utilization of EV charging/discharging while satisfying the charging
requirements of parked EVs. Moreover, a more economical and energy-efficient PV-based charging
station is established using the future trends of local load demand and PV power production predicted
by a gated recurrent unit (GRU) network. With the proposed EV charging/discharging scheduling
algorithm, the operating cost of PV-based charging station is decreased by 167.71% and 28.85%
compared with the EV charging scheduling algorithm and the conventional EV charging/discharging
scheduling algorithm, respectively. It is obvious that the economical and energy-efficient operation of
PV-based charging station can be accomplished by applying the power management scheme with the
proposed EV charging/discharging scheduling strategy.

Keywords: charging station; deep learning; electricity load; electric vehicle; microgrid; optimization;
photovoltaic; power management; scheduling; vehicle-to-grid; vehicle-to-vehicle

1. Introduction

Recently, energy shortage and atmospheric pollution problems are becoming criti-
cal issues, as high energy consumption and carbon emissions are caused by traditional
combustion engine vehicles. As an effective way to solve these problems, electric vehicles
(EVs) have become an essential component in the transportation sector to reduce depen-
dence on oil resources and improve environmental performance with various types of
renewable energy resources in the microgrid (MG). In addition, plug-in electric vehicles
(PEVs), plug-in hybrid electric vehicles (PHEVs), and fuel cell vehicles (FCVs) are not
only cost-effective but also eco-friendly in terms of energy prices and operating expenses
compared to combustion engine vehicles [1]. As EV infrastructure rapidly grows, EVs
provide the function of stabilizing the power system. For technological advances in power
management of EV infrastructure, an EV aggregator is utilized to offer energy-efficient
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and cost-effective charging/discharging strategies. With batteries equipped in EVs, they
can operate as an energy storage system (ESS) shifting load demand from peak to peak-off
hours and reducing electricity costs [2]. A three-step approach is proposed to manage
PHEVs’ charging load to minimize the cost for energy suppliers [3]. Moreover, EVs are
described as controllable loads which can be utilized to stabilize the grid supporting the
energy in vehicle-to-building (V2B) or vehicle-to-home (V2H) applications, and can also
serve as spinning reserves in specific conditions [4–6].

With the widespread usage of EVs, the structure of the parking station is presented to
satisfy the electrical energy requirements of EV owners. These requirements of parking
stations are satisfied by interacting with the utility grid. The parking station satisfies the
accessibility to the charging station for EVs and provides an opportunity to integrate the
EVs’ batteries. Moreover, when vehicle-to-grid (V2G) or grid-to-vehicle (G2V) technolo-
gies are used for EVs, batteries of EVs at parking stations can serve as a flexible reserve
capacity [7]. Due to their ability to store energy, parking stations can participate in the
energy and reserve markets. In addition, parking stations can perform a prominent role to
supply charging services for EV owners. Generally, conventional EV chargers, such as AC
Level 2 (charging rate is 10–22 kW) and direct current quick charging (DCQC) (charging
rate is 50–120 kW), are used in public charging stations [8]. As various types of chargers
have different charging rates and characteristics, different charging modes can be assigned
to EVs depending on the EV charging requirement. As more chargers are installed in a
charging station, more installation and operating costs are incurred. Consequently, it is
significant to use a limited number of chargers efficiently. Several studies were presented
to satisfy multiple EVs’ charging requirements, such as the development of intelligent
charging strategies [9,10], and optimization of charging stations’ location and size [11,12].
Cooperative charging strategies will lead to an increase in operational efficiency and the
reduction in electricity costs.

EV charging stations generally produce high charging load in the distribution network
when added to the local power systems. Several studies have been implemented, which are
relevant to quantifying the variation of peak load [13,14]. With an uncoordinated charging
scheme for PHEVs located in the metropolitan distribution network of Australia, peak
load shifting was required to make the stable operation of the distribution network [15].
In [16], the impact of uncontrolled EV charging on local power distribution networks was
analyzed, and the distribution networks were stabilized by incorporating a coordinated
charging scheme. Moreover, the optimal strategy, which controls the charging activities in
the parking station, was presented by analyzing the effect of EV charging on daily load
demand [17]. In [18], a two-stage demand response model is described to coordinate the
peak load incurred by charging EVs. To reduce the stress on the grid, renewable energy
systems (RESs) can be installed in the charging station infrastructure and utilized with
smart charging strategies to charge EVs. Additionally, the photovoltaic (PV)-based EV
charging station can participate in the energy markets or EV arbitrage markets as the grid-
connected PV systems are widely deployed and EV markets rapidly grow. To maximize
the revenues of the PV-based EV charging station and minimize the battery energy storage
system (BESS) capacity fading, a multi-objective optimization is applied [19]. A dynamic
searching peak and valley algorithm is applied to PV-based EV charging stations to mitigate
the effect on the public grid and reduce the electricity cost of the public grid. In [20], the
impact of a PV-based charging station on the economics and emissions from the power
grid was analyzed. A study in [21] described smart control strategies to integrate EVs and
PV systems with the future electricity systems. A PV generation can be used to supplement
increased peak electricity demands due to the mid-day charging of PHEVs [22]. In [23], the
effect of fast EV chargers on a retail building’s load demand was analyzed, and 38% of the
PHEV charging load was supplied with demand management and produced PV power.

V2G technologies can be applied to power distribution systems of larger capacity, facil-
itate a smart grid with power management, and provide ancillary services to the users [24].
Through interactions between smart grid and EV aggregator in the V2G applications,
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charging–discharging coordination can be achieved with supply-demand equilibrium as
V2G operates faster than traditional power plants, eliminating the problems such as stress
on the power grid, power balance, urgent charging demand, and energy deviation [25,26].
Moreover, V2G provides backup capabilities for renewable energy resources, such as wind
and solar power generations, efficiently supplementing intermittent power production of
RESs [27,28]. According to the total number of EVs in a local network, distributed power
capacity provided by V2G can have a profound effect on the power system [29]. In [30],
the particle swarm optimization (PSO)-based approach was presented to improve balances
between operating cost and emission in the V2G framework. V2G has the effect of reducing
the overall cost of services and the electricity bills of customers and improving load factors
by selling energy to the utility grid.

With the utilization of V2G, intelligent charging–discharging methods are carried out
in real-time when the grid system requires an economical and energy-efficient solution and
ancillary services. Intelligent charging–discharging methods can be applied to the grid sys-
tem where EVs and charging station are interconnected to a data communication network,
and the charging station is linked to a transmission-distribution system operator. It can
also track, control, and constrain the use of electric devices in a charging station to optimize
the electricity demand. Optimization techniques are usually used for energy management
of the grid system, and the optimized operation of the power system is determined based
on optimization variables, such as charging power, charging–discharging status, price pre-
diction, and power balance [31–33]. With the cooperative charging–discharging operations
of EVs, the vehicle-to-vehicle (V2V) charging mechanism can be utilized to stabilize the
electricity network, which is beneficial to both EVs having the role of energy consumers
and energy providers [34]. A semi-distributed online V2V charging strategy based on
electricity price control was presented to obtain high revenue for discharging and low cost
for charging EVs [35]. When traded with the electric company, the commercial price of
electricity produced from the RESs is generally determined based on the system marginal
price (SMP) and the renewable energy certificates (RECs) issued by authorities such as the
Korea Power Exchange (KPX) [36]. In study [37], a real-time model performing V2G power
transactions is applied for EV fleets. The electrical energy can be sold/purchased to/from
the utility grid through bi-directional charging in V2G networks [38,39].

In the charging station, a communication system is significant to extract each EV’s oper-
ation, such as charging and discharging, and its charging rate [40]. Smooth and reliable com-
munication is an essential component to operate charging stations with sharing networks
and effectively scheduling EVs’ operations for the customers [41]. To prevent compatibility
problems between charging stations, a diversity of internet-based communication methods
have been presented and communication standards have been established [42,43]. Data
and energy flow of charging stations are bidirectionally transmitted among EVs, charging
stations, and the utility grid. The ISO/IEC 15118 standard is defined as a complementary
international standard supporting internet protocol-based bidirectional communication
system [44]. It is mainly used to develop improved and autonomous charging/discharging
control mechanism between EVs and charging station. The IEC 61850 is used to standard-
ize EV charging systems consisting of AC or DC and define requirements of general EV,
electric vehicle supply equipment (EVSE), and different charging modes. Additionally,
its communication standard defines information models to be applied to the information
exchange between electrical devices in the charging station [40].

Electric power industry has significant impact on our daily life, and stable and ef-
ficient electricity supply can maintain the balanced operation of the power system [45].
Therefore, accurately forecasting the change of load demand is essential to ensure the stable
power system and reliable electricity market. In addition, as RESs are integrated with MGs,
they are utilized to supply electricity to households, buildings, factories, and EV charging
stations. Among various types of RESs, many studies are currently implemented for PV
output forecasting due to its characteristic of intermittent power generation. PV power fore-
casting is helpful for planning and scheduling of power distribution, energy management,
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increasing the operational efficiency of the power system, and minimizing the electricity
cost. Typically, short-term forecasting of electricity load demand and RESs’ output can
be used for power system control or energy flow scheduling of electrical components in
the MG.

Recently, deep learning (DL) is applied to improve the accuracy of data forecasting
since a large amount of data can be collected from several sensing devices. Different
DL algorithms, such as convolutional neural network (CNN), recurrent neural network
(RNN), long short-term memory (LSTM), gated recurrent unit (GRU), and other hybrid
deep neural network architectures, are generally used as beneficial tools in time-series data
forecasting [46]. The function of DL based neural network is to learn complex mappings
from the patterns of input and output datasets by supporting numerous inputs and outputs.
The advantage of artificial neural network (ANN) includes that the solution is very fast and
simple compared with the physics-based models. In addition, it does not require knowledge
about parameters on internal system, and it can solve the complex mathematical problems
with high accuracy. RNN is generally used to deal with time-series data, however, it is
easy to have long-term dependence. To prevent long-term dependence on RNN, the gate
structure of LSTM performs the function of selective memory of past information. After
LSTM, the GRU network is also proposed with another RNN gate structure, which has
only two gates used to control the influence of datasets in previous time, to solve problems
of RNN such as vanishing or exploding gradient. GRU has high forecasting accuracy
and alleviates the overfitting problem of LSTM [47]. In [48], LSTM based framework is
applied to forecast a residential load by capturing temporal power consumption pattern
in single-meter load profile. The LSTM-RNN was presented to establish an accurate PV
power forecasting model reflecting the temporal changes in PV power production [49]. The
GRU neural network is used to establish the model to forecast the electricity load with
stacked auto-encoding compressing the historical dataset [50]. The hybrid DL approach
was developed based on the sequence-to-sequence autoencoder and GRU for short-term
PV power prediction, which has higher performance than other DL models [51].

In this paper, multi-EV charging/discharging scheduling strategy is proposed for the
power management of interdependent MG and EV fleets located in a charging station. The
proposed charging/discharging scheduling algorithm is presented to solve the problem
of the grid system instability that may occur when the charging demand of EVs is added
to the local load demand, and to minimize the operating cost of the PV-based charging
station while satisfying the charging requirements of parked EVs. A portion of produced
PV power and discharging power of EVs can be supplied to the local load demand and
sold to the electric company at the sum of SMP and weighted REC, and the rest of these
power can be directly supplied to the charging demand of EVs. If the PV power and
discharging power of EVs are insufficient for the load demand, the power is supplied
from the utility grid. It is assumed that the charging station is located in workplace, and
EVs can be charged or discharged during the parking period that is determined by the
distribution of arrival time at home and workplace. The proposed power management
scheme is mainly composed of two stages: prediction and scheduling. Using a time series
model trained by the GRU network, the local load demand and PV power production are
forecasted in the prediction stage. In the scheduling stage, parked EVs are assigned to the
charging/discharging operations depending on the EV charging/discharging scheduling
algorithm considering the future trend of the local load demand and PV power output.
For the coordinated power distribution of power sources and EV charging/discharging
scheduling, multi-objective optimization is applied to the MG and EV fleets to minimize
the operating cost of the PV-based charging station and grid dependency of the MG and
maximize the utilization of EVs as ESSs while considering each EV’s charging requirements.
The contributions of this paper are listed as follows.

(1) A novel power management scheme for independent MG and EV fleets in the PV-
based charging station is presented. The PV power produced from the PV-based
charging station is used as a secondary source to satisfy the local load demand and
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charging demand of EVs, and it is consumed prior to grid power. With the proposed
EV charging/discharging scheduling algorithm, discharging power from parked
EVs is also be used to meet the local load demand and charging demand of EVs.
In addition, the system operator of the PV-based charging station can decrease the
operating cost by selling the produced PV power and discharging power of EVs to
electric companies which are supplemented to the local load demand. For economical
and energy-efficient power management of the PV-based charging station, a demand
response (DR) program, SMP, and REC are considered.

(2) The multi-EV charging/discharging scheduling algorithm with GRU network is pro-
posed for economical and energy-efficient power management of parked EVs in the
PV-based charging station. Parked EVs of the PV-based charging station are assigned
to charging/discharging operation based on the maximum amount of discharging
power of EVs determined by the future trends of local load demand and PV power
production that are predicted by the GRU network. Compared with the power man-
agement scheme with conventional EV charging/discharging scheduling algorithm
utilizing only the currently measured local load demand and PV power production,
the power management scheme with the proposed EV charging/discharging schedul-
ing algorithm considering the variation trends of local load demand and PV power
production can further reduce the operating cost of the PV-based charging station. The
proposed power management scheme is also compared with the conventional scheme
using the EV charging scheduling algorithm not considering discharging of EVs. As a
result of comparing the performance of the power management schemes presented in
this paper, a substantial difference is observed in the aspect of operational efficiency
and economic feasibility of the PV-based charging station

(3) In the PV-based charging station, several EVs are connected to the charging system
via individual EV charging connectors. Since the parked EVs are interconnected to the
MG through the electricity network, some EVs can be charged by the utility grid, PV
system, and discharging of other EVs, and some EVs can be discharged to supplement
the local load demand and charging demand of EVs among EV charging/discharging
candidates. In this study, driving pattern of EVs is considered according to distri-
bution of arrival at home and workplace. The EV charging/discharging candidates
are established based on each EV’s information such as predetermined parking time
including margin time, current state of charge (SOC) value, and initiation of charg-
ing/discharging process. Using the proposed EV charging/discharging scheduling
strategy, parked EVs of the PV-based charging station are utilized as ESSs in the MG.

(4) In the proposed power management scheme, multi-objective optimization is applied
for the power management of interdependent MG and EV fleets, which determines
the coordinated power distribution of power sources and the charging/discharging
operation of parked EVs. Multi-objective optimization for optimal power manage-
ment of nanogrid is presented in [52]. Through the multi-objective optimization, the
operating cost of the PV-based charging station and grid dependency of the MG is
minimized, and the utilization of EV charging/discharging is maximized for econom-
ical and energy-efficient operation of the PV-based charging station. In addition, the
collected information such as remaining parking time and the current SOC of EVs
are considered to satisfy the charging requirements of parked EVs, and the operating
SOC range and the initiation of charging/discharging process are reflected to prevent
over-charging and over-discharging and improve battery health.

This paper is organized as follows. In Section 2, the system architecture including the
PV-based charging station is described. Section 3 explains the proposed power management
scheme for obtaining the charging/discharging scheduling of EVs in the PV-based charging
station. Section 4 shows the simulation results of the comparison of power management
schemes, and Section 5 presents the conclusion of this study.
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2. System Model Formulation
2.1. Overall System Architecture

In this paper, the power management scheme of interdependent MG and EV fleets
is presented to schedule charging/discharging operations of parked EVs in PV-based
charging station considering the local load demand and PV power production. In the
grid-connected mode, the utility grid is linked to the electricity network through the point
of common coupling (PCC), and the electricity load is also connected to the electricity
network to be supplied power from power resources, such as the utility grid, PV system,
and discharging of EVs. For data communication in the MG, the microgrid central controller
(MGCC) is used as communication interface to maintain the energy balance of the electricity
network. Typically, as the number of EVs accommodated in the charging station increases,
the electricity network can be quite unstable due to the increasing peak load caused by
electricity load of the charging station. Consequently, power management is essential for
the charging station to manage EVs participation and charging/discharging scheduling.

For the economical and energy-efficient EV charging/discharging scheduling of the
PV-based charging station, the system operator of the charging station needs to consider
various information such as the state of grid system, weather information, electricity pur-
chasing/selling price, and EV information. The system operator receives the information
of the local load demand in the grid system and electricity selling prices such as SMP and
REC from the KPX. Weather information is obtained from the Korea Meteorological Ad-
ministration (KMA), and maximum PV power output is calculated by solar irradiance data
in weather information. The electricity rate purchased from the utility grid is determined
based on the DR program specified by the Korea Electric Power Corporation (KEPCO). The
charging station receives specific information relevant to charging/discharging conditions
of EVs such as current SOC, target SOC, arrival time, and scheduled departure time.

Charging batteries is a critical task to manage proper operation of sensor network [53],
transportation system [54], and many more. In the PV-based charging station, EVs can be
utilized as a power supply/demand component while parked. When an EV is parked and
connected to the charging system, the system operator receives the parked EVs’ information.
Based on this information, a charging/discharging operation is applied to each EV in
real-time with the proposed EV charging/discharging scheduling algorithm considering
the local load demand and generated PV power output. The PV-based charging station
operator is responsible for charging each parked EV to target SOC within a predetermined
parking time while maintaining the stable electricity network. The frequent charging and
discharging cycle of EV incurs the reduction in the usable lifetime of the EV battery. Due to
the battery degradation, the EV owner’s permission is necessary to utilize the EV to the
V2G application. For high penetration of EVs in V2G system, an economic effect needs
to be provided to the EV owners who permits to participate in V2G service as well as
charging station operator. In the charging station, a parking fee discount can be served as
an economic benefit for EV owners.

The overall system architecture of the PV-based charging station is presented in
Figure 1. The utility grid is linked to the electricity network via transformer, and electricity
can be supplied to the local load demand and charging demand of EVs through the
electricity network. The PV system installed on the charging station is connected to the
AC bus with a DC-AC converter, and the produced PV power can be supplied to the local
load demand and charging demand of EVs according to the power management scheme.
The parked EVs are interconnected to the electricity network using bidirectional charger
that is a state-of-the-art EV charger capable of charging and discharging power from an EV
battery. The EVs having a bidirectional charging capability can be utilized to give electricity
to load demand, feed energy back into the utility grid, and provide backup electricity in
case of a power outage or emergency. In this system, the discharging power of EVs, which
is determined depending on the EV charging/discharging scheduling algorithm, can also
be used to supplement the local load demand and charging demand of EVs. When the
produced PV power and discharging power of EVs are insufficient for total load demand,
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the grid power is used. The key role of the proposed EV charging/discharging scheduling
algorithm is to decrease the peak load that incurred by the simultaneous charging demand
of EVs and minimize the operating cost of the PV-based charging station by selling the PV
power and discharging power of EVs to the electric market while supplying them to local
load demand.
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In the PV-based charging station, three charging modes, such as M0 (0 kW), M1 (7 kW),
and M2 (19.2 kW), are utilized to satisfy EV owners with different charging requirements
and improve the charging service quality [55]. The M1 and M2 mode are included in the
level 2 charger which is described as a primary charging method typically used in public
facilities [56]. Depending on the EVs’ information, such as the predetermined parking
time, the current SOC, and target SOC, the charging mode is assigned to each EV. The
determination of charging mode for each EV is shown as follows.

CMi =


M1 Tp,i ≥ TM1

c,i + Tw

M2 TM1
c,i + Tw > Tp,i ≥ TM2

c,i + Tw ∀i ∈ I
M0 otherwise

(1)

where the identification number of an EV which requires charging is represented by
the variable i ∈ 1, 2, 3, · · · , I, the charging mode of i-th EV is represented by CMi, the
predetermined parking time of i-th EV is represented by Tp,i, the minimum required

charging time of i-th EV in M1 and M2 mode is represented by TM1
c,i and TM2

c,i , and the margin

time considering discharging of EV is represented by Tw. TM1
c,i and TM2

c,i are calculated based
on the assumption that each EV is only charged without discharging in the PV-based
charging station. In order to utilize EV discharging for the power management of the MG,
Tw is added to TM1

c,i and TM2
c,i , respectively, to determine the charging mode of each EV. For

i-th EV, if Tp,i is larger than the sum of TM1
c,i and Tw, the charging mode is assigned to M1

mode. If i-th EV is not assigned to M1 mode and the Tp,i is larger than the sum of TM2
c,i

and Tw, the charging mode is assigned to M2 mode. If i-th EV is not assigned to M1 or M2
mode, the EV is denied entry to the charging station and its charging mode is assigned to
M0 mode. After assigning the charging mode to parked EVs, on-off strategy is applied for
EV charging/discharging as it is more practical method than regulating the charging rate
to control a number of EVs.
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To describe the driving pattern of a vehicle, the distribution of arrival time at home
and workplace is used as shown in Figure 2. The commuter’s daily moving pattern during
weekdays is considered for the distribution of arrival time. The driving pattern is developed
from [57], after analyzing the parking time and driving time of commuters in [58]. From the
characteristics of the routine trip of commuters, it is observed that more than 60% of vehicles
arrive at workplace from 7:20 to 13:20 h and at home from 15:00 to 21:00 h. As a time
interval is considered to be 15 min, the total number of time slots for a day becomes 96 slots.
Then all vehicles can be divided into several groups depending on these arrival times. If
the daily schedule is predetermined, the commuter can establish the operation of V2G and
G2V, and location. In this paper, it is assumed that the PV-based charging station is located
at the workplace. The parking periods of EVs in the workplace are decided depending on
the duration between arrival time at workplace and arrival time at home. The duration in
which the EV is parked in the workplace is treated as the slot for charging/discharging of
the EV. Considering the discharging of EVs, the charging/discharging process is performed
on EVs having more than 10 h of predetermined parking time. Moreover, each EV is
assumed to have 64 kWh capacity of battery and the target SOC value of each EV is set to
80% while parked. The initial SOC value of each EV is provided depending on the normal
distribution with the mean value as 15 and the standard deviation value as 5.
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2.2. Energy Supply/Demand Model of the PV-Based Charging Station
2.2.1. EV Model

Charging and discharging demand of EVs are described in (2) and (3), where PWi
ch

and PWi
dch denote the charging/discharging power of i-th EV in assigned charging mode,

Oi
ch(t) and Oi

dch(t) denote the switch function of charging and discharging of i-th EV at time
t, PWgrid,EV(t), PWPV,EV(t), and PWEV,EV(t) denote the grid power, the PV power, and the
discharging power of parked EVs supplied to charging demand of EVs at time t, Ogrid,EV(t),
OPV,EV(t), and OEV,EV(t) denote the switching functions of PWgrid,EV(t), PWPV,EV(t), and
PWEV,EV(t), PWEV,load(t) denotes the discharging power of parked EVs supplied to the
local load demand at time t, OEV,load(t) denotes the switching function of PWEV,load(t).
∑I

i=1 PWi
ch ×Oi

ch(t) and ∑I
i=1 PWi

dch ×Oi
dch(t) represent the total charging and discharging

demand of parked EVs at time t, respectively. In the PV-based charging station, the power
from the utility grid, the PV system, and discharging of some EVs are supplied to meet the
charging demand of the rest of EVs. The discharging power from parked EVs is used to
supplement the local load demand and the charging demand.

I

∑
i=1

PWi
ch ×Oi

ch(t) = PWgrid,EV(t)×Ogrid,EV(t) + PWPV,EV(t)×OPV,EV(t) + PWEV,EV(t)×OEV,EV(t), ∀t (2)
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I

∑
i=1

PWi
dch ×Oi

dch(t) = PWEV,load(t)×OEV,load(t) + PWEV,EV(t)×OEV,EV(t), ∀t (3)

2.2.2. PV Power Model

The PV power, generated from the PV system installed in the charging station, is
described in (4), where PWPV(t) is the total amount of produced PV power at time t,
PWPV,load(t) is the PV power supplied to the local load demand at time t, and OPV,load(t) is
the switching function of PWPV,load(t). A part of PV power is directly used for the charging
demand of EVs from the PV system, and the rest of PV power is supplemented for the local
load demand.

PWPV(t) = PWPV,load(t)×OPV,load(t) + PWPV,EV(t)×OPV,EV(t), ∀t (4)

2.2.3. Grid Power Model

The grid power consumption of the overall system architecture can be expressed
by (5)–(7), where PWgrid(t) is the total grid power consumption at time t, PWgrid,p(t) is
the power purchased from the grid at time t, PWs,grid(t) is the power sold to the grid at
time t, PWgrid,load(t) is the grid power supplied to the local load demand at time t, and
Ogrid,load(t) is the switching function of PWgrid,load(t). When the produced PV power and
the discharging power of EVs are insufficient for local load demand, the power is purchased
from the grid to meet the demand. In (7), the PV power and the discharging power of EVs
are sold to the grid and used to satisfy the local load demand.

PWgrid(t) = PWgrid,p(t)− PWs,grid(t), ∀t (5)

PWgrid,p(t) = PWgrid,load(t)×Ogrid,load(t) + PWgrid,EV(t)×Ogrid,EV(t), ∀t (6)

PWs,grid(t) = PWPV,load(t)×OPV,load(t) + PWEV,load(t)×OEV,load(t), ∀t (7)

2.2.4. Local Load Demand Model

The local load demand model is described by (8), where PWload(t) is the local load
demand except the charging demand of EVs at time t. To satisfy the local load demand,
represented by PWload(t), the power can be supplied from the utility grid, PV system, and
discharging of EVs.

PWload(t) = PWgrid,load(t)×Ogrid,load(t) + PWPV,load(t)×OPV,load(t) + PWEV,load(t)×OEV,load(t), ∀t (8)

2.3. Electricity Rate (DR program, SMP, and REC)

The DR program is typically utilized to establish an efficient and flexible power
system by providing an incentive to users to consume less electricity when electricity
rate or overall electricity consumption is high [59]. In the PV-based charging station, the
charging demand of EVs can be scheduled to reduce the peak load and the electricity
cost based on the DR program. According to the DR program, the electricity rate is
presented as shown in Figure 3, where $0.055/kWh during 23:00–09:00, $0.108 kWh during
09:00–10:00, 12:00–13:00, and 17:00–23:00, and $0.179/kWh during 10:00–12:00 and 13:00–
17:00. The Renewable Portfolio Standard (RPS) is applied as renewable energy policy to
decrease economic burden of Electric Power Industry Foundation and activate investment
of renewable energy business to power providers. The renewable energy provider can
obtain a REC, which describes a tradable commodity, by generating and offering 1 MWh of
electricity from renewable energy sources. In addition, energy providers can get additional
revenue by selling REC to the energy market. To increase the amount of investment in
renewables, weighted value is provided to RECs by government depending on the type,
technology, and size of facility. Renewable energy providers having high technology or
small-scale facilities cab obtain benefits from this policy of weighted REC system. In this
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paper, weight for the PV system installed on the PV-based charging station is provided as
1.2, as the PV system is installed on general sites and its capacity is less than 100 kW [60].
The SMP is described as the maximum average cost among scheduled electric energy
generators. In the energy market, the price of renewable energy is set by the sum of
SMP and weighted REC depending on the fixed price contract. Figures 4 and 5 show
monthly average value of the local load demand of the MG and the PV power production
of PV-based charging station, respectively. The power management scheme of the MG
with EV charging/discharging scheduling algorithm is performed using multi-objective
optimization based on the comparison of the local load demand and PV power production.
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2.4. Prediction of Local Load Demand and PV Power Production

In the system architecture, parked EVs in the PV-based charging station are utilized
as ESS to maintain stable and efficient power system. As shown in Figure 1, the local
load demand, the PV system, and the parked EVs are connected to the electrical network,
and they can communicate mutually through the communication network. Depending
on the forecasted data of the local load demand and the PV power output, the charg-
ing/discharging operation of EVs is determined by the system operator, and it can decrease
the peak load of the entire system and increase the economic feasibility of the PV-based
charging station. The PV power and the scheduled discharging power of EVs can be sold
to electric company while providing electricity to the local load demand. When the power
is insufficient to satisfy the charging demand and the local load demand, the necessary
power is supplied from the utility grid.

RNN is a kind of ANN that can process time-series data or sequential data, memorizing
long term dependencies [61]. However, as time lags increase, the vanishing/exploding
gradient problem may occur in the training process of RNN. The structure of LSTM and
GRU were proposed to resolve the above-mentioned problem. The GRU is presented to
obtain better performance in the aspect of computational time and cost, compared with the
LSTM. In this work, the GRU network is utilized to predict the variation trends of the local
load demand and PV power output. As shown in Figure 6a, the applied GRU network is
mainly composed of two parts: 6 GRU layers and 3 fully connected layers. The appropriate
structure of GRU network is established by trial-and-error process [62]. The structure of
GRU cell is presented in Figure 6b. In the GRU cell, there exist two control gates, namely
update gate (zt) and reset gate (rt). The update gate regulates how much the hidden state
information at prior time step (ht−1) will be delivered to the current time step t. The more
update gate is activated, the more hidden status information at the previous time step is
reflected. The reset gate controls how much the hidden state information at prior time step
will be discarded before delivered to the current time step t. The smaller the reset gate, the
more information at prior time step is ignored [63].

To construct the forecast model, the GRU networks are trained with the 1-year dataset
of the local load demand and PV power production, respectively. The dataset of the
local load demand is obtained from the KPX, and the dataset of the PV power output
generated from the PV panel is calculated based on the following components, such as
solar irradiances and ambient temperatures, provided from the KMA [64]. Each dataset
is split into a training set (80%) and a validation set (20%). The GRU network is trained
with each dataset, in other words, the first network is trained with local load demand
dataset, the second with PV power output dataset. To reflect the variational trend of
the local load demand and the PV power output with power management scheme, the
numbers of inputs and outputs are set as 12 and 7, respectively. In the GRU network,
PW(t−m), PW(t−m + 1), . . . , and PW(t) are the inputs of local load demand or PV
power output at t-th time interval where m = 11, and PW(t + 1), PW(t + 2), . . . , and
PW(t + n) can be the outputs of local load demand or PV power output at t-th time interval
where n = 7. The performance of the forecast model for the local load demand and the PV
power output is evaluated by root-mean-squared-error (RMSE). The RMSE is defined as√

1
N ∑N

i=1
(
X̂i − Xi

)2, where X̂i represents the predicted value of local load demand and PV
power output, and Xi represents the real value of local load demand and PV power output.
The RMSE of the forecast model is 3.8 and 6.74 for each validation dataset.
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3. Power Management Scheme of MG with EV Charging/Discharging Scheduling
Algorithm

In this section, features of the power management scheme of the MG with the proposed
EV charging/discharging scheduling algorithm is presented. It is assumed that each EV
can be charged or discharged through bidirectional EV charger linked with the PV-based
charging station. The bidirectional EV charger can control the switching of the connected EV
between charging and discharging operations. Maximum amount of the discharging power
of the parked EVs is provided depending on the variational trends of the local load demand
and PV power production. According to the EV’s information, each parked EV becomes a
candidate for charging/discharging operation. Then, by performing the multi-objective
optimization, the coordinated power distribution of power sources is carried out for the MG
and a “charging”, “discharging”, or “idle” operation is assigned to the switching function of
each parked EV based on the EV charging/discharging candidates. The switching function
of each EV is applied to the multi-objective optimization considering the operating cost of
PV-based charging station, PV power consumption, grid dependency, utilization of EVs,
current SOC value of EVs, and the remaining parking time of EVs simultaneously.

3.1. Proposed EV Charging/Discharging Scheduling Algorithm

In the conventional EV charging/discharging scheduling algorithm, maximum amount
of the discharging power from parked EVs is given depending on the specific condition rel-
evant to the difference between local load demand and PV power production, as presented
in (9). The determined maximum amount of discharging power is considered for the EV
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charging/discharging scheduling in the power management scheme using multi-objective
optimization.

0 ≤
I

∑
i=1

PWi
dch ×Oi

dch(t) < PWdch,max(1) i f PWload(t)− PWPV(t) ≥ PW f lag

0 ≤
I

∑
i=1

PWi
dch ×Oi

dch(t) < PWdch,max(2) i f PWload(t)− PWPV(t) < PW f lag
(9)

where PW f lag is the flag parameter to decide the period that discharging of EVs is more
or less activated, and PWdch,max(1) and PWdch,max(2) are the maximum amount of discharg-
ing power from parked EVs in each circumstance. PWdch,max(1) has higher value than
PWdch,max(2), which means discharging of EVs can be more utilized to the power manage-
ment of the MG with PWdch,max(1) than with PWdch,max(2). If the difference between local
load demand and PV power output at the t-th time interval PWload(t)− PWPV(t) is equal
to or bigger than PW f lag, the maximum amount of discharging power of EVs becomes
PWdch,max(1). On the contrary, if it is smaller than PW f lag, the maximum amount of dis-
charging power of EVs becomes PWdch,max(2). In the proposed EV charging/discharging
scheduling algorithm, the maximum amount of discharging power of EVs is determined
depending on the following conditions.

0 ≤
I

∑
i=1

PWi
dch ×Oi

dch(t) < PWdch,max(1) i f
K
∑

k=0

(
PWload(t + k)− PWPV(t + k) ≥ (K + 1)× PW f lag

0 ≤
I

∑
i=1

PWi
dch ×Oi

dch(t) < PWdch,max(2) i f
K
∑

k=0

(
PWload(t + k)− PWPV(t + k) ≥ (K + 1)× PW f lag

(10)

For the power management of the MG, the current and future states of local load
demand and PV power production are used to determine the maximum amount of discharg-
ing power of EVs. By considering the future trends of local load demand and PV power
production, a more appropriate charging/discharging operation can be allocated to each
parked EV in a specific circumstance. The future states of local load demand and PV power
production are forecasted by the GRU network, trained with each training dataset, as pre-
sented in Section 2. If the cumulative sum of difference between local load demand and PV
power production from the time interval t to t + K ∑K

k=0(PWload(t + k)− PWPV(t + k)) is
equal to or bigger than (K + 1)× PW f lag, the maximum amount of discharging power from
parked EVs becomes PWdis,max(1). On the contrary, if it is smaller than (K + 1)× PW f lag,
the maximum value of discharging power becomes PWdis,max(2).

3.2. Multi-Objective Optimization for Power Management of Interdependent MG and EV Fleets

As the maximum amount of discharging power of EVs is given, the EV candidates to
be charged or discharged are determined depending on the information of each EV, such
as the remaining parking time, the current SOC, and initiation of charging/discharging
process at t-th time interval. The EV can belong to the candidate to be charged if the
initiation of charging process is less than the maximum initiation and the current SOC
value is less than the maximum SOC value. On the contrary, the EV can belong to the
candidate to be discharged if the initiation of discharging process is less than the maximum
initiation and the current SOC value is higher than the minimum SOC value. However, the
EV cannot belong to the candidate to be discharged if the remaining parking time is less
than or equal to the required time to charge up to the target SOC. Then, the multi-objective
optimization is applied to determine the functioning behavior of EVs among charging,
discharging, and idle operations for the power management of the MG. If the EV is included
in the candidate to be charged, the charging or idle operation can be applied to the EV, and
if the EV is included in the candidate to be discharged, the discharging or idle operation
can be applied to the EV. The details of the multi-objective optimization are as follows.
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3.2.1. Constraints

While the EV in the PV-based charging station is interconnected to the electricity
network through the bidirectional EV charger having DC-to-AC inverter, the EV can be
charged by the power supplied from the utility grid and, PV system installed on the charg-
ing station, and discharging of EVs, and can be discharged to stabilize the power network
and decrease the operating cost of PV-based charging station by using the discharging
power for the local load demand and charging demand of EVs.

PWi
EV(t) = ηch × PWi

ch ×Oi
ch(t)−

1
ηdch
× PWi

dch ×Oi
dch(t), ∀i, t (11)

SOCi
EV(t) = SOCi

EV(t− 1) + PWi
EV(t), ∀i, t (12)

The charging/discharging power and the SOC value of i-th EV are presented in (11)
and (12), where PWi

EV(t) represents the charging/discharging power of i-th EV at time t,
ηch and ηdch represent the converter efficiency of the battery of EVs in charging/discharging
process, and SOCi

EV(t) represents the SOC value of i-th EV at time t. The dynamic adjust-
ment of SOC of i-th EV can be calculated as shown in (12).

SOCi
min ≤ SOCi

EV(t) ≤ SOCi
max, ∀i, t (13)

where SOCi
min and SOCi

max are the minimum and maximum SOC value of the i-th EV for
all time intervals, respectively. To maintain the efficient operation and prevent the aging
of EV battery, the operating range of SOC is set as 20%~80%, as presented in (13). The EV
battery can be protected from overcharging and deep discharging issues.

Oi
ch(t)−Oi

ch(t− 1) = Di,+
ch (t)− Di,−

ch (t), ∀i, t (14)

Oi
dch(t)−Oi

dch(t− 1) = Di,+
dch(t)− Di,−

dch(t), ∀i, t (15)

T

∑
t=1

Di,+
ch (t) + Di,−

ch (t) ≤ Nmax, ∀i, t (16)

T

∑
t=1

Di,+
dch(t) + Di,−

dch(t) ≤ Nmax, ∀i, t (17)

where Di,+
ch (t) and Di,−

ch (t) represent the positive and negative difference between the
previous and the current state of binary variable Oi

ch(t) {0,1}, Di,+
dch(t) and Di,−

dch(t) rep-
resent the positive and negative difference between the previous and the current state
of binary variable Oi

dch(t) {0,1}, and Nmax represents the maximum initiations of EV’s
charging/discharging process. In order to decrease the adverse effect of intermittent charg-
ing/discharging cycles of EV battery which may incur the reduction in battery capacity and
its lifetime [65], the initiations of charging/discharging process of the EV is constrained up
to Nmax.

In the PV-based charging station, PV panels with a capacity of about 90 kW is installed
on the charging station, and a DC-AC converter is used to supply power to the electricity
network via a PV system. For the economical and energy-efficient operation of the PV-based
charging station, the produced PV power is used for the local load demand and charging
demand of EVs within the maximum PV power generation, as presented in (18), where
PWmax

PV (t) represents the maximum amount of PV power at time t.

0 ≤ PWPV,load(t)×OPV,load(t) + PWPV,EV(t)×OPV,EV(t) ≤ PWmax
PV (t), ∀t (18)

In this study, total electricity load demand of the MG is mainly composed of the local
load demand and charging demand of EVs, and the electricity is supplied from the utility
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grid, PV system, and discharging of EVs. In order to prevent excessive power consumption
from the utility grid, the following equation is presented.

PWload(t) +
I

∑
i=1

PWi
ch ×Oi

ch(t)−
(

PWPV,load(t)×OPV,load(t) + PWPV,EV(t)×OPV,EV(t) +
I

∑
i=1

PWi
dch ×Oi

dch(t)
)

≤ PWmax, ∀t
(19)

where PWmax describes the maximum grid power consumption. The difference between
the total load demand and the supplied power from the PV system and discharging of
EVs represents the grid power consumption. To satisfy the constraint of the grid power
consumption, the charging/discharging process of EVs is controlled by (19).

3.2.2. Objective Functions

In this paper, minimization of the operating cost of PV-based charging station by (20),
minimization of the grid power consumption of the MG by (21), and maximization of the
utilization of EVs as ESS by (24) are performed through multi-objective optimization. The
charging requirements of parked EVs are also satisfied with the consideration of remaining
parking time and current SOC by (22) and (23).

The first objective function is presented to reduce the operating cost of the PV-based
charging station, while satisfying the charging requirements of parked EVs. The reduction
in operating cost is achieved by the economical and energy-efficient use of grid power, PV
power, and discharging power of parked EVs as follows.

min

 TOU(t)×
(

I
∑

i=1
PWi

ch ×Oi
ch(t)− PWPV,EV(t)×OPV,EV(t)− PWEV,EV(t)×OEV,EV(t)

)
−(SMP(t) + w ∗ REC)× (PWPV,load(t)×OPV,load(t) + PWEV,load(t)×OEV,load(t))

 (20)

where TOU(t), SMP(t), and REC represent time-of-use (TOU) price which is one of the
price-based tariffs under DR program at time t, the SMP of electricity supplied from PV
power generation and discharging power of parked EVs at time t, and REC which can
be sold to other electricity company with weighted value w, respectively. For the stable
and economical operation of the PV-based charging station, the operating cost should
be minimized in relation with the EV charging/discharging scheduling by controlling
switching functions O1

ch(t) · · ·O
I
ch(t), O1

dch(t) · · ·O
I
dch(t) of EVs. In the PV-based charging

station, after the power required for the charging demand of EVs is self-supplied by the PV
system and discharging of EVs, the power from the utility grid is supplied to the rest of the
charging demand of EVs at TOU price. The power not used for the charging demand of
EVs can be sold to electric company at the price considering the SMP and weighted REC,
while using the power to supplement the local load demand.

Due to increasing electricity load demand in the MG, the RES becomes more significant
as it has relatively less impact on the environmental issues than non-renewable energy
sources. Even though the use of grid power can be more economical according to DR
program, the use of PV power is promoted due to its eco-friendly characteristic [66].
Moreover, it can reduce the grid power consumption and enhance energy efficiency by
using PV power directly supplied from the PV system, not via long transmission line. The
decrement of the grid power consumption and the increment of the PV power consumption
can be achieved by the equation as following

min

[ (
PWgrid,load(t)×Ogrid,load(t) + PWgrid,EV(t)×Ogrid,EV(t)

)
−(PWPV,load(t)×OPV,load(t) + PWPV,EV(t)×OPV,EV(t))

]
(21)

To satisfy the charging requirements of EVs and utilize the discharging of EVs to the
power management of the MG simultaneously, intelligent charging/discharging scheduling
process of EVs is essential. After the parked EVs are classified into charging/discharging
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candidates depending on each EV’s information, one of charging, discharging, and idle
operations is assigned to each EV by (22) and (23) relevant to the remaining parking time
of EVs and the difference between the current SOC and the target SOC of EVs.

min

[
I

∑
i=1

Ti
re(t)×Oi

ch(t)−
I

∑
i=1

Ti
re(t)×Oi

dch(t)

]
(22)

min
[
−
(

SOCi
max − SOCi

EV(t)
)2
×Oi

ch(t) +
(

SOCi
max − SOCi

EV(t)
)2
×Oi

dch(t)
]

(23)

min

[
−
(

I

∑
i=1

PWi
ch ×Oi

ch(t) +
I

∑
i=1

PWi
dch ×Oi

dch(t)

)]
(24)

where Ti
re(t) represents the remaining parking time of the i-th EV before the scheduled

departure from the charging station at time t. The priority of charging/discharging EV can
be provided using Ti

re(t) and SOCi
max − SOCi

EV(t) in (22) and (23). Depending on these
equations, if an EV has less remaining parking time and a wide gap between the current
SOC and the target SOC, the probability that the EV is assigned to charging operation
among EV charging candidates gets higher. On the contrary, if an EV has larger remaining
parking time and a narrow gap between the current SOC and the target SOC, the probability
that the EV is assigned to discharging operation among EV discharging candidates gets
higher. The charging/discharging of parked EVs can be activated and utilized to the
power management of the MG according to (24). With these objective functions and
constraints mentioned above, the multi-objective optimization is performed by the genetic
algorithm (GA) that has advantage of global search ability with its random nature and
flexibility [67]. In the multi-objective optimization, the parameters of GA take crossover
probability 0.8, mutation probability 0.01, the maximum number of generations 100, and
population size 500.

4. Simulation Results
4.1. Simulation Setup

To verify the effect of the power management scheme with the proposed EV charg-
ing/discharging scheduling algorithm, the simulation is executed based on the system
architecture described in Figure 1. For the local load and charging demand of EVs, the
utility grid, PV system and discharging power of EVs are used as power sources. The
proposed EV charging/discharging scheduling algorithm is applied to the power manage-
ment of the MG to achieve the cost-effective and energy-efficient operation of the PV-based
charging station considering the local load demand of the MG. In the simulation, the DR
program determines the electricity rate of grid power, and the sum of SMP and weighted
REC is used as the selling price of PV power and discharging power of EVs for electric
company. It is assumed that the PV-based charging station is located around workplace
and the maximum number of EVs that can be parked at the PV-based charging station is
50. Each EV has a battery capacity of 64 kWh, and the SOC values of parked EVs at the
moment connected to the charging port are provided depending on the normal distribution
with mean µ = 15 and standard deviation σ = 5. The expected parking time is determined
based on the distribution of arrival time of vehicles at home and workplace presented in
Figure 2. The charging rate is assigned to each EV, depending on its expected parking time
and the current SOC, between M1(7 kW) and M2(19.2 kW). To charge EVs up to target
SOC, PWmax is set to about 157 kW to meet the local load demand and charging demand
of EVs, simultaneously. By comparing the difference between local load demand and PV
power production with PW f lag, the maximum amount of discharging power of EVs at
each time interval is determined. In the proposed EV charging/discharging scheduling
algorithm, PWdch,max(1) is set to 12 kW, indicating that discharging of EVs is relatively more
activated, and PWdch,max(2) is set to 2 kW, pointing out that discharging of EVs is relatively
less activated. PW f lag is set to 86 kW to determine the appropriate EV discharging period
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according to the amount of local load demand and PV power production. The local load
demand and PV power production data used in this study are presented as in Figure 7.
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In this study, the GRU network is utilized to predict the local load demand of the
MG and PV power production of the PV-based charging station. The parameters, adopted
from [68] which studied a GRU network with similar structure, are applied to train the
GRU network, as presented in Table 1. The total number of training epoch and batch size
are set to 1000 and 200 in our simulations. Additionally, the ADAM optimization algorithm
is applied with the learning rate of 0.005, gradient moving average of 0.9, dropout rate
as 0.2, and gradient threshold as 1 to update weighting coefficients to minimize the error
during training the GRU network.

Table 1. Training parameters of GRU network.

Epoch 1000
Batch size 200

Learning rate 0.005
Gradient moving average 0.9

Dropout rate 0.2
Gradient threshold 1

Three different EV charging/discharging scheduling algorithms are applied to the
power management scheme of MG in this simulation. The “EV Ch Scheduling” scheme
represents the power management scheme of the MG with EV charging scheduling algo-
rithm. The “EV Ch/Dch Scheduling” scheme refers to the power management scheme of
MG with conventional EV charging/discharging scheduling algorithm, following the EV
discharging condition in (9). The “Proposed EV Ch/Dch Scheduling” scheme represents the
power management scheme of MG with the proposed EV charging/discharging scheduling
algorithm, following the proposed EV discharging condition in (10). In the Figures 8–13,
the green dash-dotted line with square marker, the red dashed line with triangle marker,
and the blue solid line with circle marker represent the “EV Ch Scheduling” scheme, the
“EV Ch/Dch Scheduling” scheme, and the “Proposed EV Ch/Dch Scheduling” scheme,
respectively. At each time interval, the maximum amount of discharging power of EVs,
utilized to alleviate peak load and decrease the operating cost of PV-based charging station,
is determined by (9) and (10) in the “EV Ch/Dch Scheduling” scheme and the “Proposed
EV Ch/Dch Scheduling” scheme, respectively. The EV charging/discharging candidates
are determined based on the remaining parking time, the current SOC, and the initiation of
charging/discharging process of each EV. Then, through the multi-objective optimization,



Appl. Sci. 2022, 12, 4786 18 of 26

the coordinated power distribution of power sources in the MG and EVs are allocated to
charging/discharging operation among the EV charging/discharging candidates.

4.2. Comparative Performance of Power Management Scheme Based on the Newly Proposed EV
Charging/Discharging Scheduling Algorithm

The variational trends of the total grid power consumption for interdependent MG
and EV fleets depending on three EV charging/discharging scheduling strategies, are
described in Figure 8. With the “EV Ch Scheduling” scheme, it has lower grid power
consumption than the other schemes over the time interval 7:00–9:00, as most of the
parked EVs are charged without discharging depending on the EV charging scheduling
algorithm. In the “EV Ch/Dch Scheduling” and “Proposed EV Ch/Dch Scheduling”
schemes, higher total grid consumption is shown over the time interval 7:00–9:00, because
several EVs are discharged for the power management of the MG in the prior time period,
and it is available to charge more EVs depending on the relationship between local load
demand and PV power production. In addition, higher grid power consumption during
7:00–9:00 causes the reduction in electricity cost imposed for EV charging demand by
charging more EVs with low TOU price. Around 13:00, with the “Proposed EV Ch/Dch
Scheduling” scheme, less grid power is used for the economic power management of
the MG by lessening the number of EVs to be charged due to high-peak periods over
the time interval 13:00–16:00, even though the EV charging is preferred depending on
the condition ∑K

k=0(PWload(t + k)− PWPV(t + k)) < (K + 1)× PW f lag. It is observed that
the “EV Ch/Dch Scheduling” and “Proposed EV Ch/Dch Scheduling” schemes produce
a volatile pattern of total grid power consumption because the power management is
deployed to the MG with charging/discharging control of EVs. Due to the relatively higher
local load demand than EV charging demand, the different power management schemes
of MG with three EV charging/discharging scheduling algorithms have similar variation
trends of the total grid power consumption. In addition, the produced PV power is used to
reduce the total grid power consumption over the time interval 6:00–20:00.
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Figure 9a,b represent the grid power consumption for local load demand and EV
charging demand to verify the effect of EV charging/discharging scheduling algorithms
on an energy-efficient power usage. With the “EV Ch Scheduling” scheme, higher grid
power consumption is shown over the time interval 3:00–7:00, 10:00–12:00, and 19:00–23:00,
because the power is supplied to local load demand from the utility grid and PV system
without discharging of EVs. With the “EV Ch/Dch Scheduling” and “Proposed EV Ch/Dch
Scheduling” schemes, the discharging power of EVs can be used to supply the local load
demand and charging demand of EVs. Over the time interval 3:00–7:00, 10:00–12:00, and
19:00–23:00, where discharging of EVs is preferred depending on the condition (9) and
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(10), the grid power consumption for local load demand decreases due to the discharging
power of EVs used for local load demand. In Figure 9b, the “EV Ch Scheduling” scheme
has a lower grid power consumption for the charging demand of EVs compared with
other schemes utilizing the discharging power of EVs for the power management of the
MG, since the discharging of EVs is not used for the charging demand of EVs in the “EV
Ch Scheduling” scheme. Moreover, the grid power consumption does not occur over the
time interval 17:00–24:00 as the charging of parked EVs is completed by charging them to
target SOC in advance, depending on the EV charging scheduling algorithm. With the “EV
Ch/Dch Scheduling” and “Proposed EV Ch/Dch Scheduling” schemes, the grid power
consumption for the charging demand of EVs has a higher trend over the time interval
3:00–9:00, 11:00–13:00, and 16:00–24:00 as the discharging power of EVs can be used to
supplement the charging demand of EVs while considering the power management of the
MG to reduce the total grid power consumption. In addition, despite higher local load
demand over the time interval 17:00–24:00, the grid power is used for the charging demand
to charge EVs that do not reach target SOC due to discharging of EVs.
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Figure 9. (a) The grid power consumption for local load demand; (b) The grid power consumption
for charging demand of EVs.

Figure 10a,b describe the PV power consumption used for local load demand and
charging demand of EVs. The PV power produced from PV system installed at the charging
station can also be provided to local load demand and charging demand of EVs. In
Figure 10a, a high percentage of PV power is used to satisfy the local load demand,
showing small difference between three power management schemes. In the aspect of the
charging station operator, the system operator can get a revenue by selling the PV power
to electric company at the sum of SMP and weighted REC while supplying the PV power
to local load demand of the MG. In Figure 10b, a low portion of PV power is consumed
for the charging demand of EVs due to the intermittent characteristics of EVs according
to the arrival and departure time in the PV-based charging station. With the “Proposed
EV Ch/Dch Scheduling” and the “EV Ch/Dch Scheduling” schemes, more PV power is
utilized for the charging demand of EVs over the time interval 7:00–9:00 than the “EV Ch
Scheduling” scheme, as the charging demand of EVs becomes high due to the discharging
of EVs. In addition, by using PV power for charging demand of EVs during 10:00–12:00
corresponding to the high peak periods in the DR program, the operating cost of PV-based
charging station can be reduced while reducing the grid power consumption.
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The charging and the discharging demand of parked EVs in the PV-based charg-
ing station are described in Figure 11a,b. Over the time interval 2:00–9:00 and 11:00–
13:00, the “EV Ch/Dch Scheduling” and the “Proposed EV Ch/Dch Scheduling” schemes
show higher charging demand of EVs than the “EV Ch Scheduling” scheme. It rep-
resents that the discharging power from parked EVs can be used for the charging de-
mand of EVs, decreasing the total grid power consumption through the power man-
agement of the MG. Around 8:00, the amount of discharging power of EVs that can
be used for the power management of the MG with PWmax constraint is smaller in
the “Proposed EV Ch/Dch Scheduling” scheme than in the “EV Ch/Dch Scheduling”
scheme as the “Proposed EV Ch/Dch Scheduling” scheme follows the proposed condition
∑K

k=0(PWload(t + k)− PWPV(t + k)) < (K + 1)× PW f lag. Furthermore, the “Proposed EV
Ch/Dch Scheduling” scheme has less charging demand of EVs than the “EV Ch/Dch
Scheduling” scheme according to the decreased amount of discharging power of EVs. With
the “Proposed EV Ch/Dch Scheduling” scheme, the charging demand of EVs is reduced
over the time interval 12:00–14:00 that has high TOU price by focusing on the EV charging
in advance around 8:00. In Figure 11b, it is observed that the maximum amount of discharg-
ing power of EVs is limited to 12 kW or 2 kW depending on the conditions (9) and (10). By
limiting the total amount of discharging power of EVs at each time interval depending on
the difference between local load demand and PV power production, the parked EVs can
be charged to the target SOC within the parking time, preventing the excessive discharge
of EVs. Through the power management of the MG with the EV charging/discharging
scheduling strategy, the discharging power of parked EVs can be used effectively for the
local load demand and charging demand of EVs as shown in Figure 12a,b. Due to high
charging demand of EVs over the time interval 3:00–8:00, the discharging of EVs is highly
activated for the power management of the MG. Furthermore, over the time interval 10:00–
12:00 which corresponds to the high peak periods, the discharging power from parked EVs
is highly utilized for the local load demand and charging demand of EVs simultaneously de-
pending on the EV charging/discharging scheduling algorithm achieving energy-efficient
and economical operation of the PV-based charging station. Though the small amount of
discharging power of EVs is available between 12:00 and 17:00, the discharging power of
EVs is mainly used for the local load demand to reduce the grid power consumption at high
peak periods and decrease the operating cost of the PV-based charging station by selling the
power to electric company. With the “Proposed EV Ch/Dch Scheduling” and “EV Ch/Dch
Scheduling” schemes, the operating cost of the PV-based charging station can be minimized
by charging and discharging multiple EVs over the time interval 18:00–24:00 which has
high SMP while satisfying the charging requirements of parked EVs. In Figure 11a, despite
the high electricity cost of grid power consumption between 15:00–17:00, larger charging
demand of EVs is shown in the “Proposed EV Ch/Dch Scheduling” scheme. With this
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larger charging demand of EVs in the “Proposed EV Ch/Dch Scheduling” scheme, more
discharging power of EVs can be efficiently used to supplement the local load demand and
charging demand of EVs over the time interval 17:00–24:00. Depending on the proposed EV
discharging condition considering the future trends of local load demand and PV power
production, the discharging of parked EVs is utilized earlier in the “Proposed EV Ch/Dch
Scheduling” scheme than in the “EV Ch/Dch Scheduling” scheme around 17:00.
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Figure 13a,b describe variation of the sum of remaining parking time of EVs to be
charged and discharged, respectively, according to different power management schemes.
To utilize parked EVs as ESS for the power management of the MG and satisfy the charging
requirements of EVs within predetermined parking time of each EV, (22) is provided
in the multi-objective optimization. According to (22), parked EVs with less remaining
parking time are likely to be allocated to charging operation, and parked EVs with more
remaining parking time are likely to be allocated to discharging operation. With the “EV
Ch Scheduling” scheme, a low sum of remaining parking time of parked EVs to be charged
is shown over the time interval 2:00–9:00, which represents that a small number of EVs are
charged without EVs to be discharged. Compared with the “EV Ch Scheduling” scheme,
the “Proposed EV Ch/Dch Scheduling” and “EV Ch/Dch Scheduling” schemes have
higher sum of remaining parking time of EVs to be charged because the discharging power
from several EVs is directly supplemented to charging demand of EVs. In Figure 13b, it is
observed that relatively more EVs are used for power management over the time interval
0:00–8:00, 10:00–12:00, and 18:00–24:00 in which discharging of EVs is highly activated
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than the other time intervals in which discharging of EVs is less activated. The differences
of the sum of remaining parking time of EVs that are discharged between the “Proposed
EV Ch/Dch Scheduling” scheme and the “EV Ch/Dch Scheduling” scheme are occurred
around 8:00 and 18:00 by considering future trend of local load demand and PV power
production in the “Proposed EV Ch/Dch Scheduling” scheme, which helps to perform
more economical and energy-efficient operation of the PV-based charging station.
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In Table 2, a summary of the operating cost of the PV-based charging station incurred
by different EV charging/discharging scheduling algorithms is described. The power
management scheme with the proposed EV charging/discharging scheduling algorithm
shows the lowest operating cost of the PV-based charging station, followed by the power
management scheme with conventional EV charging/discharging scheduling algorithm.
These schemes are followed by the power management scheme with EV charging schedul-
ing algorithm. By using the proposed EV charging/discharging scheduling algorithm,
the operating cost of the PV-based charging station decreases by 167.71% and 28.85%,
respectively, relative to the power management schemes with EV charging scheduling
algorithm and with conventional EV charging/discharging scheduling algorithm. It is
notable that the economical and energy-efficient operation of the PV-based charging station
can be achieved by performing the coordinated power distribution of power source and
utilizing the parked EVs as ESSs depending on the power management scheme of the MG
with the proposed EV charging/discharging scheduling algorithm.

Table 2. Comparison of operating cost of PV-based charging station according to power
scheduling scheme.

Power Management Scheme Operating Cost of
PV-Based Charging Station

With proposed EV Ch/Dch scheduling $−35.45
With (conventional) EV Ch/Dch scheduling $−27.51

With (conventional) EV Ch scheduling $−13.24

5. Conclusions

In this study, the power management scheme of interdependent MG and EV fleets
aided by a novel EV charging/discharging scheduling strategy is described. To prevent
the peak load of the MG that can occur by simultaneous charging demand of EVs and
decrease the operating cost of the PV-based charging station, the power management
scheme is applied to the MG. The operating cost of PV-based charging station was re-
duced by the proposed EV charging/discharging scheduling algorithm. For economical
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and energy-efficient operation of the PV-based charging station, the multi-objective op-
timization was implemented to minimize the operating cost of the PV-based charging
station and grid dependency, and maximize the charging/discharging utilization of EVs,
simultaneously. The electricity loads considered in this study were mainly composed of
local load demand, which is general electricity load, and the charging demand of parked
EVs dispensed from the PV-based charging station. To meet these electricity loads, the
electricity is supplied from the utility grid, PV system, and discharging of EVs. For more
economical and energy-efficient operation of the PV-based charging station, the future
trends of local load demand and PV power production were considered in the proposed EV
charging/discharging scheduling algorithm. In the EV charging/discharging scheduling
algorithm, the maximum amount of discharging power of EVs is determined based on the
difference between local load demand and PV power production, and parked EVs were
assigned to charging/discharging operation through multi-objective optimization proce-
dure. The future trends of local load demand and PV power production were predicted by
the GRU network. To verify the performance of the proposed EV charging/discharging
scheduling strategy, the simulations were performed indicating operating cost reduction,
grid dependency reduction, and utilization of EV charging/discharging while satisfying
the charging requirements of EVs. With the proposed EV charging/discharging scheduling
algorithm, the operating cost of the PV-based charging station is decreased by 167.71%
compared with the EV charging scheduling algorithm. The operating cost is decreased by
28.85% relative to the results of the conventional EV charging/discharging scheduling algo-
rithm. From the simulation results, it is evident that the economical and energy-efficient
operation of the PV-based charging station can be achieved by actively utilizing parked
EVs as ESSs depending on the proposed EV charging/discharging strategy.
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Abbreviations

EV Electric vehicle
MG Microgrid
PEV Plug-in electric vehicle
PHEV Plug-in hybrid electric vehicle
FCV Fuel cell vehicle
ESS Energy storage system
V2B Vehicle-to-building
V2H Vehicle-to-home
V2G Vehicle-to-grid
G2V Grid-to-vehicle
DCQC Direct current quick charging
RES Renewable energy system
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PV Photovoltaic
BESS Battery energy storage system
PSO Particle swarm optimization
V2V Vehicle-to-vehicle
SMP System marginal price
REC Renewable energy certificates
KPX Korea Power Exchange
EVSE Electric vehicle supply equipment
DL Deep learning
CNN Convolutional neural network
RNN Recurrent neural network
LSTM Long short-term memory
GRU Gated recurrent unit
ANN Artificial neural network
DR Demand response
SOC State of charge
PCC Point of common coupling
MGCC Microgrid central controller
KMA Korea Meteorological Administration
KEPCO Korea Electric Power Corporation
RPS Renewable Portfolio Standard
RMSE Root-mean-squared-error
TOU Time-of-use
GA Genetic algorithm
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