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Abstract: This article presents the current state-of-the-art research on applying artificial intelligence
(AI) technology in smart greenhouses to optimize crop yields, water, and fertilizer use efficiency, to
reduce pest and disease, and to enhance agricultural sustainability. The key technologies of interest
were robotic systems for pesticide application, irrigation, harvesting, bio-inspired algorithms for the
automation of greenhouse processes, energy management, machine path planning and operation of
UAVs (unmanned aerial vehicles), resolution of scheduling problems, and image signal processing for
pest and disease diagnosis. Additionally, the review investigated the cost benefits of various energy-
management and AI-based energy-saving technologies, the integration of photovoltaics and dynamic
pricing based on real-time and time-of-use metrics, and the cost benefits of LoRa, Wi-Fi, Bluetooth,
ZigBee, mobile, and RFID (radiofrequency identification) technologies. The review established that
commercially viable AI technologies for agriculture had increased exponentially. For example, AI-
based irrigation and soil fertilizer application enabled farmers to realize higher returns on investment
on fertilizer application and gross returns above the fertilizer cost, higher yields, and resource use
efficiency. Similarly, AI image detection techniques led to the early diagnosis of powdery mildew. The
precise operation of agricultural robots was supported by the integration of light imaging, detection,
and ranging (LIDAR) optical and electro-optical cameras in place of the traditional GPS (geographic
positioning systems) technologies, which are prone to errors. However, critical challenges remained
unresolved, including cost, disparities between research and development (R&D) innovations and
technology commercialization, energy use, the tradeoff between accuracy and computational speeds,
and technology gaps between the Global North and South. In general, the value of this review is
that it surveys the literature on the maturity level of various AI technologies in smart greenhouses
and offers a state-of-the-art picture of how far the technologies have successfully been applied in
agriculture and what can be done to optimize their usability.
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1. Introduction

The AI systems of interest include bio-inspired ecological and swarm intelligence algo-
rithms, unmanned UAVs (Unmanned aerial vehicles) for pesticide application, and robotic
systems for harvesting, irrigation, soil treatment, fertilizer application, and seeding [1,2]. In
addition, the study critiques the role of swarm intelligence (genetic optimization algorithms
and related algorithms) in agricultural parameter optimization, machinery path planning,
robotic flight, resolution of scheduling problems, system identification, power systems,
and image and signal processing [1,2]. The multidimensional view of AI (artificial intelli-
gence) technologies in smart greenhouses would provide a nuanced understanding of the
recent milestones in research and development and their implications for commercial and
smallholder agriculture in the developed global north (North America, Western Europe,
Mediterranean region, China, Japan, and South Korea) and underdeveloped global south
(Africa, Latin America, and South Asia) [3].
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Emerging technology companies, such as Blue River Technology, Harvest CROO
Robotics, Trace Genomics, and Autonomous Tractor Corp were leading in the commer-
cial deployment of self-driving agricultural tractors, AI-based weed control systems, pest
diagnostics, soil analysis, and crop health monitoring [4,5]. In line with [4,5], Karnawat
et al. [6] acknowledged the immense role played by Blue River Technology in the advance-
ment of robotics and AI systems in agriculture in California and the US in general. These
emerging trends of AI and machine learning (ML) in agriculture need to be summarized to
provide a comprehensive overview of the state of the art (i.e., maturity levels of various
AI applications in agriculture, including barriers and facilitators) and insights into future
developments [7].

Many factors dictate the need to review the maturity levels of various AI applications
in agriculture. First, there is increasing demand for technological solutions to address
global food insecurities, especially in the Global South. Currently, at least 810 million
people are food insecure. The actual ratio would increase over time in line with the global
population growth. By 2050, the global population will surpass 9 billion [8,9]. The higher
population growth within a generation would strain the already fragile agricultural systems
and ecosystems that are being gradually destroyed to create additional land for farming.
Iddio et al. argued that controlled environment agriculture (CEA) using greenhouses
might help to offset the pressing concerns about agricultural sustainability [10]. The case
for greenhouse-based CEA was validated by the fact that greenhouse crop cultivation
improves yields and reduces the need for excess pesticides, water, land, and transportation
of crops over extended distances. The case for CEA advanced by [10] was in tandem with
Afzali et al. [11], who supported the intensification of agricultural technologies. The need
for a paradigm shift in agricultural cultivation was premised on the increasing risk of
global starvation [12]. The AI-mediated improvements in crop yields may help avert the
forecasted global food crises.

Second, a large body of knowledge, including the evidence presented by Senavirathne
et al. [13] and Haque et al. [12], suggested that the satisfaction of future food needs would be
achieved by optimizing the existing crop production technologies, given there was limited
arable land for agricultural expansion [14]. In line with [14], Lakshmi and Corbett [15]
estimated that smart technology in agriculture may help boost yields by 60% before 2030.
Conservative estimates indicate the EU market for precision agriculture systems will
surpass 11.8 billion by 2025 [16]. The projected market growth and higher yields catalyzed
the current greenhouse boom. As of 2020, there were 3.6 million hectares of greenhouse
crops globally [17–22].

Third, current climate projection models forecast suppressed rainfall, land degradation,
desertification, flooding, and other weather phenomena triggered by climate change and
increased release of greenhouse gases [23,24]. The projections documented by [23,24]
reflected the current realities in Sub-Saharan Africa [25]. The expansion of open-field
agriculture to offset climate-related challenges is no longer a viable option. The European
Commission Joint Research Centre estimated that three-quarters of the useful land on
earth was already degraded, and the proportion of degraded land would surpass 90% by
2050 [26]. The challenge is most pronounced in developing countries that experienced the
highest dryland desertification rate between 1982 and 2015. During this period, at least
5.4 million km2 of land was degraded [27]. In theory, losing traditional farming dryland
was a sufficient motivational factor for transitioning to smart greenhouses powered by AI
technologies. However, the contrary phenomenon is true for climate-smart agriculture
worldwide [28]. The current pace of transition does not match the challenges. On a
positive note, the transition to precision agriculture would enable farmers to optimally
use water, soil, and energy resources to minimize the negative effects of climate change on
farming [29]. The rational use of agricultural resources would reduce the pressure on the
natural environment, resulting in higher sustainability.

The article critiques recent research on smart greenhouses and artificial intelligence
technologies, including the favorable factors and the challenges that have impeded the
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growth of AI and smart greenhouse technologies. The study emphasized smart farming
technologies, mechanization of farms, smart micro-irrigation, rapid soil analysis, pest
prediction, and autonomous modification of the greenhouse microclimate, and LIDAR
(light Imaging, detection, and ranging), optical and electro-optical cameras for robotic
system motion and object identification (see Figure 1) [30]. The specific scope was supported
by the gaps in research and the breadth of information relating to the impact of AI and IoT
(Internet of Things) and data-driven agriculture, intelligent crop planning, and farm gate-
to-fork systems [31,32]. More particularly, no review has so far comprehensively mapped
the state of AI and IoT application in smart greenhouse farming to help researchers and
farmers of plant factories to solve the imminent problems related to global food insecurities
and climate change, despite the fact that technological innovations have been centrally
placed in the development of effective and sustainable solutions to these challenges. Thus,
this review will enable farmers of factory plants to understand the extent to which AI
and IoT can be combined to improve farming efficiency and productivity and will enable
researchers to advance knowledge on this subject domain by building on the research
achieved so far.
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Method for Systematic Review

The review of Incorporating Artificial Intelligence Technology in Smart Greenhouses
was aligned with the PRISMA guidelines for systematic reviews and meta-analyses (see
Figure 2). PRISMA Flowchart shown in Figure 2 below provides detailed information
about how the 174 articles cited in this review were identified and selected. All data were
sourced from published articles. The peer-reviewed data were sourced from the following
primary databases: MDPI, Elsevier, Springer (including Nature Springer) and Taylor and
Francis, Scopus, and Google Scholar. More databases would have been searched, but a
quick literature survey revealed that that they mostly publish duplicated content, such as
between Frontiers and Springer.,Emphasis was given to literature published after 2019,
since technological advancements, especially AI and IoT, are rapidly evolving. The choice
of articles published from 2019 onwards was therefore motivated by the need to review
only recent studies in this field. This motivation was also appraised as valid owing to the
many research studies on the application of AI in agriculture that have been published
within the past three years. The primary keywords were AI, greenhouses, smart, IoT,
and agriculture. The inclusion and exclusion criteria were characterized by a title and
abstract screening, followed by a full-text and abstract screening process, which focused
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on the subject’s relevance. Articles were excluded if they did not discuss the role of
various AI technologies in agriculture. Studies were also excluded if they did not use
any methodological approach to analyze and synthesize data before making conclusions.
Studies published in non-English languages were also excluded to avoid translation errors
and associated financial costs and factual consequences. The research design of the studies
did not matter, but primary studies with experimental design were given priority over
others during the selection process.
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2. Artificial Intelligence Technologies for Smart Greenhouses
2.1. Historical Background of AI and ICTs in Agriculture

Using AI and ICT in precision agriculture is not a new phenomenon. Rao et al. [33]
traced the use of ICTs in precision agriculture back to the 20th century. In 1958, psychologist
Frank Rosenblatt first formulated and proposed artificial neural networks as mathematical
models of artificial intelligence whose mathematical structure attempted to mimic the
functionality of biological neurons [34]. More specifically, in this first work, the well-known
mathematical simulant of Perceptron, which is the first structure of the artificial neural
network, was successfully employed to simulate how the human brain processes optical
data and learns to recognize objects. The first structure of Perceptron is the main basis and
architecture of the neural networks that have been extensively used in precision agriculture
and other disciplines.

Perception marked a historic key point in artificial intelligence research and commer-
cial adoption with the coining of a phrase that embodied an entire field within AI. AI
techniques have developed because of the complexity of the technological era, where a
plethora of complex problems with a strongly non-linear nature cannot be solved using
classical deterministic techniques, such as regression analysis and least-squared methods.
Despite their novelty, it took four decades (until the early 1990s) for artificial neural net-
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works to be used widely in medical applications [35–42], computational engineering [43–53],
and precision agriculture.

The historical analysis of ICTs in agriculture by Rao et al. [33,43–53] aligns with the
broader trends in the global demand for AI, ML, and IoT, as noted by Misra et al. [33].
On the downside, the true potential of AI and ICTs has not been fully exploited. The
observation was validated by the fact that the transition of ICT technologies from computing
to agriculture was delayed, considering the field of artificial intelligence was first proposed
in 1955 and expanded in subsequent years [8]. During the early phases of precision
agriculture, the key focus was improving crop yields and productivity by monitoring
soil nutrients. However, the scope of precision agriculture has broadened to encompass
artificial pollination using robot bees, autonomous operation of farm equipment, and
optimization of different agricultural processes using bio-inspired algorithms [1,54,55].
The technology patterns demonstrate a peak in AL technologies from 2016 onwards. The
convergence of new technologies in precision agriculture ushered in the Industry 4.0
revolution and the Internet of Plants (IoP) [56] (see Figure 3). The figure demonstrates how
the availability of digital sensors and IoT can be used to collect environmental data, such
as light, temperature, humidity, nutrition, and water, and then be stored in a cloud-based
server, which can supply information for various farm work operations. However, there
is growing criticism of AI technologies in agriculture due to their higher energy demand,
high initial capital outlay, and variable accuracy [17]. These concerns have been discounted
in view of the immense benefits of AI systems, including better crop yields, lower labor
costs, and improved efficiency [57].
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The current scope of AI and IoT in smart greenhouses encompasses artificial lighting
using LEDs [58], air ventilation, water and nutrition pumps, plant nutrition, humidity
control, moisture control, and temperature control subsystems with a unique combination
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of sensors and controls with distinct attributes [13]. The impact of weeds, pests, diseases,
and water stress on crop yields validated the broadening scope of AI in precision agriculture.
Egorov et al. [59] noted that livermore was a pervasive weed across the US, impacting the
germination and growth of plants. In line with Egorov et al., [8,59] noted that improper
management of weeds could potentially reduce crop yields by 48–60%. However, the
projected reduction in crop yields due to pest infestation observed by [8] contrasts with
Raatz et al., who reported up to 60% losses in harvests due to pest infestation [60], but
attributed the phenomena to biotic culprits, including weed growth. Despite the contrasting
observations made by Raatz et al. [60] and [8], poor management of crop pests and diseases
had a detrimental effect on crop yields. The devastating impact of South American tomato
pinworm on sweet pepper and tomato in Almería, Southeastern Spain, was a case in
point [61]. In the latter case, the Spanish farmers had to rely on toxic pesticides, such
as Chlorpyrifos-methyl, to manage the pests [61,62]. Reducing human exposure to toxic
pesticides through the mechanization of greenhouse spraying activities yielded significant
benefits in the long term [63]. Additionally, intelligent IPM (Integrated pest management)
practices may offset the emerging pesticide resistance threats.

2.2. Current AI Technologies for Agriculture

The AI technologies available for smart greenhouses and precision agriculture are
diverse, ranging from ecological bio-inspired algorithms, such as Adaptive Neuro-Fuzzy
Inference System–Particle Swarm Optimization (ANFIS-PSO), ANFIS-GA (ANFIS with
Genetic Algorithm) and ANFIS-ACO (ANFIS with Ant Colony Optimization), swarm intel-
ligence algorithms (Artificial Bee Colony (ABC), Flower Pollination algorithm (FPA), Firefly
algorithm, Krill Herd algorithm, and genetic optimization algorithms) [64] to UAV (drones)
pesticide application and robotic systems for harvesting [9], irrigation, soil treatment, seed-
ing, fertilizer application, seeding, and other tasks [1,2]. The current body of knowledge
linked the demand for robotics, UAVs, and bio-inspired algorithms in agriculture to distinct
factors. On the one hand, scholars argued that the growth was catalyzed by the need to
enhance yields and operational efficiency and reduce costs [8,29,33]. In line with [5,29,33],
Cao et al. reported a 10% improvement in tomato yields with the iGrow intelligent green-
house system and 92% higher profits [18]. On the other hand, AI assimilation in smart
agriculture was triggered by natural events, including higher levels of pesticide resistance
and forest fires, which compromised agricultural production [65,66]. The following sections
critiqued the two worldviews to yield better insights into the favorable factors and barriers
to AI-system adoption in smart greenhouses and precision agriculture at large.

2.2.1. Cost Benefits of AI Technologies for Agriculture

The focus on the role of AI systems in smart greenhouses and the agricultural sector,
in general, was validated by the unique challenges and the enormous contribution in terms
of Gross Value Added (GVA). Agriculture provided direct employment to approximately
4.4% of the population in Europe, and its GVA exceeded €181 billion [67]. The scenario
was not specific to the EU; at least 70% of the Indian population depended on agriculture
for employment and sustenance [68]. Despite the enormous contribution, the future of
agriculture in Europe and across the world is threatened by population dynamics; most
European farmers are older (>80%), while a minority are below 40 years [67]. In contrast to
the European Economic and Social Committee’s report [67] on the impact of demographics
on agricultural technology adoption, Loudjani et al. [69] argued that the primary barriers
were time and costs.

The average cost of installing AI systems on farms was enormous and beyond the reach
of smallholder farmers [70]. The contrary was true for large commercial farms with a higher
capacity to absorb costs and risks and a higher tendency to allocate resources for capital-
intensive investments [71]. The concerns raised by Kendall et al. [70] were supported by the
Cisco and the International Telecommunication Union (ITU) report [72], which noted that
agricultural sensors for AI systems with greater functionality are expensive ($150–$1000+
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per sensor). The initial capital outlay was a key impediment to technology adoption,
considering that multiple sensors are required for monitoring greenhouse microclimate
(humidity, temperature, soil nutrient, water levels, and pH). From another dimension,
the expenses were relative, given that local production of smart greenhouse components
may offset costs [73]; this view was corroborated by Chung’s study [73] on South Korean
companies Hyundai Metal Farming Company, Sewoon, DaeSungHione, and Dae Ryun
and local production of precision farming systems, such as sensors, actuators, fans, heaters,
dehumidifiers, and window motors. In contrast, there was insufficient production capacity
in developing countries.

The cost-centric worldview advanced by Kendall et al. [70] and Loudjani et al. [69]
negated the role of externalities. Lakshmi and Corbett [18] argued that the effectiveness of
AI systems was largely dependent on the willingness of the local stakeholders to “modify,
generate, and extend their operational capabilities to improve efficiency” (p. 5209). Ad-
ditionally, the processes, AI resources, and tools (including drones, sensors, and robots)
employed by commercial farms profoundly impacted the effectiveness of AI systems.
Drawing from Lakshmi and Corbett’s study [18], the cost was not a primary barrier to AI
technology adoption.

2.2.2. Water and Fertilizer Use Efficiency and Crop Yields with AI Systems

The success of the GOSSYM (a combined simulation model for plant growth and deci-
sion) aid for cotton crop management mode influenced the iterative development of other
AI systems, including the HortiMED-AI-powered Decision Support Systems (DSSs) [74].
On a positive note, the barriers to the transition from labor- and input-intensive agriculture
to knowledge-based farming would be eliminated over time; this is evident with the recent
innovations in AI systems for smart/precision agriculture. In 2022, Otazua reported the
successful development of the HortiMED-AI-powered decision support systems (DSSs) that
facilitated autonomous greenhouse control using sensors, “multilayer hierarchical control
architecture,” smart algorithms, “hybrid modeling combining well-known mechanistic
models with AI techniques,” IoT, and machine learning (p. 1) [74]. The HortiMED-DSS was
capable of facilitating cost-effective automation of greenhouse heating, ventilation, and
fertigation, and providing expert services relating to nutrient, crop, and climatic conditions
(fertilizer and water application rates and timelines).

The observations made by [74] regarding the benefits of automating greenhouse were
in tandem with Cui et al. [75]; precision irrigation and fertilizer application led to higher
nitrogen use and water use efficiency, and in turn, a lower risk of pests and diseases
in greenhouse cucumbers in China’s Yangling region. The observations made by Cui
et al. [75] about AI-mediated water-use efficiency corroborated the study by Lin et al.,
which noted that AI technologies provided water to crops within their demand ranges [76].
From a theoretical point of view, Cui et al. [75] and Lin et al. [76] advanced a simplistic
view of sensor operation, which did not align with Briciu-Burghina et al. [77]. In the
latter case, Briciu-Burghina et al. [77] argued that the accuracy of the soil moisture sensors
was dependent on hardware components and environmental degradation of the sensor
components. In line with Briciu-Burghina et al. [77], there were cases when the dielectric
soil moisture sensors failed to accurately measure periodic changes in the soil moisture
levels; this had a negative domino effect on demand irrigation. The faulty measurements
were linked to either corrosion or hardware malfunction. The outcome reported by Briciu-
Burghina et al. [77] negated the impact of soil type on sensor malfunction—an issue that was
extensively investigated by Shamshiri et al. [78]. The study confirmed that the “resistive
sensor operates defectively in sandy loam and clay loam soils owing to low bulk density
and high organic matter” (p. 5) Emerging research recommended the adoption of capacitive
soil moisture sensors to counteract the limitations of the resistive sensors.

From the researcher’s perspective, the risk of corrosion was disproportionately higher,
considering the dielectric sensors were buried in situ and the soils were humid [77]. The
risk of sensor malfunction highlights the potential drawbacks and limits of demand-driven
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agriculture. Despite the mounting evidence on the risk of a sensor malfunction, the
technology issues are often disregarded due to cost considerations and the anticipated cost
savings. Cui et al. [75] reported a 17.5% higher cucumber yield following the introduction
of AI-based irrigation, while the partial factor productivity of applied nitrogen increased by
29%. Similarly, with AI-based systems, Sharma et al. [79] reported a 17% improvement in
wheat grain yields. Considering the outcomes were statistically significant (p < 0.005), AI-
based irrigation and fertilizer application yielded tangible benefits compared to traditional
drip irrigation and manual soil fertilization. The positive outcomes reported by Cui
et al. [75] were consistent with the Sharma et al. case study in Saudi Arabia, where superior
partial factor productivity of applied nitrogen with ANN (Artificial neural network) models
was established [79]. Since no experimental data contradicted the positive findings made by
Cui et al. [75] and Sharma et al. [79], it appears that the AI technologies were cost-effective
and may enable farmers to achieve higher returns on investment on fertilizer application
and gross returns above the fertilizer cost.

The use-efficiency-related benefits that emerged from applying fertilizers were compa-
rable to pesticide-use efficiency. Facchinetti et al. [80] reported a 50% reduction in the use
of pesticides based on an initial theoretical mixture of 1000 L/ha. The introduction of com-
putational algorithms helped to reduce the demand for pesticides to 470 L/ha. The study
confirmed that the pesticide application rates could be further reduced to 300 L/ha [80].
Facchinetti et al. hypothesized a 33% reduction in pesticide use [80], which does not match
Claver’s research, which noted it was possible to reduce pesticide usage by up to 78% using
the state-of-the-art algorithm systems developed by Israel-based Greeneye Technology [81].
Similarly, Shankar et al. postulated that intelligent technologies enabled farmers to practice
variable rate application (VAR), which provided real-time data on the areas most infested
with pests and diseases [82]. The utility of the VAR was further reinforced by the xarvio
Spray Timer and SprayWeather, which enabled farmers to establish the most appropriate
window for spraying. Drawing from the empirical data provided by [82], VAR eliminated
the need to apply excessive fertilizers in areas least affected by pesticides, and was an ideal
alternative compared to the system proposed by Facchinetti et al. [80]. The use of fewer
pesticides in the production of freshly cut salads had a beneficial effect on human health,
considering pesticide residues in foods were risk factors for myriad non-communicable
diseases.

On the downside, the benefits that accrue from DSS, VAR for pesticides, xarvio
Spray Timer and SprayWeather, AI-based fertilizer, irrigation, and other systems may
be less relevant to remote areas with limited IT infrastructure and technical expertise [8].
However, these challenges may not persist in the long term, considering the high pace of IT
infrastructure deployment in rural and urban areas, previously classified as unprofitable for
such ventures [83]. From another perspective, the deployment of IT infrastructure would
only provide a partial solution, given the aging of the population was also a major issue of
concern.

2.3. AI Systems for Integrated Pest Management

Despite the concerns raised about the prohibitive costs, the proponents of AI argue that
the long-term benefits outweigh the short-term costs [84,85]. The reliable use of AI systems
to predict rice production was a case in point [85]. Beyond the prediction of crop production,
AI systems facilitated the development of intelligent IPM systems capable of detecting early
infestation of white flies (Trialeurodes vaporariorum and Bemisia argentifolii) and thrips (Thrips
tabaci, Frankliniella intonsa, Thrips hawaiiensis, and Thrips tabaci) [57]. The observations made
by Rustia et al. [57] reinforce earlier observations made by Karar et al. [14] on the suitability
of deep learning systems in the management of pests and diseases. From a commercial
perspective, the findings reported by Rustia et al. [57] and Karar et al. [14] were compelling,
but inadequate for catalyzing a paradigm shift in the market; this view was reinforced
by the fact that the existing stock of Al systems for pest identification and management
focused on insect pheromone identification [86]. The pheromone-centric ANN and wireless
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sensor network (WSN) technology cannot control all insect types, considering there is a
limited number of commercially available pheromones for IPM [86].

Despite the reservations reported by Singh et al. [86], the ANN–WSN system for pest
identification accurately categorized harmful and beneficial insects; these data guided the
calculation of the volume of pesticides for IPM. The limits of WSN technology highlighted
by [86] were in tandem with [87], who noted that variable monitoring ranges, complex
typologies, and environmental conditions compromised the operation of WSN systems.
However, recent R&D evidence suggests otherwise. The shortcomings of WSN identified
by [86,87] negate recent milestones achieved by Sacaleanu et al. [88] with wireless sensors
and actuators networks (WSAN). WSAN is an upgrade of WSN developed to resolve most
of the limitations of WSN using actuators for better monitoring and control.

The advances made using WSAN have not been accompanied by greater market adop-
tion, owing to the newness of the technology; most studies still focus on WSN technologies
for smart greenhouses [19,89]. Beyond the concerns about the pace of market adoption, the
body of knowledge, including Rustia et al. [57], Singh et al. [86], and Karar et al. [14], was
informed by small-scale experiments under controlled conditions. Real-life applications
of AI systems (IRIS scout robots and robot scouts) in identifying pests and diseases in
agriculture yielded false positive data after analyzing pheromone trap images and powdery
mildew [90]. Since the latter findings were based on market data, the IRIS scout robots
and robot scouts were not ready for market adoption. Inaccurate assessment of pests and
disease infestation using AI and ML (machine learning) image analysis techniques would
result in the excessive application of pesticides. Further research and development efforts
were necessary to minimize false positive rates.

2.4. Robotics and Algorithms for Precision Agriculture and Smart Greenhouses

Recently, commercial farms have deployed robotic systems to selectively harvest
fragile fruits and vegetables such as broccoli and tomatoes [91]. The findings by [91] were
in agreement with Lee et al. [92], who documented the increased use of robotic systems
to sort tomatoes based on color, size, shape, and mass and to identify all defects during
the harvesting process. The case for AI robotic systems in smart farming advanced by
Kootstra et al. [91] was corroborated by Vidwath et al. [93] and Navas et al. [94], who
highlighted the benefits of soft robotic grippers in fruit and vegetable harvesting. In
contrast to Vidwath et al. [93] and Navas et al. [94], Tianhua et al. [95] argued that AI robotic
systems could perform a wide range of unsafe greenhouse tasks beyond harvesting. Such
applications include pesticide spraying and UV-C treatment of crops to mitigate the spread
of powdery mildew. From a human health perspective, Tianhua et al. [95] perspective
on the use of robotic systems for pesticide application was validated by pesticide toxicity
studies [61,62,96]. For example, Chlorpyrifos-methyl, a common pesticide employed in
integrated pest management of the South American tomato pinworm, caused cholinesterase
inhibition in humans and death in severe cases [62]. In other studies, mechanical AI systems
enabled farmers to reduce their labor requirements by up to 90% [13]. However, the actual
reduction rates can be contested, considering robots cannot entirely replace human labor.

Empirical data supported the arguments concerning costs and operational efficiency
of AI systems in farms. Hou et al. [97] used Dynamic Artificial Bee–Ant Colony algorithm
(DABACA) to optimize agricultural machinery plant operational cycle and route plan-
ning. The study reported better optimization, convergence accuracy (>90%), and reduced
operational cycles, which translated to significant cost savings. The observations made
by Hou et al. [97] using DABACA were in line with Cao et al. [98], whose bio-inspired
algorithm-mediated task assignment of agricultural machinery, which employed ant colony
algorithm-based B-patterns to improve the operational efficiency of agricultural equipment,
including the fuel used and non-working distance covered during routine farm opera-
tions. However, critics argue that the positive outcomes drawn from experimental studies,
such as the observations made by Hou et al. [97] and Cao et al. [98], did not justify the
widespread adoption of AI systems in greenhouses. The concerns were premised on the
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following factors. First, AI systems in agriculture lacked standardized accuracy rates. The
system accuracy varied depending on the local environmental conditions and operational
factors. Second, the risk of error remained regardless of the algorithm’s robustness [99,100].
However, the higher risk of errors was not ubiquitous. Proietti et al. established that RNN
(Recurrent neural network)-based decoder–encoder systems exhibited great potential in
the early detection of anomalies [101]. Similarly, Aytenfsu et al. noted that Elman Recurrent
Neural Network (ERNN) was 98% accurate in predicting greenhouse temperature and
humidity levels. The case-specific error theory provided better context concerning the
benefits and limits of AI systems in smart greenhouses. Even though [99,100] raised valid
concerns about the constraints, commercial adoption should be encouraged.

The positive assessment of AI systems in commercial agriculture was validated by suc-
cessful commercial adoption. For example, Gao et al. [102] used an ANN model to quantify
crop evapotranspiration rates in Saudi Arabia. The ANN model yielded better estimates
than traditional approaches to estimating evapotranspiration. Accurate determination
of the plant evapotranspiration rates provided useful data for automated irrigation algo-
rithms. Beyond the estimation of the crop evapotranspiration rates, the ANN and WDNN
algorithms were equally proven useful in predicting the photosynthetic rates of plants,
among other physiological indices that predict plant growth rates and yield [103]. In other
cases, hybrid algorithms were proven reliable in weed prediction/optimization [104,105],
and the determination of the soil cation exchange capacity [106]. The positive assessment
of ANN technologies reinforces earlier observations by Proietti et al. [101] on the fusion
of deep learning and artificial intelligence (RNN encoders and LSTM (Long Short-Term
Memory)) to facilitate learning patterns in time series and modeling data sequences using
monitored parameters to predict crop growth indicators in greenhouses. The case for RNN
advanced by Proietti et al. [101] negated critical shortcomings identified by Codeluppi
et al. [107]; NN systems were inferior to LSTM owing to the long time series and vanishing
gradient problem, which made it difficult to train the model on long-term dependencies.
The latter findings validate the emerging transition from LSTM to RNN.

Gao et al. [102] and Hu et al.’s [103] bias toward new algorithms for greenhouses
was validated by the following considerations. First, modern greenhouses are complex;
there are dynamic relationships between different greenhouse parameters, and the data
mining ability of traditional models is insufficient to facilitate the extraction of all useful
information. Second, the traditional models’ low precision and convergence speeds made
them incompatible with modern intelligent greenhouses. On the downside, the research
of Gao et al. [102] and Hu et al. [103] negated the fact that the transition from traditional
to modern algorithms does not automatically translate to higher prediction accuracy and
sensitivity. The hybrid algorithms must be combined with the appropriate classifiers to
yield better accuracy and specificity [105]. For example, Tao and Wei achieved a 92%
accuracy with the CNN (Convolutional Neural Network)-Support Vector Machine (SVM)
algorithm for weed recognition [104]. However, SVM coupled with the ANN algorithm
proved inferior compared to the emerging class of deep learning models. CNN was paired
with SVM because the former exhibited satisfactory results in computer pattern recognition,
but unsatisfactory results in artificial differentiation of weeds. The SVM model helped to
address this challenge [104]. In contrast to Tao and Wei [104], Emamgholizadeh et al. [106]
proposed a three-model algorithm integrating particle swarm, integrated invasive weed
optimization, and support vector for accurate weed recognition.

Drawing from the latter study, the development of algorithms for evaluating green-
house parameters should be customized to match local conditions and requirements. The
findings of Emamgholizadeh et al. [106] were corroborated by Ibrahim et al., who noted that
the integrated particle swarm algorithm was ideal for selecting discriminant features [108].
On the downside, widespread adoption is constrained by a paucity of temporal data for
precise predictions and training of AI and ML systems. Karnawat et al. argued that the
lack of suitable historical data would be a critical impediment to the adoption of AI sys-
tems in agriculture. The latter findings contradict the positive narratives advanced by



Appl. Sci. 2023, 13, 14 11 of 35

Emamgholizadeh et al. [106] and Ibrahim et al. [108] concerning the immense potential of
CNN and ANN algorithms in intelligent farming. The increased reliance on bio-inspired
algorithms in crop irrigation is justified, given traditional irrigation methods resulted in a
60% waste of water resources [38]. The suitability of different algorithms in predicting the
evapotranspiration rates is depicted in Table 1. The data show that ELM-GA, ELM-CSA,
ELM-ACO, and ELM PFA were ideal models for determining the evapotranspiration rates,
since the R2 (coefficient of determination) values were close to unity. In addition, the rela-
tive mean, standard error, and mean of absolute value of errors (MAE) values were within
the acceptable range [109]. The performance of ELM-GA/CSA/CSO/PFA raises questions
on whether bio-inspired algorithms are better than traditional ones. Such concerns were
informed by the study of Chahidi et al., which achieved comparable R2, RSME (Relative
Standard Mean Error), and MAE values using ANN, SVM, and Gaussian process regression
techniques [110]. Following the comparison of the validation and test performance, it was
deduced that the choice of ANN/SVM, GPR vis-à-vis ELM-GA/CSA/CSO/PFA should
consider other variables beyond R2, RSME, and MAE. The observations were justified
by the model-specific training time and performance in the validation phase [110]. The
selection of the appropriate algorithm is key to collecting reliable real-time data using
sensors to help eliminate excessive waste of water, pesticides, and fertilizers.

Table 1. Evapotranspiration data collected using ELM statistical methods and bio-inspired algorithms
[109].

Station/
Model

Training Validation Testing

R2 RMSE NRMSE
(%) MAE R2 RMSE NRMSE

(%) MAE R2 RMSE NRMSE
(%) MAE

(mm d−1) (mm d−1) (mm d−1) (mm d−1) (mm d−1) (mm d−1)

ELM 0.995 0.150 5.020 0.122 0.994 0.189 6.332 0.132 0.988 0.288 9.532 0.200
ELM-GA 0.995 0.149 4.983 0.117 0.995 0.176 5.882 0.125 0.988 0.281 9.280 0.193

ELM-
ACO 0.995 0.149 4.981 0.117 0.996 0.166 5.575 0.122 0.988 0.279 9.256 0.191

ELM-CSA 0.996 0.148 4.981 0.117 0.996 0.159 5.320 0.121 0.988 0.274 9.232 0.191
ELM-FPA 0.996 0.144 4.967 0.116 0.996 0.155 5.189 0.119 0.989 0.272 9.112 0.190

AI-based irrigation techniques offer additional benefits, including reduced risk of
powdery mildew and Botrytis and fungal pathogen spores caused by excess humidity in
greenhouses (due to inadequate regulation of water molecule condensation during sunrise
and sunset and on cold, cloudy days) [111]. Proactive prevention of crop pests and disease
directly impacts crop yields, considering powdery mildew and Botrytis limit chlorophyll
formation through conidia and conidiophores on the leaf surfaces. Recent advances in AI
technology for agricultural production facilitated autonomous monitoring of chlorophyll
formation using the SPAD value, which is a proxy measure for wavelength absorbance [112].
However, the reliability of the measurements is contingent on the chloroplast movements
and light intensity.

Liu et al. [111] employed long short-term memory neural network systems to effec-
tively manage powdery mildew in greenhouse structures. The findings reported by Liu
et al. [111] were in line with the research of Abdulridha et al. [113] and other experimental
studies, which supported using AI technology to prevent pests and diseases in greenhouses.
In particular, Abdulridha et al. relied on UAV-based hyperspectral imaging and artificial
intelligence to accurately diagnose the presence of powdery mildew [113] (see Figure 4).
However, the case made by Abdulridha et al. [113] and Liu et al. [111] was not aligned with
Pane et al. [114], who noted that machine learning techniques were equally effective in the
management of powdery mildew.
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Figure 4. Hyperspectral imaging and artificial intelligence detection of powdery mildew in squash
plant leaves. Images labeled (a–c) demonstrate different developmental stages of the powdery mildew
disease in in-house leaves; (e,f) represent disease severity in outdoor squash plants. (a) Powdery
mildew was not detected in the regions of interest. (b) Low severity of the powdery mildew disease
(in-house photos). (c) High severity of the powdery mildew disease. (d) Powdery mildew was not
detected in the regions of interest (outdoor plants). (e) Low severity of the powdery mildew disease
(outdoor plants). (f) High severity of the powdery mildew disease (outdoor plants) [113].

The concerns raised by Abdulridha et al. [113], Liu et al. [111], and Pane et al. [114]
about the reliability of the algorithms for powdery mildew diagnosis are but a micro-
cosm of the limits of image detection techniques. Future R&D is anticipated to resolve
these challenges.

2.4.1. Role of AI Technologies and Biological Pesticide Compounds in IPM

The use of AI technologies in place of chemical products (including Prestop®, Mi-
croflora PROTM, and Active Flower™) and biological powdery mildew management tech-
niques was validated by ecological and cost considerations [115] and the mixed benefits of
bio-pesticide formulations (such as succinic acid and methanolic extract of Rosmarinus offici-
nalis) [96]. The case for the biological control interventions by Homayoonzadeh et al. [96]
was in line with the research of Arnaouty et al. [116], which affirmed that biological control
agents were effective compared to the traditional chemical agents (including Radiant 12%
SC, Kanemite 15% SC and Actra 25% WG) in the management of pests, including whitefly,
Frankliniella occidentalis, and flower thrips [116]. In addition to the superior efficacy of the
biological control agents, the sweet pepper plants exhibited superior yields (35% better)
following treatment with the biological control agents. Despite the positive observations
made by Homayoonzadeh et al. [96] and Arnaouty et al. [116], one must acknowledge
that the effectiveness of the biological control agents is contingent on the seasons and the
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intensity of the pests and disease. The biological control agents might be less effective if
there is a high intensity of pests and diseases. Other major issues of concern with biological
control agents include the mixed performance of the biological control agents.

Despite the reservations, the emphasis on biological rather than commercial IPM
technicals by Homayoonzadeh et al. [96] and Arnaouty et al. [116] represents an emerg-
ing pattern in commercial agriculture, guided by the need to conserve the environment
and reduce pesticide resistance—a phenomenon that is most common with commercial
pesticides [75]. For example, studies conducted in the Russian Federation established that
mites gradually became resistant to avermectin pesticides in the past 20 years [117]. The
observations made by [117] in the Russian Federation were comparable to the research of
Kirisik and Dagli’s [118] and Solmaz et al. [66] in Turkey, where farmers recorded higher
Tetranychus Urtic resistance to Bifenazate and Abamectin. The observations made by Kirisik
and Dagli [118] and Solmaz et al. [66] concerning the growing pesticide resistance in Turkey
were affirmed by Alpkent et al. [119], who attributed the arrhenotokous reproduction and
high fecundity of Tetranychus urticae populations in greenhouses to acaricide resistance.
However, in the latter case, the pesticides were resistant to a wide range of pesticides,
bifenthrin, and hexythiazox. From a globalist perspective, Tetranychus urticae resistance to
pesticides would create a monumental challenge for Turkey and the larger EU. Acaricides
purchases represented 14% of the pesticide expenditure in the continent [120]. Higher
expenditure on acaricides denotes greater dependence, which has catastrophic effects on
crop yields if widespread pesticide resistance is documented.

Even though there was compelling evidence to catalyze the industry transition to
biopesticides and intelligent IPM, the rate of biological agent adoption was inadequate [121];
this was despite favorable legislation and regulations, including Regulation (EC) No.
1107/2009 and 2016/2903 (RSP) [122]. Current research does not provide clear-cut reasons
why biological agents have not outpaced chemical control agents in the market. On the
one hand, Liu et al. attributed the phenomenon to risk aversion among farmers coupled
with an unfavorable marketing environment for biological pesticides in China [121]. On
the other hand, the low adoption was linked to the variable effectiveness of the biological
control agents relative to chemical pesticides, and the longer duration needed to secure
financial returns following years of R&D investment [123]. The operational challenges
highlighted by leading biological pesticide manufacturers supported this narrative.

From another dimension, the limited uptake of biological pesticides could be linked to
adopting a wide range of complementary interventions, including crop diversification and
growing advocacy for pesticide-free agriculture [124,125]. Statistics compiled by the EU
confirmed that farmers were assimilating pesticide-free agriculture policies; this was evi-
dent from the consistent reduction in the level of pesticide dependence—the most notable
improvement was observed in the Czech Republic, where pesticide use reduced by 38%
between 2011 and 2020. A similar downward trend was observed in Denmark, Portugal,
and Romania, with each country recording a 20% drop in pesticide demand [120]. The pes-
ticide use patterns documented by [120] were in agreement with Facchinetti et al. [80], who
documented a marginal change in pesticide use from the 1990s to the late 2000s as a result
of the stringent regulatory measures imposed by the EU, including Directive 2009/128/CE.

A contrary trend was observed in Latvia and Austria, where pesticide demand in-
creased by 77% and 61%, respectively. In contrast to the statistics provided by Eurostat [120],
Neumeister noted that EU farmers were locked into pesticide use [126], creating an eter-
nal lose–lose situation for all stakeholders. The lose–lose situation was evident from the
declining genetic diversity, impaired crop yields due to lower insect-assisted pollination,
and the destruction of local ecosystems. The contrasting observations about pesticide use
and the rates and barriers to biopesticide market entry affirm the complexity of phasing
out chemical pesticides from the market. On a positive note, the scenario is forecasted to
change with the gradual introduction of AI technologies in pest management.

Karar et al. deployed cloud-based solutions and CNN networks to target red spider,
flax budworm, cicadellidae, aphids, and flea beetles [14]. Early detection of pesticides using
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AI technologies would facilitate timely responses using AI and IoT infrastructure. The
observations made by Karar et al. [14] were corroborated by Rustia et al., who integrated
both AI and IoT systems in developing a new and intelligent system of IPM (see Figure 5).
The IPM system shown in Figure 5 shows the use of sensors and image data during the data
collection phase, which are then stored in a database and processed within the same server,
using analytics to provide useful outputs, such as hotspot detection and other models that
can aid decision-making on the farm. The system was > 90% effective in managing thrips
and whitefly [57]. In both cases, intelligent IPM techniques had the potential to reduce
pesticide usage, resulting in significant cost savings. However, the short-term investment
costs are a major impediment [121,123]. The observations made by [60,62] reflect the
broader concerns about the future of Al in agriculture highlighted by Karnawat et al. [6].
However, in the latter case, the researchers argued the challenge might be addressed by
developing affordable interventions in open-source platforms to ensure higher penetration
among farmers.

Appl. Sci. 2023, 13, 14 14 of 36 
 

2000s as a result of the stringent regulatory measures imposed by the EU, including 
Directive 2009/128/CE. 

A contrary trend was observed in Latvia and Austria, where pesticide demand 
increased by 77% and 61%, respectively. In contrast to the statistics provided by Eurostat 
[120], Neumeister noted that EU farmers were locked into pesticide use [126], creating an 
eternal lose–lose situation for all stakeholders. The lose–lose situation was evident from 
the declining genetic diversity, impaired crop yields due to lower insect-assisted 
pollination, and the destruction of local ecosystems. The contrasting observations about 
pesticide use and the rates and barriers to biopesticide market entry affirm the complexity 
of phasing out chemical pesticides from the market. On a positive note, the scenario is 
forecasted to change with the gradual introduction of AI technologies in pest 
management. 

Karar et al. deployed cloud-based solutions and CNN networks to target red spider, 
flax budworm, cicadellidae, aphids, and flea beetles [14]. Early detection of pesticides 
using AI technologies would facilitate timely responses using AI and IoT infrastructure. 
The observations made by Karar et al. [14] were corroborated by Rustia et al., who 
integrated both AI and IoT systems in developing a new and intelligent system of IPM 
(see Figure 5). The IPM system shown in Figure 5 shows the use of sensors and image data 
during the data collection phase, which are then stored in a database and processed within 
the same server, using analytics to provide useful outputs, such as hotspot detection and 
other models that can aid decision-making on the farm. The system was > 90% effective 
in managing thrips and whitefly [57]. In both cases, intelligent IPM techniques had the 
potential to reduce pesticide usage, resulting in significant cost savings. However, the 
short-term investment costs are a major impediment [121,123]. The observations made by 
[60,62] reflect the broader concerns about the future of Al in agriculture highlighted by 
Karnawat et al. [6]. However, in the latter case, the researchers argued the challenge might 
be addressed by developing affordable interventions in open-source platforms to ensure 
higher penetration among farmers. 

 
Figure 5. Key attributes of the intelligent IPM system [14]. 

The proponents of intelligent IPM coupled with biopesticides argue that there were 
immediate short-term benefits. For example, the crop yield was higher with intelligent 

Figure 5. Key attributes of the intelligent IPM system [14].

The proponents of intelligent IPM coupled with biopesticides argue that there were
immediate short-term benefits. For example, the crop yield was higher with intelligent and
biological IPM compared to traditional chemical pesticides [116]. Moreover, the domino
health benefits for humans and cost savings in commercial farming are unquantifiable. The
latter evidence affirms there were justifiable grounds for the transition from traditional to
intelligent IPM methods. The paradigm shift would benefit global agriculture, considering
that pests and diseases accounted for up to 40% of global crop losses [14].

In contrast to the cost-related issues highlighted by Ni and Punja [115], continuous
and excessive pesticide use has a detrimental impact on pest management, given the high
risk of pesticide resistance. Pesticide resistance and incompatibility have partly led to the
spread of the South American tomato pinworm Tuta absoluta [61] and mites. The current
strains of the South American tomato pinworm can only be eradicated using strong and
toxic pesticides, such as chlorpyrifos-methyl and Spinosad [61]. Even though pesticide
toxicity and resistance risk can be mitigated with biopesticide formulations, adoption has
remained low owing to their variable effectiveness across different classes of pests and
diseases. For example, succinic acid and methanolic extract of Rosmarinus officinalis were
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only proven effective against Aphis gossypii in cucumber grown in greenhouses [96]. The
lack of broad-spectrum biopesticides may partly explain why the demand for chemical
pesticides remained unchanged; this phenomenon introduced new constraints, considering
industrial greenhouses cannot be used in isolation. Glinushkin et al. proposed an alternative
approach, focusing on less-potent chemical pesticides, such as Confidor Extra and Nocturne.
On the downside, these pesticides were only effective against the phytoseiid mite Neoseiulus
barkeri Hughes, and their efficacy was limited to approximately 25% [117]. According to the
data in Table 2, the mortality rate for the mites was notably higher for avermectin pesticide
(>93%) (see Table 2). The application of Confidor, Actellic, Scelta, and malathion did not
yield mortality rates comparable to avermectin. The data suggested that pest mortality rates
were proportional to the strength of the pesticides [117]. The estimates provided by [117]
were comparable to experimental data drawn from Turkey [118,119]. Turkish farmers had
recorded high levels of red spider mite (Tetranychus Urtica) resistance to Bifenazate and
Abamectin (acaricides) [118,119]. Higher mite mortality rates (>90%) were observed with
the adoption of aggressive pest management techniques, including mite-dipping and leaf
dipping. The widespread pesticide resistance further validates the need for intelligent
IPM systems.

Table 2. Potency of different classes of pesticides against mites [117].

Pesticides and Active Ingredients (AI)
Field

Recommended
Rates

Content of Active
Ingredient,

mcg/mL

Original Number
Experiences (N0)

Cumulative
Dead

Mites (N1)

Mortality Rate
(Xcp ± St), %

Pesticides used in greenhouses
Fitoverm EC 1.0 20 146 9 93.7 ± 6.7

(avermectin C, 2 g/L) 0.2 10 208 68 33.1 ± 8.8
0.1 5 154 27 16.3 ± 3.2

Confidor Extra, 0.015 105 102 23 21.7 ± 4.0
WDP

(imidacloprid, g/kg) 700 0.0075 525 89 16 18.2 ± 3.7

Actellic,
(pirimiphos-methyl

500 g/L)

EC 0.2 1000 217 86 39.5 ± 4.7

0.1 500 260 65 24.8 ± 5.4

Novaction,
(malathion, 440 g/L)

WE 0.15 660 66 49 42.1 ± 7.3

0.075 330 172 38 20.7 ± 11.5

Promising pesticides for use in greenhouses

Scelta
(cyflumetofen, g/L)

SC 0.2 40 104 7 6.9 ± 3.1

20 0.1 20 106 7 4.4 ± 0.8

0.05 10 79 4 5.4 ± 3.8
Nocturne, SC 0.1 100 404 86 23.0 ± 8.3

(pyridalyl, 100 g/L) 0.05 50 319 48 16.9 ± 8.2
Proclaim, WSP 0.2 100 158 111 70.5 ± 3.1

(emamectin benzoate,
50 g/kg)

0.1 50 151 62 40.7 ± 4.0

0.05 25 68 7 9.3 ± 1.4
Oberon, SC 0.05 120 136 55 42.2 ± 9.8

(spiromesifen, g/L) 240 0.025 60 74 18 25.9 ± 9.2

Control - - 352 20 6.3 ± 5.3
(water)

Drawing from the IPM management practices for Aphis gossypii and phytoseiid mite
Neoseiulus barkeri Hughes reported by [96,117], farmers with commercial greenhouses
were faced with a dilemma. On the one hand, law regulations advocated using less toxic
pesticides [127]. However, ecologically benign biopesticides were not broad-acting. On the
other hand, chemical pesticides with broad-spectrum activity against pests and diseases
were toxic to the environment [117,121,122,124]. In light of the critical shortcomings of
traditional pesticides in greenhouse agriculture, the proactive management of powdery
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mildew and Aphis gossypii, among other pests and diseases, using AI and other smart
technologies might yield enormous benefits to farmers.

Complementary techniques for disease detection are needed, considering that the
research of Abdulridha et al. [113], Liu et al. [111], and Pane et al. [114] confirmed that
AI-based disease detection systems had critical shortcomings. For example, the detection
of powdery mildew was impacted by the UV wavelength, the camera properties, and the
location of the infected leaves in relation to the non-infected leaves. The shortcomings of
AI-based disease detection systems in greenhouse and open-field agriculture raise pertinent
questions about sustainable IPM practices. Two theories were advanced in the literature.
On the one hand, proponents of the current status quo supported the continued use of pesti-
cides to manage aggressive pests and diseases, including Orius laevigatus, Nesidiocoris tenuis,
Tuta absoluta, and Amblyseius swirskii [61]. However, persistent pesticide use increased
the risk of crop pesticide resistance [61,113]. Moreover, the concentration of pesticides
diminished over time, contributing to the resurgence in the population of Nesidiocoris tenuis
(see Figure 6); this phenomenon informed the need for frequent pesticide applications.

On the other hand, the proponents of smart farming advocated using Al and IoT-based
solutions in pest management. The high detection accuracy validated the case for AI in
pest management. The UAV-based hyperspectral imaging and artificial intelligence system
had 82% and 99% classification accuracy for the asymptomatic and late development of
powdery mildew [113,127]. Asymptomatic detection was critical to the early management
of crop diseases and the improvement of crop yields. In line with Abdulridha et al. [113],
Pane et al. [114] demonstrated the utility of intelligent solutions in managing pests and
diseases. Following delineating the cost-benefits of traditional pesticides versus smart
farming solutions, the latter was encouraged despite the significant capital requirements in
the short term.

In light of the unique benefits and constraints of AI-based IPM techniques, complemen-
tary solutions were needed moving forward; this view was corroborated by Agarwal and
Verma’s [128] assessment of pest behavior-modifying chemicals; genetic engineering and
plant immunization; CRISPR-based genetic manipulation of pest populations; controlled
introduction of predators, parasites, and diseases to reduce the population of plant pests
and diseases; and microbial pesticides. Even though RNA interference and genome editing
were supported by Agarwal and Verma [128], the gene editing of crops has not gained
traction, and there is strong opposition from bioethicists [129]. The ethical concerns are
valid, since CRISPR-based gene manipulation may trigger undesirable changes in the crop
genome; these shortcomings validate the emphasis on AI in IPM.



Appl. Sci. 2023, 13, 14 17 of 35Appl. Sci. 2023, 13, 14 17 of 36 
 

 

 
Figure 6. (A,C) show the average population of Nesidiocoris tenuis and Tuta absoluta per leaf inside a 
commercial greenhouse in 2016, and (B,D) show the average population of the same pests in 2017 
after the pesticide was applied twice in 2016 [61]. 

On the other hand, the proponents of smart farming advocated using Al and IoT-
based solutions in pest management. The high detection accuracy validated the case for 
AI in pest management. The UAV-based hyperspectral imaging and artificial intelligence 
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after the pesticide was applied twice in 2016 [61].

2.4.2. Commercial Development of Robotic Systems for Smart Agriculture
(Inhouse and Outdoors)

In 2022, John Deere Company (one of the world’s leading farm machinery manu-
facturers) released fully autonomous tractors for precision agriculture featuring the next
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generation optical and electro-optical cameras. The cameras helped to detect obstacles and
calculate distances in real time [130]. The utility of advanced computer vision systems
in robotics was affirmed by Beloev et al. [131]. However, in the latter case, performance
was augmented by the integration of image processing algorithms. The robotic system
accurately distinguished tomatoes, leaves, and wood support structures (see Figure 7).
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Despite the milestones recorded in recent years, a major concern was the lack of
consensus on the most effective method for robotic automation and mobility. Drawing
from Beloev et al. [131] and John Deere [130], LIDAR and optical cameras yielded superior
outcomes. However, not all scholars support the case for LIDAR and optical cameras.
For example, Rahmadian and Widyartono [132] argued that satellite-differential GPS
(geographic positioning systems) (S-DGPS) connected to a John Deere tractor (ground
station) proved to be reliable and accurate in facilitating autonomous mobility. The John
Deere-S-DGPS system had an accuracy of up to 2 cm from the target. In other cases, the
robotic systems achieved an accuracy of less than a centimeter [132]. In contrast to other
AI and ML systems, which recorded variable results under different environments and
operating conditions, the G-DGPS had consistent accuracy in Israel, Georgia, and the US
(California) [132]. The mixed observations of Rahmadian and Widyartono [132] and Beloev
et al. [131] about the utility of GPS systems in agricultural robots show that contextual
factors and technological improvements were important moderating factors. Additionally,
one cannot disregard the legitimate concerns raised about robotic system accuracy.

The issues raised by Zha [8] concerning the inconsistent accuracy of AI systems in
smart greenhouses were in agreement with Aghelpour, Bahrami-Pichaghchi, and Kisi’s [133]
research, which reported a low prediction accuracy for the Adaptive Neuro-Fuzzy Inference
System (ANFIS) coupled with bio-inspired optimization algorithms. However, Aghelpour,
Bahrami-Pichaghchi, and Kisi [133] and Zha [8] contradict Soheli et al. [134], who reported
a >93.6% prediction accuracy using ANFIS and IoT. The higher accuracy reported by Soheli
et al. [134] reinforces the perspectives of Howard et al. on achieving an optimal balance
between scalability, computational speed, and accuracy of the AI systems.

The inconsistencies in the accuracy of ANFIS-AI systems with bio-inspired algorithms
can be partly linked to the distinct operational parameters and optimum operational
conditions. The later claims aligned with the research of Salam et al. [135] on optimal
target identification using multiple unmanned UAVs guided by bio-inspired algorithms
to identify crop diseases. On a positive note, the lower prediction accuracy reported by
Aghelpour et al. [133] and Zha [8] could be resolved using digital models based on model
predictive control. Howard et al. confirmed that the MPC (model predictive control) digital
models improved accuracy without compromising the computational speed [136]. On
the downside, the positive assessment of MPCs by Howard et al. [136] negated the fact
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that the classical controller systems had critical shortcomings and accurate operations
depended on the mathematical models’ accuracy [10]. In most cases, closed-loop control
algorithms, such as MPC, may impose new constraints on manipulating variables and
often on computational resources [10]. Despite the strain on computational resources,
the continued use of MPC was validated by unique benefits and capabilities, including
rolling optimization, which provided the operators with sufficient time to initiate inverse
responses, address sensor failure, change the computing objectives, and address time delays
between sensors.

The MPC system could help streamline the performance and accuracy of the UAV
systems, which are affected by light intensity, soil moisture, relative humidity, pH, and the
concentration of nitrogen, phosphorous, and potassium [103,113,135]. The observations
made by [103,113,135] concerning the regulation of the greenhouse microclimate were in
agreement with the research of Jiang et al. [137] on the factors predicting the economic
return and fruit quality of greenhouse-grown-table grapes in Northern China. Proper regu-
lation of greenhouse parameters was a key prerequisite for higher table grape yields and
profit margins. The observations reinforce current research on the benefits of greenhouse
microclimate control. For example, the DynaLight system and dynamic climate control
in InfoGrow improved the quality of greenhouse crops [136]. Similarly to [136], Afzali
et al. [11] confirmed that predictive modeling for greenhouse light management could yield
significant cost savings. In contrast to [136] and Afzali et al. [11], Bersani et al. noted that
cost savings in predictive modeling were largely dependent on the choice of the algorithm
and MPC [138]. The latter study preferred particle swarm algorithms. On the downside,
the selection of bio-inspired algorithms may not suffice to offset the existing challenges.

Even in cases where the dynamic climate control in InfoGrow was present, and it
was challenging to mitigate the impact of local environmental conditions, the benefits
associated with timely detection of powdery mildew and management of pests outweighed
the drawbacks [13,103,111,113,135]. The variable test set accuracy (85–90%) of the Adam,
RMSprop, Adamax, and Nadam optimizers depicted in Table 3 should not be perceived as
a major impediment to the adoption of algorithms for smart farms [69]. The test accuracy
can be improved in subsequent training of the algorithms. Moreover, new computational
approaches have been employed to enhance the training and test set accuracy.

Table 3. Relationship between optimizers, learning rates, the training set accuracy, and test set
accuracy [111].

Optimizers Learning Rates Training Set Accuracy (%) Test Set Accuracy (%)

Nadam 0.001 96 89
Adamax 0.001 93 89
RMSprop 0.001 95 89

Adam 0.001 96 90
Adam 0.0001 89 86
Adam 0.01 91 85

3. Digital AI Models for Energy Management in Greenhouses
3.1. Energy Demand in Smart Greenhouses and Energy Optimization Algorithms

The adoption of digital models (such as MATLAB/Simulink) to regulate the insulated
and transparent greenhouse microclimate is an emerging area of research [139]. The materi-
als for greenhouse structures, such as fiberglass, PVC, polycarbonate, and reinforced plas-
tics, had a domino effect on energy use [140]. Intelligent greenhouse structures are energy-
intensive—a factor that may impede commercial adoption of AI technologies [141,142].
The claims made by [77,78] concerning the energy-intensive nature of greenhouse culti-
vation were in tandem with Iddio et al., who noted that energy costs accounted for 25%
of the greenhouse overhead costs [10]. Energy is needed to heat and cool greenhouse
structures and regulate light, humidity, and soil moisture. The disproportionate use of
energy in greenhouses relative to other sectors in the agricultural industry may explain why
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there was renewed interest in developing the next generation of AI-based energy-saving
technologies to reduce energy expenditure and improve yields.

Nguyen et al. documented various bio-inspired interventions for energy optimiza-
tion in smart grids, smart homes, and the internet of energy [55]. The study suggested
that swarm and evolutionary-based optimization algorithms were ideal for optimizing
the use of traditional and renewable energy sources to achieve higher user comfort and
energy demand aligned with the production capacity and grid demand. In contrast to
Nguyen et al. [55], Zhang et al. [142] proposed an AI-based mode based on a particle
swarm optimization (PSO) scheme. The latter reduced the cost of greenhouse energy
through integrating photovoltaics and dynamic pricing (real-time and time-of-use). The
algorithm enabled seamless communication between the external power grid (EPG) and
the PV system. For example, the supply of power from the external power grid was only
required when sunlight was low. If there was sufficient light and load, the EPG supply was
disconnected.

In real-life greenhouse operations, the proposals made by Nguyen et al. [55] and Zhang
et al. [142] may be relevant or less relevant depending on the local operating conditions,
energy sources, the scale of greenhouse agriculture, and specific circumstances; this is in
line with Iddio et al. who recommended the use of evolutionary algorithms to address the
shortcomings associated with proportional–Integral–derivative (PID) control of greenhouse
structures. Traditionally, PID was preferred owing to its great performance, simplicity,
and flexibility [10]. However, there were certain tradeoffs, including time-consuming
computing and the inability to handle abrupt and external disturbances [10]. The case
for the PID greenhouse control strategy advanced by [10] corroborates [20], who noted
it was a low-cost alternative. However, there were alternative systems with comparable
performance, including GA-based model predictive control systems. The PID-related
shortcomings partly explain why AI bio-inspired algorithms, such as EA (Evolutionary
Algorithm), were used to modify PID controllers in greenhouses.

Similarly to Iddio et al. [10] and Zhang et al. [142], Jia et al. [143] confirmed that
bio-inspired algorithms, particularly adaptive chaotic ACO algorithms, could achieve
significant energy savings. However, the use of bio-inspired algorithms to reduce energy
demand in isolation would not suffice, considering energy expenditure in greenhouses
was a complex non-linear, multi-input and output process; this may explain why CFD
(computational fluid dynamics) modeling coupled with mathematical transformations and
systematization of greenhouse design parameters were appealing alternatives [144–146].
Rasakhodzhaev et al. employed mathematical models in the design of adjustable solar
greenhouse structures with optimal height for better regulation of heating and cooling. In
contrast to Zhang et al. [142] and Jia et al. [143], Chen et al. [144] employed computational
fluid dynamics to regulate surplus air thermal energy in greenhouses. The data were
employed in the operation of the fan-pad evaporative cooling system. Even though the
latter system did not rely on bio-inspired algorithms, it demonstrated the effectiveness of
modeling and simulations in regulating greenhouse cooling. In line with Chen et al. [144],
Mirzamohammadi et al. demonstrated the effectiveness of mathematical simulations using
the Monte Carlo model. However, the effectiveness of the modeling system was largely
dependent on the level of uncertainty.

The ACOA proposed by Jia et al. [143] regulated energy demand in smart sensor net-
works. However, it remained unclear whether the optimal performance of the bio-inspired
algorithms in controlled environments would yield satisfactory performance in real-world
scenarios. Such concerns were premised on the fact that the performance of the bio-inspired
algorithm was influenced by the dynamic relationship between biological interactions and
physical conditions (atmospheric, weather, soil, and humidity). The concerns raised by
Jia et al. [143] were partly in agreement with the assessment by An et al. [147] of system
optimization under non-deterministic weather conditions. The unpredictable weather
patterns impaired the performance of sensors and actuators for heating, lighting, and CO2
dosing and the development of a climate and irrigation strategy.
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3.2. Alternative Energy Saving Measures—LoRa Transmission, PCOA-Lighting Management,
PCMs, and LEDs

Drawing from earlier case study data, the pilot experiments may not be practical
for regions with diverse climatic conditions and unique energy requirements. The above
concerns partly contributed to the diversification of AI approaches for energy management.
In the meantime, the researcher posits that it would be prudent for smallholder farmers to
make incremental changes for better energy management; these may include selecting con-
nectivity technologies with lower energy requirements. For example, a comparison of LoRa,
Wi-Fi, Bluetooth, ZigBee, mobile, and RFID technologies established the following. Leading
connectivity technologies for AI systems with higher transmission ranges (20–100 m) had
higher energy input requirements; Wi-Fi is a case in point. In contrast, LoRa had very low
energy requirements and high transmission ranges (<30 km) [148]. The claims made by
Bersani et al. [148] on the low energy requirements were in tandem with Placidi et al. [84],
who noted that the system’s typology reduced the energy demand while enhancing data
transmission over long distances. Beyond the selection of communication channels, Bersani
et al. [138] reported 54% to 83% energy savings in incandescent and fluorescent lamps after
incorporating a parallel particle swarm algorithm for optimal location of lighting.

The case for LoRa networks in agriculture made by Bersani et al. [148] and Placidi
et al. [84] aligned with the research of Chen et al. [149] on the market integration of LoRa
technology in greenhouses. In one case, the LoRa transmission module was used to transfer
data collected from sensors to the Raspberry Pi (single-board computer). In contrast to Chen
et al. [149], Henningson [150] observed that the accuracy of the Raspberry Pi system was
higher when paired with Canon camera systems to improve the resolution of the images
detected. After integrating the two systems, each plant had a resolution of 0.006 pixels.
On the downside, farm-based data show that high transmission ranges and low energy
requirements of LoRa did not automatically translate to greater commercial adoption in
relation to -Fi, Bluetooth, ZigBee, mobile, and RFID. For example, Siskandar et al. [151]
preferred fuzzy-guided RFID-based communication channels for smart greenhouses fea-
turing DHT22/ DS18B20 sensors for temperature and humidity regulation. In contrast
to Chen et al. [149], Bersani et al. [148], and Placidi et al. [84], Mu et al. [152] and Elsayed
et al. [153] recommended alternative methods for managing energy resources, including
the use of phase change materials for energy conservation and agricultural residue to
generate biofuels and energy. However, the application of PCMs recommended by Mu
et al. [152] represents but a tiny fraction of the potential applications in smart farming.
For example, Kong et al. [154] noted that PCMs were appropriate materials for cold chain
logistics [154]. However, not all scholars support the use of PCMs in greenhouses and
related applications due to the high risk of leakage during the phase change process [155].
The researcher supports the use of PCMs, considering they can be coupled with solar
systems for maximum energy saving.

On the downside, incremental changes, such as selecting less energy-intensive com-
munication systems, cannot suffice; they must be paired with other interventions, including
the adoption of renewable energy systems in greenhouses [156,157]. Solar and geothermal
energy are the most viable renewable energy systems [158]. Even though the transition
to renewable energy was widely encouraged, the reliability of the energy source was not
guaranteed, especially in regions with intermittent solar radiation [159]. Even in regions
where the supply of solar energy was guaranteed, mass utilization of renewable energy
resources was a challenge, owing to the significant disconnect between the use of AI in
the greenhouse and the deployment of AI in energy saving; this was a paradoxical phe-
nomenon, considering smart greenhouses (featuring predictive light control systems) could
reduce energy expenditure by 14–33.85% [11]. The improvements in lighting achieved
by [11] were in tandem with [58], who documented a 19.4% cost saving following the
introduction of a predictive control strategy and innovative greenhouse lighting system.
The light prediction model is illustrated in Figure 8.
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Following the comparison of the heuristic versus application-specific models, the
former yielded accurate predictions with minimal variations from the baseline. Beyond the
lower prediction accuracy, the case against the heuristic systems was further corroborated
by the high cost of heuristic-based predictions compared to the prediction-based method
(PBM). On average, the heuristic-based predictions cost $5.96/m2, while the PBM cost
$0.73/m2 per day [11]. The notable disparities in the cost validate the PBM approaches.

Proper energy management in greenhouse structures remained a priority, considering
that the current rates of energy expenditure were unsustainable in the long term. For exam-
ple, US-based greenhouse operators utilize $600 million worth of electricity per year [160].
Regulating energy use using AI was a practical option, since small-scale and large com-
mercial farms had to spend additional resources on IPM. On average, US farmers spend
$1 billion on pesticides per year. Similarly, commercial farming in Europe was pesticide
intensive—farmers utilized an estimated 346,000 tons of pesticides in 2020 alone [120];
nearly half of the expenses were on fungicides and bactericides.

4. Barriers to Incorporating Artificial Intelligence Technology in Smart Greenhouses

Current research on AI and IoT in agriculture advances distinct claims on the potential
barriers to incorporating AI technology in smart greenhouses. One school of thought
claimed that the inconsistent adoption of AI could be linked to the slow commercializa-
tion of R&D innovations, barriers to technology acceptance, and information asymmetry.
This school of thought was corroborated by Zha [8] and Senavirathne et al. [13]. The sec-
ond school of thought suggested that demographics were a major determinant. Research
from Europe suggested that demographics directly affect progressiveness and technology
adoption in agriculture [67,161]. Younger generations are more highly motivated to adopt
new farming technologies than older generations. In contrast to the scenario observed
by [67,161] in Europe, Asian studies highlighted the aging of the population as a bar-
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rier [162]. Drawing from the latter studies, each continent had unique barriers and drivers
for precision technology adoption in greenhouses.

The issues raised by Zha [8] and Senavirathne et al. [13] concerning the pace of
technology adoption were discounted by emerging research on the immense benefits of
augmented reality, such as the GRETA application in promoting technology adoption
among hobby farmers, and those with limited knowledge about farming technologies, and
even professional farmers using unique human-computer interactions [24]. The case for AR
advanced by [24] corroborates Yaqot and Meneses’s study [163], which noted AR would
help transform rural and novice farmers into experts while providing agronomists with
a real-time and holistic view of farm and crop health. The benefits afforded by AR-based
systems such as GRETA suggest that poor understanding of technology should not be an
impediment to the automation of greenhouse operations.

The low pace of AI technology adoption in the global agricultural sector has remained
unresolved. For example, the first AI-powered system for agriculture was the GOSSYM
cotton crop simulation model developed in 1985 to regulate water and fertilizer application,
weed control, and local climate for better cotton yields [8]. The GOSSYM model was key to
developing the Artificial Intelligence Automated Greenhouse System (AIAGS), processing
systems, and web applications [13]. On the downside, there was limited R&D in the subse-
quent years to build on the GOSSYM model. In 1996, researchers developed an autonomous
AURORA greenhouse robot to replace manual labor. The historical slow adoption of pre-
cision farming technologies documented by [8,13] was in line with Maloku’s appraisal
of precision farming technology integration in the US and EU [71]. Until the late 2000s,
only 22% of the farmers had integrated precision farming technologies in the West [71].
On a positive note, there was a notable improvement in the pace of technology adoption
post-2013. In the past two years, researchers have developed multi-application AI systems
for intelligent IPM [15,86,128], seeding and harvesting, and weed recognition [104,105],
and digital twins for autonomous greenhouse operation using traditional sensor data, IoT,
big data analytics, and AI [136]. However, the pace of R&D innovations does not match
commercial adoption—the digital twin-based GHI4.0 project in the Danish horticultural
industry was in the pilot phase. On a positive note, 80% of Danish farmers attempted to
integrate precision farming technologies in the production of maize and barley crops [71].

Presently, it is challenging to determine the cost-benefits of technological innovation
and underlying motives for the transition to AI in agriculture [18]. For example, even
though digital twins offer immense potential to balance accuracy, accuracy, and compu-
tational speeds in agriculture, there are limited data on their applications. Howard et al.
noted that “state-of-the-art for DTs is limited to specific sub-processes modeled with highly
specialized models” [136] (p. 7). Further experimental data on the cost-benefits of digital
twins was needed before deploying the systems in greenhouses to simulate and optimize
production. The issues relating to digital twins are but a microcosm of the broader gaps in
the body of knowledge, which does not sufficiently delineate the impacts of AI and IT in
agriculture. Drawing from experimental data compiled by researchers in Europe, North
America, and Asia [86,90,104,105,108], there were region-specific barriers and enablers for
AI integration in agriculture depending on the pace of knowledge and technology transfer.

The intermittent integration of R&D innovations could be due to the higher costs,
knowledge and resource gaps between advanced and developing countries, the inability to
entirely replace human labor on farms with robots, and variations between the simulated
and actual outcomes in the field/smart greenhouses [8]. The criticism of AI systems in
smart greenhouses and farms by [8] was corroborated by Beloev et al. [131], who claimed
that mechanical robots were unreliable because they relied on satellite triangulation to
guide movement—this technology was less reliable compared to LIDAR and camera sensor
innovations. On a positive note, the constraints associated with satellite triangulation have
been addressed using light imaging, detection, and ranging (LIDAR) optical and electro-
optical cameras [131]. The advances highlighted by [131] were consistent with [162], which
noted that algorithm systems had led to the development of advanced sensor systems,
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including fusion algorithms that facilitated the separation of colors into the hue, saturation,
and value formats. However, the case for electro-optical cameras made by [131,162] was
not in line with the research of Saddik et al. on latency issues in an image collection using
multispectral cameras [164]. The latter concerns reinforced the case for LIDAR systems in
agricultural robots [162]. The technology milestones in robotics shaped industry trends in
the adoption of robotics for harvesting and greenhouse management.

4.1. Training and Test Accuracy of AI Systems in Smart Greenhouses and Precision Agriculture

The inclusion of different computational methods to attain higher accuracy rates was
confirmed by Siskandar et al. in their assessment of the fuzzy logic system’s accuracy
(~95%) in smart greenhouses (see Table 3) [151]. Even though the observations of Siskandar
et al. were specific to the long short-term memory neural network for predicting the
occurrence and development of powdery mildew in greenhouse cucumber plants, they
were relevant to other AI systems for greenhouses. On the downside, these claims contrast
with Lakshmi and Corbett [15], who argued the current barriers to technology adoption
must be resolved.

Traditionally, it was challenging for Al systems to reconcile the images and measure-
ments taken under controlled conditions with those in the field due to variations in the
background complexity, imaging angle, and interferences in the natural environment. The
constraints have been partly resolved with bio-inspired algorithms customized for fault
prediction, image recognition, and pest identification [165,166]. The use of AI to prevent
root rot diseases and fusarium wilt among cucumber plants in greenhouses was a case in
point [167]. The broad application of IoT, machine learning (ML), and artificial intelligence
(AI) in agriculture can be partly linked to technological advances in computing.

4.2. Impact of Demographics and Socioeconomic Factors on AI Technology Adoption in Agriculture

The shortage of young, progressive EU farmers raises legitimate concerns regarding
the actualization of Eurozone agricultural innovation policies, and by extension, the ability
to sustain higher food demands [67]. The issues raised in the European Economic and Social
Committee’s report [67] were partly in line with Mohr and Kühl’s research in Germany,
where age predicted technology adoption [161]. For example, smartphone use and access
decreased with age among the German farmers sampled. Similarly to Mohr and Kühl [161],
Maloku [71] noted that less educated and older farmers were less inclined to adopt precision
farming technologies. However, the observations by Mohr and Kühl [161] concerning the
rate of technology acceptance in agriculture were not aligned with the European Economic
and Social Committee’s report [67]. Most of the sampled German farmers were young
(mean age = 33 years), and there was more than an 80% assimilation of smart farming
technologies among old and young farmers. The contrasting observations from Mohr
and Kühl and the European Economic and Social Committee’s report raise fundamental
questions on whether demographics were a barrier to adopting AI on smart farms across
Europe and the world.

In contrast to the European Economic and Social Committee’s report [67] and Mohr
and Kühl [161], Maloku [71] claimed multiple externalities aided and impeded smart farm-
ing technology adoption; these variables included farm size, financial status, technology
factors, information resources, social, economic issues (age, experience, and education),
and farm size. The latter argument provides a more representative picture of the dynamics
that led to higher or lower technology adoption that is more applicable to developing
and developed countries in the North and the South [137]. Further research on the role of
demographics, farm size, financial status, technology factors, and information resources
was necessary, considering achieving and sustaining exponential growth in AI technology
adoption in agriculture is a prerequisite for tangible global impact on crop yields, pest and
disease management, and optimization of agricultural resources [168].

Despite the overwhelming evidence in support of AI, particularly robotics in har-
vesting, critics argue that AI cannot entirely “replace/replicate humans. Machines do
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not have the multi-perspective skills of humans, as they are typically programmed to
perform specific tasks in constrained conditions” [69] (p. 9). The issues raised by [69] do
not consider recent milestones with bio-inspired algorithms that improved the precision
and reliability of AI and ML infrastructure in agriculture [169]. The use of bio-inspired
hybrid algorithms for weed optimization was a case in point [14,105,135]. The role of AI
algorithms highlighted by [14,105,135] was corroborated by Beloev et al. [131], who used
image processing algorithms to improve the ground-based accuracy of a robotic system.

The selection of advanced algorithms, including Hierarchy/Hybrid Particle Swarm
Optimization (HPSO), Grey Wolf Optimizer (GWO), Evolutionary Algorithm (EA), Di-
rect Artificial Bee Colony (DABC), and Hybrid Genetic Algorithm with Particle Swarm
Optimization (GA-PSO) among others involves a tradeoff between computational speed,
path planning, fitness, root means squared, and mean absolute errors [85]. For example,
the ANN algorithm had lower MAE and RSME values compared to the GEP testing and
training evolutionary algorithm (see Table 4). However, the ANN required higher compu-
tational resources [14,170]. On a positive note, the technical constraints were short-term
and should not be considered a critical impediment to the adoption of AI systems.

Table 4. Gene expression programming (GEP), ANN RSME, and MAE [85].

ANN Testing ANN Training ANN CV GEP Testing GEP Training GEP CV

RMSE 0.070 0.068 0.070 0.095 0.091 0.095
r-RMSE 13.07% 12.67% 14.25% 17.87% 17.13% 19.42%

MAE 0.052 0.051 0.052 0.070 0.066 0.068
Stage 2 0.933 0.969 0.968 0.970 0.930 0.930 0.943
RMSE 0.050 0.053 0.049 0.077 0.078 0.069

r-RMSE 3.33% 3.47% 3.26% 5.06% 5.10% 4.57%
MAE 0.039 0.040 0.038 0.058 0.058 0.054

Stage 3 0.840 0.910 0.912 0.922 0.848 0.853 0.857
RMSE 0.087 0.086 0.081 0.114 0.113 0.113

r-RMSE 3.44% 3.43% 3.18% 4.51% 4.48% 4.41%
MAE 0.067 0.067 0.063 0.088 0.086 0.089

Stage 4 0.849 0.911 0.908 0.911 0.860 0.856 0.843
RMSE 0.086 0.091 0.083 0.109 0.113 0.110

r-RMSE 2.44% 2.58% 2.38% 3.09% 3.23% 3.17%
MAE 0.063 0.065 0.061 0.087 0.090 0.091

Beyond the technically related barriers to the widespread adoption of AI systems in
smart farming, there were emerging concerns about the impact of farmer demographics
on the adoption of AI systems. For example, the aging of the farmers was a major issue
in Europe [67,161]. In light of the observations made by critics and proponents of AI in
smart greenhouses and precision agriculture, the following fundamental issues emerge.
First, AI technology critics negate smart agriculture’s immense contribution to farming.
Second, the proponents of AI technology disregard the enormous capital requirements and
the barriers to technology transfer in developing countries. On a positive note, there were
successful cases in the developing countries in the global south. For example, Ethiopian
scientists had developed an ERNN system to monitor humidity and temperature variations
in greenhouse structures; the system had additional capabilities for wind velocity and
carbon dioxide concentration measurement [170]. Proper temperature regulation and
monitoring were necessary, considering a majority of the greenhouse crops; tomatoes were
particularly susceptible to temperature variations [171]; the effect of chilling stress on
greenhouse tomatoes in China was a case in point [171]. In practice, incorporating artificial
intelligence technology in smart greenhouses should be supported by prior data on actual
farm applications and short and long-term benefits vis-à-vis the costs and potentially
detrimental environmental impacts.

The dynamic natural and physical conditions (including atmospheric, weather, soil,
and humidity) and biological interactions between plants, pests, and diseases in green-
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houses and open-field agriculture increase the complexity of the decision-making pro-
cesses [6,15,57]. The sophisticated relationship between these variables would predict the
utility of AI in agriculture and agricultural sustainability. On a positive note, emerging
research on bio-inspired algorithms and selected applications of AI systems in agriculture
confirmed that the benefits outweighed the risks [14,108,121]. Moreover, the ongoing R&D
projects would resolve most of the shortcomings.

4.3. Sensor Signal Failure and Communication Barriers

The growing advocacy for the integration of AI in precision agriculture negates the
technology-related challenges to commercial adoption. Singh et al. established that inter-
ferences often compromised communication between sensor nodes. There were multiple
sources of interferences for sensor signal transfer in greenhouses, including crop canopy,
soil, and temperature [87,164]. Similarly to Singh et al. [87], Shamshiri et al. [78] observed
that the accuracy of the soil moisture sensors was notably low in regions with high vege-
tative diversity. Sensor accuracy was impaired by different hydrological properties and
geography, especially in real-world conditions dissimilar to the training datasets. On a
positive note, most of the constraints identified by Singh et al. [87] and Shamshiri et al. [78]
have been addressed using AI technologies. In particular, Vanegas-Ayala et al. demon-
strated the importance of fuzzy clustering techniques in the humidity prediction modules.
The fuzzy logic controllers enabled the AI systems to model and predict the behavior of
key greenhouse parameters. The system was appealing to the farmers because it was
inexpensive and easy to use. A major concern was that these issues were often disregarded
in research in favor of the mass transition to an intelligent greenhouse system.

The risk of impaired transmission identified by Singh et al. [87] may be resolved using
the hardware configuration proposed by Serale et al. [58]. The configuration featured
Siap+Micros t055 pyranometers and Apogee SQ-515 Quantum sensors with a 1.2 mV
sensitivity of 1.2mV. The configuration proposed by Serale et al. [58] bears semblance to
Afzali et al., who deployed Apogee instruments to measure the photosynthetic photon flux
density (PPFD) over the plant canopy in a greenhouse structure [14]. The observations
made by Serale et al. [58] and Afzali et al. [11] do not take into account the variable accuracy
of the Apogee solar radiation sensors. According to Zamora-Izquierdo et al., the Apogee
sensors had a mean accuracy of ±5% [172]. The accuracy of the sensor systems could
be enhanced using the Remote Sensing Assisted Control System (RSCS), which offered
multidimensional benefits, including the measurement of CO2 emissions, soil moisture,
irrigation control, and agricultural production capacities.

New experimental data have confirmed that using plastic mulches with sustainable
remote sensing and AI technology systems is practical. In particular, Jim et al. [173]
reported the successful use of Landsat-5 thematic mapper and hyperspectral airborne
sensors to map plastic mulched farmlands and plastic-covered greenhouses. The data were,
in turn, employed to identify regions where plastic mulches can be gradually replaced
with biodegradable alternatives. The claims made by Jim et al. [173] concerning the role of
technology in mapping plastic mulches were in tandem with Hasituya et al., who deployed
remote-sensing aperture radar systems to map plastic mulches [174].

5. Future Perspectives

The critical review of the current body of knowledge supporting the integration of AI
systems in agriculture yielded new insights and perspectives on how best to enhance the
efficiency of smart greenhouses. However, certain issues should be addressed in upcoming
studies. For example, the current body of knowledge did not establish a consensus on
whether automated agricultural machinery manufacturers and commercial farms should
transition from satellite triangulation to light imaging, detection and ranging (LIDAR),
optical and electro-optical cameras [131], or Satellite-Differential GPS (S-DGPS). The mixed
observations by Beloev et al. [131], John Deere [130], and Rahmadian and Widyartono [132]
warrant further research inquiry considering there were different technical requirements
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for open space and indoor (greenhouse) robotic systems. Future research on LIDAR and
optical camera systems for open space and greenhouse robotic tractors would provide
better insights into the cost-benefits of available technologies to guide commercial adoption.
Empirical and farm-based data are important, considering John Deere and other companies
were commercializing new autonomous tractor models fitted with optical cameras [130,132].
Moreover, there was a growing acceptance of soft robotic systems for fruit and vegetable
harvesting and pesticide application.

Beyond systems for robotic structures, current data on the suitability of different vari-
ants of bio-inspired algorithms (swarm intelligence, genetic and evolutionary) for pesticide
application, and robotic harvesting, automated regulation of irrigation, soil treatment, fer-
tilizer application, and seeding are specific to the Global North [105,135]. Future research
should explore the suitability of bio-inspired algorithms to support the automation of green-
houses in developing countries. Isolated case studies of milestones in developing countries
support the recommendation. For example, ERNN systems augmented temperature and
humidity measurements in Ethiopia’s greenhouses [170]. However, there were gaps in
the knowledge, which may impede decision-making among stakeholders in the future.
Future research should investigate whether the LoRa, Wi-Fi, Bluetooth, ZigBee, mobile, or
RFID communication technologies were best suited for specific bio-inspired algorithms and
the influence of local conditions and variables on performance and accuracy. At present,
researchers are focusing on different algorithms to refine algorithm performance. For
example, most studies focused on solar radiation intensity, transpiration, and CO2 concen-
tration to predict crop yields, even though the approach yielded inaccurate results [18]. The
standardization of input variables would improve accuracy and performance. Upcoming
studies should help establish whether intelligent IPM was a sustainable alternative to
traditional chemical pesticides and biopesticides, considering pesticide resistance and the
need to adopt sustainable agricultural practices.

Additionally, there is a growing demand for technological solutions to address climate
change and global food insecurity, which urges the integration of AI technologies like light
imaging, detection and ranging 1128 (LIDAR), optical and electro-optical cameras [131] or
satellite-differential GPS (S-DGPS). Apart from the technological aspect, there is also a need
to develop agricultural production policies that favor the funding of these technologies
and their integration to agricultural production. Such policies can include setting aside
grant funds for institutions and companies involved in their development. Such policies
should also include solving the cost barriers that have consistently been highlighted in
previous research. Most studies have also demonstrated the potential application of AI
in large scale agricultural production. Policy incentives to facilitate their integration in
small-scale farming may also encourage younger populations to participate in agricultural
production, because most farmers today in Europe and North America are older. If the
problem is not addressed in a timely manner using potential technological solutions, the
issues of food insecurity are likely to worsen in the future.

6. Conclusions

The findings drawn from this research had practical consequences for commercial
agriculture, considering a large body of knowledge focused on applying AI and IoT in
traditional applications, and the emphasis on the benefits of the technology negated critical
concerns about energy demand, sensor failure, accuracy, and long-term use. The findings
broadened current knowledge on the cost benefits of sensors, robotic systems, algorithms,
renewable energy systems for greenhouses, and support infrastructure. For example, users
of soil and humidity sensors paired with fuzzy clustering techniques in the humidity
prediction modules should be conscious of the fact that the accuracy of the measurements
may be impaired by corrosion or hardware malfunction. Additionally, the new generation
of new agricultural robotic systems largely depends on replacing GPS systems with LIDAR
and optical camera systems, given the former exhibited poor object recognition. The
performance of LIDAR systems was enhanced with image processing algorithms.
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The commercial readiness of AI technologies was demonstrated by John Deere com-
pany, Blue River Technology, Autonomous Tractor Corp, and other companies that had
developed intelligence systems for monitoring crop and soil health, weed control, and
self-driving agricultural tractors. Despite the commendable milestones achieved so far,
there were multiple barriers to the use of the technology. The barriers included the cost
of AI technology, variable performance of the algorithm in real-world conditions vis-à-vis
training, the financial status of the farmers, lack of information resources, aging, and lack of
prior experience with technology. Despite the shortcomings, adopting AI systems should be
encouraged, given they improved crop yields, water use, and fertilizer use efficiency, and
reduced the effects of pesticide resistance through intelligent IPM. Moreover, bio-inspired
algorithms improved energy management by integrating photovoltaics and dynamic pric-
ing and autonomous communication between the greenhouse system and EPG supply. The
emerging climate change risks further reinforce the case for smart greenhouses powered by
AI systems.

In summary, most AI applications in agricultural production are in the development
phase because they have not fully matured for commercialization purposes. The few
AI solutions that have so far reached maturity and have been rolled out for commercial
use despite challenges (e.g., accuracy) include the use of drones, sensors, and robots for
harvesting crop yields. Although these technologies have been applied commercially,
the challenge of accuracy and sustainability persists. For example, underground sensor
hardware can be damaged by moisture and other unpredictable environmental conditions,
leading to inaccurate data, which can easily mislead decisions in commercial farms, leading
to huge losses. Therefore, although they have reached the commercial maturity, they still
need further development to optimize their effectiveness in solving the identified problems
and challenges. Furthermore, considering that many studies are currently being undertaken
on this topic, it is also imperative to perform a similar mapping of the literature every three
years to determine the current state of the art from time to time, because technological
advancements are fast and imminent. Finally, more research is needed on overcoming the
challenges of integrating AI applications into farm input in the Global South, which must
include solving the cost barriers and knowledge and skills gaps.
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Abbreviations

AI Artificial intelligence
AIAGS Artificial Intelligence Automated Greenhouse System
ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural network
CEA Controlled environment agriculture
CFD Computational fluid dynamics
CNN Convolutional Neural Network
DABACA Dynamic Artificial Bee-Ant Colon Algorithm
DSS Decision support systems
EA Evolutionary Algorithm
ERNN Elman Recurrent Neural Network
GA Genetic Algorithm
GPS Geographic positioning systems
GVA Gross value added
IoT Internet of things
IPM Integrated pest management
ITU International Telecommunication Union
LIDAR Light imaging, detection, and ranging
LSTM Long short-term memory (LSTM) networks
MAE Mean of absolute value of errors
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ML Machine learning
MPC Model predictive control
PBM Prediction-based method
PID Proportional-integral-derivative
PPFD Photosynthetic photon flux density
PSO Particle Swarm Optimization
RFID Radiofrequency identification
RNN Recurrent neural network
RSCS Remote Sensing Assisted Control System
RSME Relative standard mean error
S-DGPS Satellite-differential geographic positioning systems
SVM Support-vector machines
UAV Unmanned aerial vehicle
VAR Variable rate application
WSAN Wireless sensors and actuators networks
WSN Wireless sensor network
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