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Abstract: Today, the intelligent management of market stores in the large distribution field represents
one of the most difficult tasks to address, considering the various problems to be managed. Specifi-
cally, from the classic issues of managing out-of-stock to the reconstruction of customer sentiment and
the optimal management of shelves, scientific research has placed considerable effort on producing
robust and efficient solutions to the aforementioned problems. In this context, modern deep learning
techniques have allowed for the development of intelligent and adaptive systems capable of automat-
ing and significantly improving the management of a large-scale distribution market. Specifically,
the authors have designed and implemented an innovative full pipeline that integrates modern
deep learning technologies. More in detail, an innovative pipeline embedding a visual AI-based
engine for customer sentiment assessment merged with a deep framework for stock management
and market store cashflow monitoring is proposed. The innovative proposed system has been tested
and validated in a large-scale distribution supermarket, confirming the effectiveness of the proposed
solution. Specifically, in the performed testing sessions, the designed pipeline was able to show
ad hoc visual customer sentiment assessment with an accuracy of 95% as well as intelligent stock
monitoring with an accuracy of 93% in cross validation.

Keywords: deep learning; great distribution; intelligent stock management; customer sentiment
analysis; expert system

1. Introduction

Modern artificial intelligence (AI) techniques have recently been used effectively to
improve solutions in multiple application fields, to name a few: the medical field, industrial
field, automotive, and so on [1–3].

Recently, AI-based approaches have also been applied in applications in the field of
large-scale distribution [1,2]. Specifically, the scientific community is currently investigating
the development of intelligent solutions capable of making the management of large-scale
food supermarkets easier, providing an effective out-of-stock issue, customer sentiment
monitoring, etc. [1,2]. Through the use of modern approaches based on AI or an AI-cloud,
the modern advanced solutions for the management of large-scale distribution offer a high
level of customization of business processes to create an “intelligent agent” capable of
increasing profits, reducing inefficiencies and optimizing warehouse stock [2–4]. According
to a recent study, the out-of-stock phenomenon together with the classic inefficiencies of
large-scale market stores cause an average loss of about EUR 110 billion for European
retailers every year [1–4], a fact that becomes more impactful in the case of the food
industry, to which is added the waste resulting from expired products. These uncorrected
inefficiencies, in addition to causing a reduction in turnover linked to the loss of sales, can
generate important repercussions to customer satisfaction.
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Therefore, the problem that will be addressed by the authors in this scientific con-
tribution specifically concerns the management of stock in warehouses and the correct
monitoring of out-of-stock phenomena or inventory surplus. These aspects do not depend
exclusively on the dynamics of purchase orders but rather on the study of the dynamics
of customers in the market store (purchasing habits, purchasing methods, seasonality, in
general what the authors defined as “sentiment of the customer” in this work). In addition
to this, the financial flow of daily purchases and the visual monitoring of the various
shelves of the market store actively contribute to characterizing the dynamics of the stock in
the warehouse. Furthermore, by cross-referencing the data of the financial flows of product
purchases with the sentiment reconstructed by the system herein proposed, the authors
will be able to reconstruct—for each category of products monitored—the actual “interest
or sentiment” of customers for those specific products.

In order to address the aforementioned issues, the authors, in the context of the R&D
activity dedicated to this market field, have designed and implemented a complete novel
system named GAIA (Great-distribution Artificial Intelligence-based Algorithms) which
provides an intelligent solution to the inefficiencies described above. Specifically, the GAIA
system is a composite pipeline capable of monitoring warehouse stock by means of a visual
assessment of the customer′s purchase sentiment in the store combined with an intelligent
assessment of purchase financial flows.

Basically, GAIA enables a system that always guarantees the presence of products
in the market warehouse according to the level of customer demand characterized by
the proposed “sentiment analysis” crossed with financial flows and order dynamics. At
the same time, we also want to avoid warehouse “over-ordering” phenomena in order
to minimize waste. Finally, through the out-of-stock risk classification performed by the
downstream control panel embedded in GAIA, we can determine the main issues of the
market store, and then we can enable such recovery actions such as promotions, product
price change, and so on.

The paper herein proposed is structured as follows: In Section 2, a survey of the
state-of-the-art will be disclosed, while in Section 3, the proposed pipeline will be presented
with a description of the single subsystems. Finally, in Section 4, the experimental results
will be reported, while in Section 5, a conclusive discussion and future works analysis will
be outlined.

2. Related Works

As introduced in the previous section, several researchers have investigated the usage
of deep learning in the large-scale distribution field. In [5], the authors proposed a super-
vised deep pipeline for out-of-stock (OOS) detection based on visual assessment of the
retail shelves. Intelligent downstream classifiers are used to detect predictive labels of the
OOS cases. As a classification approach, the authors proposed a support vector machines
method. The collected experimental results showed an accuracy of 84.5% for OOS and a
sensitivity of 86.6% for label detection. In [6], an interesting approach has been proposed.
The authors implemented an efficient pipeline for solving OOS problems inside commercial
refrigerators. Through visual features extracted by cameras inside the refrigerators, deep
Faster R-CNN and Single Shot Multibox (SSD) models were used as object detectors. After
object detection, the K-mean clustering algorithm was used to group objects on the same
shelves. The distance between objects on the same shelf was used as a metric for assessing
the OOS. In [7], the authors proposed a solution for managing new commercial products.
This solution will help businesses: automatically assign the new products to the right
category while performing sales predictions even with almost no transactional history. A
semantic-based deep learning pipeline will be used to assess product demand forecasting.
The interesting results are detailed in [7].

In [8], an interesting shopping management system was proposed. The authors of [8]
described a novel shopping recommendation system based on deep learning, combined
with an ad hoc designed recommendation algorithm. The system extracts the charac-
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teristics of users and commercial products through an artificial intelligence (AI)-based
approach, proposing a coupled recommendation system based on user characteristics and
product similarity. The results collected in [8] confirmed the effectiveness of the imple-
mented approach. In [9], the authors presented a deep learning-based model for product
purchase time forecast. Experimental results confirmed the robustness of the designed
predictive pipeline.

In [10], a novel approach was introduced. In [10], Sarwar et al. proposed a smart shop-
ping cart with self-checkout, called iCart, to improve customer experience at retail stores.
The method is based on the usage of cloud computing and deep learning architectures.
In iCart, the video events of the market were captured and sent to the cloud-based ana-
lyzer, which performs classification and segmentation of the video frames, extracting the
shopping details to be analyzed. The system has been evaluated using real-world checkout
video, showing an accuracy of 97% in shopping product detection. Further research efforts
have been deployed to the development of such solutions suitable to reconstruct customer
sentiment or to improve customer shopping methods.

In [11], the authors proposed a novel approach to shopping style. The proposed ap-
proach needs the customer to install a mobile app. Customer behavior is tracked both at the
entrance and at the exit of the market shop. For more details, see [11]. In [12], a sentiment
weighted multi-classification method was proposed. The authors implemented an approach
in which the sentiment is represented by vocabulary, entity and nodes. Directed weighted
links represent the sentiment similarity between two nodes of entities with attributes and
are determined by the direct correlation calculation between them. The paths are all con-
nected. Each different path is a different sentiment expression, which represents a different
customer sentiment expression. An interesting evaluation of transformer-based architecture
BERT has been made by the author in order to analyze the vocabulary. Experiments and
analysis confirmed that the proposed approach can classify the review sentiments with
good accuracy and high efficiency. The authors applied their approach in the e-commerce
scenario, but that method can be extended in other shopping scenarios. Other similar ap-
proaches for customer sentiment retrieval can be found in [13–15]. An interesting survey on
indoor shopping market management is reported in [16]. Rogojanu et al. analyzed in [16]
several technologies that can be used for indoor shopping management and for improving
customer experience. The target of the analysis performed in [16] was to reduce the time
that customers spend paying for products and to customize their shopping behavior. The
authors proposed NLP (Natural Language Processing) together with AI-based pipelines
to retrieve sentiment data and data-context of the shop market environment. The authors
conclude their examination, confirming that smart shop management solutions can address
most of the common issues of shopping-based commercial markets. For more details,
see [16]. Further interesting solutions in the field of machine learning for a large-scale
distribution market have been proposed in [17–21].

3. Methods and Materials: The Proposed Pipeline

As introduced, in this section, the proposed pipeline will be described. In Figure 1,
the full overview of the proposed GAIA (Great distribution Artificial Intelligence-based
Algorithms) pipeline is reported.

As detailed in Figure 1, GAIA is composed of different subsystems that feed the related
output to the downstream intelligent control panel, which elaborates the overall market
store management risk assessment to be applied in order to optimize the order/storage of
the stock, market cashflow, products sales, etc. We briefly introduce the various subsystems
of GAIA. As explained in the introductory part, the aim of the designed system is the
intelligent characterization of inventory problems in large-scale distribution market stores.
We have correlated this problem not only with the dynamics of orders for stock but rather
with the characterization of customer purchase sentiment, with the dynamics of financial
flow and with the dynamics of orders. Therefore, the GAIA system contains two subsystems
(the computer vision system and customer sentiment analysis subsystem), which will be
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responsible for characterizing the customer acquisition sentiment in the various areas of
the market store. Using the cashflow and intelligent stock management subsystems, the
GAIA pipeline will be responsible for characterizing the financial flow of the store and the
orders for stock. Through the intelligent control panel, it will be possible to correlate the
outputs of each of these subsystems in order to generate a single assessment for the market
store that characterizes the risk of out-of-stock/stock surplus by specifying the level of risk
and thus equipping the store with a dynamic and efficient risk assessment tool.
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Therefore, although in Figure 1, the GAIA pipeline seems to be composed of four
independent subsystems, it is the four subsystems that characterize the same market store
but that process different inputs (visuals, time series, financial flow, orders) and producing
a risk assessment that effectively performs an intelligent merge of the output of each
subsystem. Each of the subsystems reported in Figure 1 will be described in detail in the
next sections.

3.1. GAIA: Computer Vision Subsystem

The target of this subsystem is the reconstruction of the dynamic sentiment of cus-
tomers against the various spatial sectors of the commercial store. In Figure 2, a detailed
description of this subsystem is reported.

As reported in Figure 2, the Computer Vision Subsystem (CVSS) is composed of a
video-sensing framework suitable to capture video frames from different sectors of the
market store. Specifically, the market indoor will be divided into sectors (usually pertaining
to product sectors), and a video acquisition device will be combined for each of these
sectors to be monitored. An example of virtual sectorization and contextual acquisition
from the corresponding video sensing system is shown in Figure 3.
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Specifically, the CVSS does not require any kind of spatial prerequisite for the spatial
distribution inside the store. The only constraint concerns the spatial aiming system of the
vision camera. The used video-cameras can be positioned in front of the store-monitored
area, laterally or even on the ceiling. Through ad hoc preprocessing and calibration algo-
rithms properly applied to the sampled video frames, perspective visual transformations
are applied in order to improve the processing of downstream deep architectures [22–24].
More in detail, the visual transformations carried out by the CVSS are described below. If
we indicate with f (x, y, t) the spatial frame (x, y) acquired at instant t, the calibrated frame
used by subsequent systems will be the following:

I(x, y, t) = Γ( f (x, y, t), pi) (1)

where Γ () represents the spatial calibration function of the original visual frame f(x, y, t),
while pi represents the projection parameters used to perform the spatial transformation.
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In the pipeline herein proposed, several spatial projection calibration algorithms have
been tested [21–24] without any relevant differences in terms of performance in the overall
pipeline. For these reasons, a simple classical camera calibration approach has been used in
order to retrieve optimal performance with a lower computational complexity. Specifically,
a simple matrix transformation algorithm of visual frame projection has been applied to
the source input video frames:

I(x, y, t) = Mp f (x, y, t) + T (2)

where Mp represents a spatial transformation tensor in order of the rotation of the visual
frame f (x, y, t), while T is a spatial transformation tensor in order of the translation of the
original visual frame. The coefficients of Mp and T have been determined by optimizing
the overall performance of the downstream deep system through genetic algorithms as
implemented in [21–24]. The optimal perspective transformation will be reconstructed;
therefore, formally:

I(x, y, t) = Mp f (x, y, t) + T[
Mopt

p (k, l), Topt(k, l)
]

: argmax [Mopt
p (k, l, µ, λ), Topt(k, l, µ, λ)]

µ, λ T
(3)

where the optimal coefficients of the tensors Mp and T will be determined by creating a
projection of the map that maximizes the sales rate µ and at the same time the optimal
storage rate of the stock λ. Initially, the GAIA system should be configured with a heuristi-
cally defined calibration setup. This initial calibration will then be dynamically optimized
through an ad hoc genetic algorithm with fitness correlated to the set (µ, λ). Nevertheless,
reinforcement learning or other learning-on-the-job approaches can be used and will be
analyzed in the next release of the proposed GAIA system.

As reported in Figure 2, the first block of the CVSS is the heat map generator. In
Figure 3, an instance of the visual frame processed by the CVSS is reported. As can
be seen from Figure 3, a heat map is generated in correspondence with the presence of
customers in the various sectors of the store. For the reconstruction of the space–time
heat map, the CVSS uses an ad hoc designed heat map generator. Basically, this heat
map generator is an algorithmic system that superimposes a visual “heat map” layer of
equal spatial size on each input video frame. Through the deep network described below
(YOLOv5 backbone [25]), the heat map generator algorithm will increase the intensity of
the pixels of the “heat map” layer in correspondence with the spatial areas where human
subjects are detected by the downstream deep YOLOv5 trained for this purpose [25]. In
this way, by means of a trivial overlay, between the sampled calibrated input frames and
the “heat map” layer thus determined, we will obtain a dynamic heat map as shown in
Figure 3. Specifically, through a robust human-detection algorithm (having as input the
calibrated frames I(x, y, t)), the implemented heat map generator produces a space–time
assessment of the customers permanence (spatial and temporal) in the various sectors of
the commercial store.

As introduced, the human subject detector is based on a deep architecture with q
YOLOv5 backbone [25] trained for this task. More details about the designed YOLOv5-
based human detector are discussed in the next paragraphs.

The output of the heat map generator consists of the same input-calibrated frames
overlayed with the generated heat map associated with the tracking bounding box of
the detected customer subject. For the sake of mathematical formalization, the heat map
generator works as follows: given the i-th customer Pi falling in the (pre-)calibrated frame
I(x, y, t), he/she will be identified by the following function:

Pi(tk, x(tk)
1, y(tk)

1, x(tk)
2, y
(

tk)
2
)

with k = 1, 2, . . . N (4)
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where tk represents the time range of observation (N time instants of observation) and
monitoring, while (x(tk)

1, y(tk)
1, x(tk)

2, y
(
tk)

2) is the dynamic bounding box of the tracked
subject, having initial spatial coordinates (x(tk), y(tk))1. The computation of the space–time
heat map and the dynamic intensity corresponding to the person Pi can be calculated
according to the following equation:

Ii
Map(tk, x(tk)i

1, y(tk)i
1, x(tk)i

2, y(tk)i
2) =

ℵ(Pi(tk, x(tk)i
1, y(tk)i

1, x(tk)i
2, y(tk)i

2), tk) with k = 1, 2, . . . N
(5)

where ℵ () represents a space–time heat map function and Ii
Map is a dynamic intensity

function of the space–time heat map. In addition to the space–time heat map, we can
also generate the contextual depth map Ξ(x, y), which may be used for further appli-
cations/extensions of this contribution depending on the user′s needs. The depth map
generator, although it is foreseen in the design of GAIA (Figure 3), is not currently used,
and there are plans to integrate it into the next extensions of the pipeline.

In this way, by means of the functions ℵi () and Ii
Map, we will be able to characterize

the space–time variation (in intensity) of the heat map associated with each i-th tracked
subject in the input-sampled calibrated frame I(x, y, t).

As introduced, the CVSS is able to generate the heat map by means of a space–time
intensity assessment of the detected and tracked customer (bounding box segmentation)
embedded in the sampled calibrated video frames of the indoor market. More details about
the deep backbone are embedded in the designed subject detector pipeline. The authors
proposed a subject detection algorithm based on a modified version of deep architecture
embedding a YOLOv5 backbone [25]. Specifically, a modified solution is implemented
with respect to the backbone reported in [25]. In the innovative deep network-embedding
YOLOv5 architecture version “small” [25], the “NECK” layer block has been removed. In
particular, the designed backbone of the modified YOLOv5 small that needed to extract
the visual features from the calibrated frames is a ResNet-50 [26]. The visual features
extracted from ResNet-50 are directly passed to the dense prediction and sparse prediction
block, which will have the target of generating the bounding box embedding the customer
subjects, which will then be monitored for the heat map generation. The following Figure 4
shows the proposed enhanced YOLOv5 small deep network as the detector for the heat
map generator block of the CVSS.
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Therefore, this is a modified and distinct YOLOv5 small deep network that obtains
excellent performance with a significantly reduced computational load. The input of this
modified YOLOv5 small will be the calibrated frames I(x, y, t). The output of the network
will be the bounding box embedding the detected and tracked customers, which will be
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used by the heat map generator to provide the corresponding space–time heat map as
described previously. Each sector intended to be monitored by the GAIA system will
therefore have a block of the heat map generator embedding a modified YOLOv5 small
architecture as described.

3.2. GAIA: The Customer Sentiment Analysis System

As reported in Figure 3, the proposed GAIA system also embeds a skeleton generator
block. Subsequently, through a deep hybrid network (recurrent–convolutive), the time
series of the junction points of the skeleton associated with each traced customers will be
learned in order to characterize their “sentiment”. Preliminarily, the innovative human
skeleton generator is described.

Several researchers have proposed a solution to build a skeleton map of the human
subject for pose estimation, robotic applications, computer vision, activities recognition,
etc. [27–34]. The authors for this application propose a novel method to extract the skeleton
of the human subject embedded in the input calibrated frames I(x, y, t). The proposed skele-
ton generator is based on the usage of Mask-R-CNN [35] architecture properly enhanced by
means of the Criss-Cross attention block [36]. Other authors have used Mask-R-CNN for
skeleton and human pose estimation [37] but the architecture we designed is completely
different with respect to ones reported in the scientific literature as an embedded ad hoc
self-attention mechanism to improve the performance of the overall deep network. In the
following Figure 5, a detailed diagram of the skeleton generator based on the implemented
Criss-Cross Mask-R-CNN is reported.
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As reported in Figure 5, the Mask-R-CNN backbone of the proposed solution has been
modified according to our development. Specifically, the embedded convolutional architec-
ture (“CNN” clock of the diagram reported in Figure 5) is based on the ResNet-101 [26]
backbone in which we have interpolated a Criss-Cross attention layer [36] as per Figure 5.
This block is needed to extract the visual features of the input video frames to be passed to
the downstream layer of the Mask-R-CNN, which will be able to generate the skeleton of
the tracked human as well as the related bounding box segmentation mask. More details
about the modified ResNet-101 are included in the Criss-Cross attention layer (which we
have named as “ResNet-CC”). The pre-calibrated input frame I(x, y, t) is preprocessed by
the input layer of the ResNet-CC, and the visual features are extracted from the residual
layers of the deep network. If we define with H the visual features extracted from the
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residual layers of the so-designed deep architecture, the features extraction enhanced by the
Criss-Cross attention processing, performed by ResNet-CC, can be formalized as follows.

Given a space of visual features H ∈ R(C×W×H), C is the original number of channels,
while W × H represents the spatial dimension of the features of the feature map generated
through the convolutional layers of the ResNet-101 backbone. The Criss-Cross processing
layer preliminary applies two 1 × 1 convolutional blocks to H to generate two feature
maps F1 and F2, which belong to R(C′×W×H), where C′ represents the reduced number
of channels due to the dimensional reduction performed by convolutional blocks. After
that, we defined an “Affinity” function suitable to generate the feature attention map
AM ∈ R[(H+W−1)×(W×H)]. After that, for each position u in the spatial dimension of F1, a
vector F(1,u) ∈ R×C′ is extracted, and the set Ωu ∈ R[(H+W−1)×C′] is defined by extracting
characteristic vectors from F2 for each position u ∈ F2, such that Ω(i,u) ∈ R × C′ is the i-th
element of Ωu. At this point, the Affinity function can be defined as follow:[

δi,u]
A = w1,u·F1,u[Ωi,u]

T (6)

where [δi,u]
A∈D with D ∈ R[(H+W−1)×(W×H)] is the so-introduced Affinity function, i.e., the

degree of correlation between the characteristics F(1,u) and Ω(i,u). The weight w1,u is learned
during the training session of the ResNet-CC network. After that, a further 1 × 1 kernel
convolutional layer will be applied in order to adapt of the spatial dimension according
to the next attention function, i.e., the “Aggregation” suitable to generate the augmented
contextual feature map H’ as follows:

Hu
′ = w1,u·AM

i,uΦi,u + wH,u·Hu (7)

where Hu
′ is a characteristic vector in H′ ∈ RC×W×H in position u, AM

i,u is a scalar value in
AM, while the term wH,u represents a learnable weight coefficient. The attention contextual
enhanced feature map H’ will be used in the region proposal and alignment for the skeleton
generation and bounding box segmentation. More details about the Mask-R-CNN backbone
and the Criss-Cross attention processing are discussed in [35,36].

The reconstruction of the customer sentiment is now described. For each tracked client,
the enhanced Mask-R-CNN previously introduced will also associate with the skeleton.
In the overlayed matrices of the processed visual frame that superimposes the skeleton
structure, it is possible to identify the “junction points” corresponding to the upper and
lower human body joints. Specifically, we focused on all the human body junction points.
The following Figure 6 shows an example of a skeleton with highlighted junction points Ji

P.
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As reported in Figure 6, the skeleton structure provided by the upstream enhanced
Mask-R-CNN will be post-processed for retrieving the junction points Ji

P for each of the
detected and tracked customers embedded in the sampled calibrated video frames. The
spatial position dynamic of the collected junction points will be mapped into a time series
Ti(k) over the indoor market sampling time. Specifically, each spatial coordinate set of the
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i-th junction points Ji
P(x,y) (embedded in the captured indoor store video frame) will be

mapped with a time variant scalar computed as follows:

k(t)i
j =

xi
j(t) + y(t)i

j

2
; i = 1, 2, . . . Njunctions (8)

In this way, each of the junction points will be associated with a scalar ki
j. The

spatial change due to the posture of each customer inside the store (and therefore of the
respective junction points) will contribute to forming a time series of computed scalars as
per Equation (8), which will then be normalized and compacted in a 16 × 224 embedding
that is 16 time series each containing 224 samples. Embedding will be obtained by applying
bicubic padding and resizing to the time series of the junction points previously described.
The so-computed data will be used as input of the downstream deep network. We have
designed a convolutional long-short-term memory (ConvLSTM) [38–40] as a downstream
deep classifier of the junction-generated time series embedded as 16 × 224 embedding.
As reported in Figure 6, the input sequences of the 16 × 224 tensor will be fed to the
sequence input layer. To extract features from the input sequences, such convolutional
operations will be applied in the “sequence folding layer” followed by the “convolutional
layers”. To restore the sequence structure and reshape the output to vector sequences,
a sequence unfolding layer and a flattened layer will be used. The so-flattened feature
time series will be fed as input of the deep LSTM block followed by a SoftMax and
classification layers for the sentiment classes we want to discriminate. Specifically, the
so-designed architecture will be able to classify the following three classes of customer
sentiment: “customers interested”; “customers not interested”; “customers undecided”.
The details of the implemented ConvLSTM backbone as well the training/testing dataset
and hyperparameters configuration are described in the Section 4.

3.3. GAIA: The Cashflow Analysis System

The target of this subsystem is the analysis of the cashflow that comes from the cash-
desks of the market store. Specifically, through an automated classification system, the
cashflow of sales will be analyzed, extracting the following parameters for each sale, as
shown in Table 1.

Table 1. Descriptive fields that will be extracted from a single receipt after a sale.

Receipt Fields

Data
Hours

Amount of the receipt
Type of sold stock (with stock identification code)

Quantity of sold stock

By means of the stock identification code, the management system supplied to all
market stores can retrieve the type of sold stock, therefore the market store spatial sector on
which the stock is positioned on the shelf. In this way, for each of the virtual subdivision
sectors of the market store (previously embedded in the computer vision system of GAIA),
there is a continuous monitoring of the sold product. Therefore, for each type of product, we
will receive from the informatic management system of the market store specific information
on the stock and related quantity that has been sold, defined as Sp, that is, the quantity “S”
of the sold “p-th” product.

3.4. GAIA: The Intelligent Stock Management System

The target of this subsystem is the monitoring and related prediction of the out-of-
stock issue in the characterization of warehouse stock. More in detail, with a pre-fixed
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sampling rate, the informatic stock management system of the market store provides to the
GAIA system the following information for each of the stock categories.

Therefore, with an update frequency that can be set at the user’s discretion, GAIA
will be informed (by the informatic management system of the market store) of the real
amount—for each type—of the warehouse stock. In order to avoid out-of-stock or surplus
stock, issues from the data are shown in Tables 1 and 2, which have been arranged in a
single data vector for each type of stock and have been processed by a capable predictive
deep learning system to predict the risk of out-of-stock and therefore impact accordingly
on the supply orders of the store. More in detail, the fields in Tables 1 and 2 are arranged
in a vector and are normalized. An ad hoc temporal convolutional deep neural network
has been designed for learning the optimal order dynamic embedded in the historical
management of the warehouse stock. The proposed pipeline for this subsystem is reported
in Figure 7.

Table 2. Descriptive fields that will be provided from each of the treated stock.

Receipt Fields

Quantity of product in stock
Quantity of the last purchase order

Product promotion (active/not active)
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As reported in Figure 7, the combined 1D input data will be fed into the 1D tem-
poral deep convolutional neural network (1D-TCNN) [41–43]. As described in [41–43],
the convolutional neural networks can significantly improve the recurrent network’s per-
formance due to better parallelism, receptive field management, memory footprint and
so on. Moreover, the architecture herein proposed embeds a dilated causal convolution
layer that provides an independent unit activation with respect to the future time steps.
As introduced in this section, the output of the designed 1D-TCNN classifier will entail
three risk classes: “high risk of out-of-stock”, “medium risk of out-of-stock”, “low risk
of out-of-stock”. This risk characterization will then be sent to the intelligent control
panel. Regarding the learning paradigm, the 1D-TCNN architecture layout and the dataset
management, see the following Section 4.

3.5. GAIA: The Intelligent Control Panel

The target of this intelligent control panel (IPC) is to collect all the outputs from the
previous subsystems of GAIA in order to determine an overall level of market store man-
agement risk and therefore, consequently, take appropriate recovery actions. Specifically,
the IPC embeds a decision tree based on variable and expandable IF–THEN–ELSE rules
that estimate three possible levels of market store management risk: “high risk”, that is,
there are significant inconsistencies in the input data from the various subsystems of GAIA;
“medium risk”, that is, there are inconsistencies in the input data coming from the various
subsystems of GAIA; “low risk”, that is, there are some aspects to pay attention to in
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reference to the input data coming from the various subsystems of GAIA, but they are not
such as to generate a significant level of risk. To define the risk levels of the input data,
thresholds are heuristically defined, which will then be dynamically varied according to
the needs of the user and of each market store. To give some examples of market store
management risk level, each risk assessment refers to the category of products monitored
and associated with a specific sector of the market store.

Case A: For category “x”:

• IF OCVSS > ThCVSS AND “customer interested” AND OCashflow < ThCashflow AND
“medium risk of out-of-stock” THEN “high-risk assessment”;

Case B: For category “y”:

• IF OCVSS < ThCVSS AND “customer undecided” AND OCashflow > ThCashflow AND
“low risk of out-of-stock” THEN “low-risk assessment”

Basically, in “Case A”, there is a significant heat map (as the average intensity of the
heat map for that sector is higher than the pre-established threshold ThCVSS); therefore,
there is a significant number of customers who frequent that sector of the market store.
In addition, the other subsystems of GAIA confirmed, from the study of the skeleton and
posture, that a certain customers interest against a low sales rate (the output of the cashflow
monitoring system below the threshold) show medium risk for out-of-stock. Therefore, it
is a scenario that reveals how, in the face of high customer interest, little is sold and how
the inventories can run out. Therefore, for that particular sector, immediate action must
be taken because it is a scenario of high store management risk. Conversely, the “Case B”
relating to sector “y”, has a low heat map—undecided customers but a sale of products
within the norm and a low level of risk of stock exhaustion. This scenario does not reveal a
significant management risk and therefore does not require timely recovery actions. The
following Figure 8 shows an instance of the GAIA intelligent control panel.
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In Figure 8, we have reported details of the GAIA intelligent control panel highlighting
the part in which the market indoor sector is defined, the heat map indicator, the quantity
sold, and finally the overall risk assessment of the market store management.
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4. Experimental Results

The proposed full pipeline has been tested in a real market store, but each of the
designed subsystems have been validated both using a custom dataset as well as through a
public database. We have validated the “intelligent core” of the GAIA as follows.

The first subsystem we have validated is the computer vision subsystem as per the
pipeline reported in Figure 4. Specifically, we have tested the performance of our proposed
modified version of YOLOv5 small. The used enhanced YOLOv5 small is configured
as follows: input frame dimension (227 × 227 × 3), N-Anchors: 6; learning rate: 0.001;
Batch-size: 8; L2 regularization factor: 0.0005; penalty threshold: 0.5, dropout enabled.
The used sensing camera is a classical low framerate (60 fps), high-definition resolution
and high dynamic range. The calibration parameters of the 800 × 600 tensor Mp were
determined by the genetic algorithm as per Equation (3), while the parameter T was fixed
heuristically (after several tests) to 1.55.

The input frame will be resized via a bicubic algorithm. The dataset is composed of
parts from [44] and is partly generated locally in the tested market stores. The deep network
was trained by the SGDM algorithm, while the dataset was split as 70% for training, while
the remaining 15% was for validation and 15% for testing. A k-fold (k = 5) cross-validation
approach was used. The following Table 3 reports the cross-validated test set benchmarks
compared with other classical deep networks.

Table 3. Computer vision subsystem (enhanced YOLOv5 small) benchmark comparison.

Deep Network AP (Average Precision) mIoU

Faster-R-CNN
(ResNet backbone) 93.75% 80.09%

Mask-R-CNN
(DenseNet backbone) 93.91% 83.22%

YOLOv5 94.05% 83.17%

Proposed 95.33% 85.07%

Regarding the customer sentiment analysis subsystem, we have tested the proposed
Mask-R-CNN embedding a ResNet-101 with Criss-Cross backbone. The used configuration
and learning hyperparameters are the following: input frame dimension (227 × 227 × 3);
learning rate: 0.001; batch size: 16; L2 regularization factor: 0.0002; penalty threshold: 0.5,
dropout enabled. As the downstream classifier of the tracked customer–skeleton junction
points time series, we implemented a convolutional LSTM. Specifically, we have designed
an input layer of 16 × 224 (as described in the relevant section of this paper). For the
convolutive blocks, we opted for a backbone based on VGG19 embedding the convolutional
and activation layers up to the fully connected (excluded) stacks of this architecture. In
the unfolding and flattened sequence block, we have adapted the dimensions with further
convolutional blocks and therefore passed the so-computed features to a deep LSTM
composed of six hidden layers of 100 vanilla LSTM basic vanilla units (see Figure 9 for unit
structure). The LSTM cell is able to select which information to discard or store. In order to
produce effective results in real applications, this selective method requires three different
mechanisms to read, store and discard information by taking advantage of specific selectors
called “gates”. Basically, the “input gate”, “output gate” and “forget gate” processing is
implemented via activation functions suitable to define if such information is relevant or
not. More in detail, given xt as the input vector, ht−1 as the previous cell output, Ct−1 as the
previous cell memory, ht as the current cell output and Ct as the current cell memory, we
defined Equations (9)–(11) to determine which information to store. Finally, we generated
the output of LSTM by updating the old cell state as per Equation (12) and merging the
previous output, input and bias vector of Equations (13) and (14).

ft = σ(W f ·[ht−1, xt] + b f (9)
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it = σ(Wi·[ht−1, xt] + bi (10)

C̃t = tanh(WC·[ht−1, xt] + bC ) (11)

Ct = ft ∗ Ct−1 + it ∗ C̃t (12)

ot = σ(Wo·[ht−1, xt] + bo (13)

ht = ot∗ tan h(Ct) (14)
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The diagram of classical vanilla LSTM unit is reported in Figure 9.
The used sensing camera is the same as described in the previous paragraph. The input

frame will be resized through a bicubic algorithm. The dataset is composed of classical
gesture recognition NTU-60/NTU-120 datasets [45] extended with locally generated ones
in the indoor market stores. The deep network was trained by the SGDM algorithm, while
the dataset was split as 70% for training, with the remaining 15% for validation and 15% for
testing. A k-fold (k = 3) cross-validation approach was used. The following tables reported
the benchmarks comparison with other classical deep networks.

As reported in Tables 4 and 5, our proposed solution outperformed the others for the
enhanced NTU-60 dataset but underperformed in the enhanced NTU-120 dataset.

Table 4. Customer sentiment analysis system (Mask-R-CNN with ResNet-101 Criss-Cross) benchmark
comparison—enhanced NTU-60 dataset (1-clip).

Deep Network Accuracy

Graph-Convolutional Network 91.31%
3D-CNN 92.07%

Faster-R-CNN 89.65%
Mask-R-CNN 90.83%

Proposed 92.91%

Table 5. Customer sentiment analysis system (Mask-R-CNN with ResNet-101 Criss-Cross) benchmark
comparison—enhanced NTU-120 dataset (1-clip).

Deep Network Accuracy

Graph-Convolutional Network 83.80%
3D-CNN 84.88%

Faster-R-CNN 77.87%
Mask-R-CNN 79.02%

Proposed 82.01%

This drop in performance with respect to the 3D architecture is probably due to the
fact that for a large dataset, a temporal correlation in the input data could improve the
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discriminative features. Finally, we tested the deep architecture embedded in the intelligent
stock management system. Basically, we designed the 1D-TCNN as follows: input layer
of 1 × 300 dimension; 12 main convolutional blocks; L2-regularization factor: 0.0005;
penalty threshold: 0.25; dropout enabled; batch size: 10. Each of the convolutional blocks
is composed of a 3 × 3 dilated convolutional layer followed by normalization, spatial
dropout, 5 × 5 dilated causal convolutional layer, normalization, ReLU activation and
spatial dropout. Each block shows residual gradient propagation with a 1× 1 convolutional
layer for adapting the dimension of the features. The dilation factor starts from 2 and moves
to 16 with increments of 2 for each convolutional block. The dataset is composed of a vector
of elements composed of the fields included in Tables 1 and 2 (the vector length was 8), for
each stock’s category. We collected 5 years of historical data as per Tables 1 and 2 from a
local market store backlog for different categories for a total amount of input instances. We
divided this dataset as follows: 65% as a training set, with the remaining 30% for validation
and testing. K-fold (k = 3) cross-validation was used. We labeled the data, assigning
the “high-risk out-of-stock” as scenario in which the related stock was sold out despite
requests; “medium-risk out-of-stock” was the scenario in which the related stock covered
60% of the real requests; “low-risk out-of-stock” was the scenario in which the related stock
covered all the requests made by the customer. The following table reported the benchmark
comparison with other classical deep networks.

As reported in Table 6, we compared our architecture with ones based on deep
LSTM, multi-layer perceptron (classical backpropagation MLP with one hidden layer
of 200 neurons) and with a classification based on support vector machine (SVM). Our
proposed solution outperforms the other machine learning approaches, confirming the
effectiveness of the designed pipeline.

Table 6. Intelligent stock management system (Mask-R-CNN with ResNet-101 Criss-Cross)—NTU-
120 dataset (1-clip).

Deep Network Accuracy

Deep LSTM 91.25%

MLP 90.96%

SVM 87.91%

Proposed 94.32%

In order to validate the whole pipeline and the contribution of each block in achieving
the target of the GAIA system, we proceeded to execute an ablation session, removing
individual subsystems of the GAIA system and validating the system′s ability to correctly
calculate risk assessment. In reference to the dataset used in this testing, we used a short
data history of a sales point of a local holding in the large-scale food distribution sector (see
Acknowledgments section). Throughout the history of data, both video clips, and financial
flow and orders, we simulated a real scenario by obtaining real risk assessments. In detail,
we selected some products from the store and structured the dataset by cataloging the input
data (video frames of the area of the store where these products are located, financial flows
related to the purchases of these products, dynamics of orders executed). Then, the risk
assessments were calculated by evaluating, for each time, if there had been a significant
out-of-stock or surplus of stock (high risk) or if such phenomena occurred in a moderate
(medium risk) or negligible (low risk) form. To discriminate between the three classes, we
used thresholds related to the quantity of residual stock. Having constructed the dataset in
this way, we proceeded to validate the GAIA system both in integral form and by removing
individual subsystems in order to validate its specific contribution. We collected 2 weeks of
historical data with a sampling rate of data of 15 min for each day. The collected data were
split into 65% for training and 35% for validation and testing. K-fold (k = 3) cross validation
has been applied.

The collected performance results (including ablation study) are reported in Table 7.
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Table 7. Ablation analysis of the GAIA system.

GAIA System Structure High Risk Medium Risk Low Risk

full pipeline 91.42% 93.54% 90.00%

without computer vision block 85.71% 87.09% 86.66%

without customer sentiment block 82.85% 90.32% 83.33%

without cashflow analyzer block 80.09% 80.64% 83.33%

without intelligent stock management 85.71% 87.09% 83.33%

As evident from Table 7, the GAIA system without each of the specific subsystems
of which the full pipeline is composed of significantly degrades in performance both in
reference to the visual part and in reference to the analytical part composed of financial flow
and orders (stock management). Therefore, the need to equip the GAIA pipeline with each
designed subsystem in order to maximize the performance of the entire solution remains
confirmed. All the mentioned experimental sessions, including training, validation and
testing of the single deep models as well as the full pipeline, have been executed over a
server INTEL MultiCores embedding a GPU RTX 2080 with 24 GB of video memory and in
Pytorch/Matlab rev. 2021 frameworks.

5. Discussion and Conclusions

In this paper, the contribution developed entirely by the authors and called GAIA is
disclosed. It is an innovative system based on artificial intelligence for the management of
a commercial store. Specifically, GAIA manages the market store in various areas, from
the dynamic reconstruction of customer sentiment, to the anomalies in the management of
warehouse stock and to the reconstruction of the correlation of cashflow with respect to
the real interest of customers in the store. Using sophisticated deep learning techniques
that include attention mechanisms and multi-modal analysis of input data, GAIA allows
for an efficient monitoring of the market store combined with a robust management of
the classic issue of out-of-stock that usually affects large-scale commercial distribution. By
means of an intelligent control panel and with real-time updates, the GAIA system is able to
monitor the various sectors of the market store both through computer vision systems that
characterize the sentiment and interest of customers and through convolutional temporal
deep networks for the predictive and efficient estimation of warehouse orders. From a
benchmark comparison with similar deep learning models, GAIA′s AI backbone shows
greater performance compared to the state-of-the-art, both in relation to the computer
vision part and in relation to the predictive and understanding part of customer sentiment.
Through the designed self-attention mechanisms embedded in the deep architectures
implemented in the GAIA framework, the discriminating capacity of the features map has
been significantly increased, thus allowing for high performance indicators in terms of
accuracy and average precision. By means of the virtual sectorization supported by the
GAIA system, it is possible to define the level of granularity of the product sector to be
monitored. Finally, for the application of GAIA, no special hardware equipment is required
at the commercial point, but the normally supplied security video cameras with the financial
and warehouse flow management systems can be used. The GAIA system is currently
being integrated into some market stores. Specifically, the integration is quite simple and
does not require high costs. As regards the visual part (therefore the computer vision
and sentiment reconstruction systems based on the analysis of the customer–skeletons),
the framework of security cameras that the market stores are already equipped with was
used. Using the calibration system, we adopted the frames according to the characteristics
specified in this paper. As for the part of the analysis of the financial flows of purchases and
orders, we interfaced through a simple software wrapper with the management system
that the market stores are usually equipped with. As for the computational part, we used a
server as described in the previous section containing the experimental results. Therefore,
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the integration of the GAIA system in any market store is quite simple and does not require
particular costs, as it integrates perfectly into the hardware and software frameworks that
market stores are usually equipped with.

Future works intend to further expand GAIA with additional control modules of the
commercial point for optimal waste management, optimal customer profiling, as well as
for the characterization of promotions tailored to customers.

6. Patents

Aziz Chamas, Cettina Giaconia, “GAIA: Great-Distribution Artificial Intelligence Algo-
rithms”, IT Patent Nr. 101022000002828, 16 February 2022.
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