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Abstract: Due to the augmented complexity of the factory on the one hand and the increased
availability of information on the other hand, nowadays it is possible to design models of production
lines able to consider the state of the health of the production system. Such models must combine
both the deterministic and the stochastic behaviours of a system, with the former accounting for the
mechanics and physics of the industrial process and the latter for randomness, including reliability of
the production systems and the unpredictability of the maintenance and of the manufacturing lines.
This study proposes the application of a Hybrid Dependability Modelling based on Monte Carlo
simulation to estimate the performances of a repairable production line modelled with a queueing
G/G/1 system. The model proposed is characterized by random interarrival and service times and
by the wearing and dynamic aging phenomena of the machine tools that depend on the working and
operating conditions.

Keywords: industry 4.0; hybrid dependability modelling; production scheduling; dynamic failure
rate; discrete event simulation; time-driven simulation

1. Introduction

Industry 4.0 is playing a crucial role in the digital transformation of manufactur-
ing/production and related industries as it provides new paradigms for the management
of the enterprises. Cyber–physical systems form the basis of Industry 4.0 (e.g., “smart
machines”), and they are becoming predominant also in small and medium enterprises
(SMEs), such as in several phases of the manufacturing and production processes [1].

The success of any industry is tightly interconnected to its suppliers and to the response
of the market. Under this viewpoint, Industry 4.0 can represent a great opportunity to
improve the effectiveness of the value chain [2] because the collaboration among the
actors of the supply chain can be facilitated by the digitalization of the Smart Factories.
In fact, Smart Factories become able to exchange real-time information and increase the
transparency among each other [3] thanks to their advanced equipment constituted by
hi-tech robotics and artificial intelligence, IoT sensors, cloud computing, data capture and
analytics, digital fabrication (including 3D printing), software-as-a-service and other new
marketing models.

The efficiency of a production system is, indeed, one of the main drivers of competi-
tiveness. The quantity of different products and the uncertain demand require an increased
flexibility in terms of manufacturing which, in turn, requires the ability to adapt to the
market demand and supply uncertainties [4].

In the context of the SME, more flexible and less expensive tools, supported by a grow-
ing number of new technologies, are being preferred to traditional enterprise information
systems, such as ERP and MES [5,6]. They can be easily integrated with modern control
and embedded software systems, allow individuals to monitor and process data control
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via IoT (the Internet of Things) and Internet and improve the overall management and
scheduling of industrial processes, from the production to the maintenance.

From the field-level of a production department, it is now possible to capture many
important signals that can be collected and used to evaluate the status of the system. More-
over, the diffusion of data analytics tools is helping the organizations in the understanding
of meaningful information from the produced data. Nowadays, it looks possible to code
models able to capture information data of operational behaviours that link environmental
conditions, workloads and cumulative aging of materials which were not available be-
fore. As highlighted by [7], systems are generally working under time-varying operating
conditions that can influence the failure time of systems. In the modelling of a queueing
system [8], the trivial hypothesis of a dyadic state (working, failed) is not realistic because
industrial and electromechanical equipment are deteriorating from wearing and ageing
effects. As discussed in [9], one of the main challenges is the unpredictability of the manu-
facturing lines that can be tackled with novel tools, including digital twin and simulation,
of the Industry 4.0 generation.

In this context, in order to better assess the main performance and dependability
attributes of the system, including reliability, availability and maintainability [10], the
development looks promising in the investigation of a methodology that can combine
a realistic model of a production line with up-to-date and more detailed information
data of the equipment. A general dependability framework has been proposed in [11],
and in this research paper, it has been modified in order to integrate it into a dynamic
reliability problem [12]: a non-exponential queueing system subjected to non-exponential
failure and repair and characterized by dynamic working conditions (process scheduling
and workloads).

Due to the numerous physical and stochastic interdependencies typical of a multi-state
system, the choice for the use of the simulation paradigm over any other mathematical
formalism appears the most suitable. The simulation model is fed by the mechanical differ-
ential equations of the machine tool wearing which are integrated numerically. Moreover,
the proposed simulation environment, coded within the electronic spreadsheet, can be
easily interconnected (using many plugins, such as OPC-DA, Modbus, ODBC, etc.) to a
production line to get real-time data from the field level (operational variables), communi-
cate the diagnosis of its status (evaluation of aging) and control the operations (assessing
its remaining useful life) as a cyber physical system.

This paper is organized as follows: In Section 2, a thorough literature review about
repairable queuing systems modelling is presented in order to depict the state of the art
and to identify the space of intervention. Section 3 presents the theoretical background of
reliability and repairable queueing systems to better frame the concepts in place—what
are their main limitations and how they can be combined in a simulation of a dynamic
reliability problem. The flowchart algorithm of the Hybrid Monte Carlo simulation able
to solve the challenge of a generic repairable queueing system with a dynamic reliability
problem is thus presented. This represents one of the main novelties with respect to the state
of the art described in the next section. With the aid of a case study, Section 4 presents the
hybrid simulation model and the design of the experiment that consists of different working
scenarios under a corrective maintenance policy. This latter includes, among everything
else, some validation scenarios that are used to test the correctness of the simulation model.
Finally, conclusions are reported in Section 5.

The proposed paper is thus providing a theoretical framework to evaluate the per-
formance of a production line characterized by wearing and aging which can be coded
according to different types of production hypotheses. Moreover, it can be coded to connect
the electronic spreadsheet to a production environment and achieve more realistic informa-
tion from the field, providing to the production stakeholders a powerful tool that works
not just offline but also in real-time.
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2. Literature Review

Production scheduling, maintenance scheduling and quality management are three
shop floor level policies that aim to minimize the costs of a manufacturing business. Job
rejections, machines’ down time, waste, manpower, energy, raw material and delay costs
are all the consequences of a mishandled management of the production activity. Although
these three policies have been treated as separate problems in the past [13], comparing
the three different maintenance policies, the interdependencies between them and the
competitive markets together have shifted the recent studies to analyse joint considerations
for which, based on the objectives, different models are proposed [14]. In the literature,
the interest of research and practitioners for finding optimal values of floor-shop variables
is demonstrated by many recent papers that undertake this goal by proposing different
mathematical, engineering and operative research solutions that are often conceived to
solve the specific use case under investigation.

A non-linear programming approach to model a joint production and maintenance
scheduling (JPMS) with multiple preventive maintenance services and determine the
best sequence of jobs is proposed in [15]. The results demonstrate the effectiveness of
the proposed algorithm that remains valid under the hypothesis of constant failure and
repair rates. Conversely, the objective to determine the maintenance plan of deteriorating
production machines subject to a production scheduling system is discussed in [16–18],
with the main assumptions of a Markovian process. In [19], a model that includes two
coupled Markovian queues is presented, with one queue that represents the decoupling
inventory and the other the order backlog.

The Weibull distribution characterizes the failure behaviour of the single station
problem proposed in [20] where an optimisation problem for the job scheduling with, at
most, 18 items is solved, assuming preventive maintenance. As it can be seen, the resolution
approach to these problems is with meta-heuristic methods, with a dependability model
that is set with a well-defined probability density function of failure/repair.

Another class of problems for queueing systems deals with minimizing loss (of mate-
rials or time) either by focusing on the properties of the queue or service station. If such
models are coupled with a stochastic dependability model, they can provide important
key performance indexes of a production system, identifying bottlenecks and weaknesses,
and other relevant hints that can reveal and improve the effectiveness of the production
operations, from the production scheduling to the maintenance policies. This latter cate-
gory, known as “queue with unreliable service station” or “repairable queue”, is the main
focused by this manuscript.

The resolution of unreliable queues is an interdisciplinary field between queueing
model, dependability and operational research. The main measures of a queueing system
such as waiting time, queue length, station occupancy, etc., are the objectives of such analy-
ses. Analytical methods, heuristic methods and simulations are the main methodologies
used to model and solve this class of problems.

Analytical methods include generating function, stochastic decomposition, renewal
processes and Quasi-Birth–Death (QBD) models. For instance, in [21] a mathematical model
for the optimal quality and process control of a queueing production system is proposed
to maximize expected profit per unit time. Unscheduled and preventive maintenance
of a single unreliable station processing N jobs are analysed [22] using arguments from
renewal theory which stick to a mathematical model to obtain a closed form solution. An
interesting evolution of such modelling is presented by [23] which focuses on condition-
based maintenance to increase the system-level performance of a degradation system
described with a Markovian model. A transition matrix is used in their solutions with the
limitation that this analytical model can be applied only to a few operational scenarios.

In the general category of the problem of a queue with unreliable service stations,
there is a specific type of problems called repairable queues with degradation. In this case,
it can be assumed that the service station can fail during the production activities either
because of a fault or due to a degradation of its workload capacity. Such type of scenario
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is very common and difficult to analyse with a pure analytical approach. The research
papers [8] adopt an analytical explicit solution for an M/M/1 of a repairable queueing
model, and [24] shows an approach to model the failure rate of the service station that
depends on the age of the components, without considering when the system is in idle or
in a busy mode. Arrival rate of the jobs and occurrence of failures follow a Poisson process;
service time and maintenance time are exponentially distributed.

The attention over the working conditions which can affect the system performance
is another important setting for this type of modelling. In [25], the authors examined an
M/M/1 retrial queue with an unreliable server in an exogenous random environment and
obtained the approximate orbit size distribution and mean queueing performance measures
using matrix–analytic methods (level dependent QBD). In addition, [26] considered a vari-
able failure rate for a M/M/1 queueing system with repairable service station with different
parameters in idle time and busy time. They used transform method (QBD) to obtain the
steady-state availability and the generating function method to obtain steady-state mean
queueing length. Moreover, [7,27,28] focus on a single component system: [7] assumed
time-varying operational conditions that are modelled by means of a continuous-time
Markov process, whereas [27] combined a continuous-time Markov chain with queueing
theory to obtain a model for the optimization of the repairing costs. In another work, [29]
studied the M/M/2 repairable queueing system with varying failure rate at different times
and used transform method (QBD) in steady-state period to obtain the probability of the
states, the steady-state availability and the steady-state queueing length. In [30], authors
presented and used an analytical method based on a decomposition approach that applies
to a multi-stage manufacturing system. The queueing system was modelled with a Markov
process and the degradation with a fixed decreasing yield that does not depend on the
physics of the system and of the manufacturing process.

As it can be noticed, the previous papers narrow the scenarios to the assumption that
the distribution of failure, repair, interarrival and service are random and can be modelled
with the Poisson distribution. This represents an important limitation for models which
aim to analyse real production environment. Moving towards a more realistic modelling,
an evolution model for the failure rate is proposed in [31] to evaluate the optimal integrated
predictive maintenance strategy on the manufacturing system with a gamma process to
characterize the performance degradation. Although this kind of modelling can be defined
as hybrid because it combines at once mechanics and stochastic behaviours of the system,
the main limitation of the previous manuscript is that the degradation follows a specific
distribution, set as input of the model. A different viewpoint is presented in a recent
work [32] that focuses on a joint model of production, quality control and preventive
maintenance for a serial–parallel multistage production system. The complexity of the
problem is higher than single stage queue and, as in [33], the novelty proposed is to evaluate
the machine structure importance measure and productivity when selecting the machine to
put in maintenance. In this case, the problem is modelled and solved by means of Monte
Carlo simulation, but only a single quality attribute for modelling the machine deterioration
is considered without taking into account the active contribution of operational conditions.

Therefore, according to the literature review performed, the main limitations addressed
in this manuscript are to enable a general modelling of repairable G/G/1 queue with a
repairable service station subjected to wear and aging. These, depending on the jobs
scheduling, the environmental and the working conditions, will be integrated into the
mechanical equations of physics for the modelling of the system dynamic failure rate.
Moreover, although the working station can be in a failure or degraded state [28], the
manufacturing system can, eventually, continue its work at a reduced capability and, thus,
increase the number of items waiting in the queue. Therefore, to model the proposed
system, a Monte Carlo hybrid simulation that combine Discrete-Event and Time-Driven
simulation is presented.
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3. Theoretical Background and Methodology

This section illustrates the theoretical background on which the proposed methodology
is built upon, with the aim to provide the readers with the required relevant know-how
to understand the hybrid simulation methodology for the study of a general repairable
queuing system. With reference to the queuing (Section 3.1) and reliability (Section 3.2)
theories, the main hypotheses that the hybrid modelling aims to overcome with respect to
traditional resolutions are presented.

3.1. Queueing Theory

The study of queueing systems allows one to evaluate various metrics to assess the
performance and the quality of a service such as the mean number of items in the system
(queue length), the mean waiting time, the service occupancy, etc. [34]. A queuing system
consists of items (i.e., customers or jobs in a queue) and servers.

Kendall Notation (A/B/C/D/E/F) is used to synthetize the hypotheses of a queu-
ing model [35] where A is the arrival process, B is the service process, C is the service
mechanism, D is the system capacity, E is the population and F is the queue discipline.

The simplest queueing model (Figure 1) is when, for each item, both interarrival
and service time are independent among each other (i.i.d), and it is possible to model
the corresponding probability distributions with the negative exponential distributions,
assuming, respectively, a constant rate λ= 1⁄MTA (i.e., the Mean Time of Arrive) and a
constant service rate µ= 1⁄MTS (i.e., the Mean Time of Service).

This modelling obeys the following hypotheses:

• Hp1: Interarrival of items can be modelled with a random variable characterized by a
mean interarrival time.

• Hp2: The service time can be modelled with a random variable characterized by a
mean service time.

These hypotheses bring about a special type of Continuous Time Markov Chain
(CTMC), the well-known birth and death process [36] in which jumps exist only among the
neighbouring states and each state of the Markov Chain represents the number of items in
the queue (Figure 2).

Appl. Sci. 2023, 13, x FOR PEER REVIEW  5  of  20 
 

Moreover, although  the working station can be  in a  failure or degraded state  [28],  the 

manufacturing  system  can,  eventually,  continue  its work  at  a  reduced  capability  and, 

thus, increase the number of items waiting in the queue. Therefore, to model the proposed 

system, a Monte Carlo hybrid simulation that combine Discrete‐Event and Time‐Driven 

simulation is presented. 

3. Theoretical Background and Methodology 

This section illustrates the theoretical background on which the proposed methodol‐

ogy is built upon, with the aim to provide the readers with the required relevant know‐

how to understand the hybrid simulation methodology for the study of a general repair‐

able queuing system. With reference to the queuing (Section 3.1) and reliability (Section 

3.2) theories, the main hypotheses that the hybrid modelling aims to overcome with re‐

spect to traditional resolutions are presented. 

3.1. Queueing Theory 

The study of queueing systems allows one to evaluate various metrics to assess the 

performance and the quality of a service such as the mean number of items in the system 

(queue length), the mean waiting time, the service occupancy, etc. [34]. A queuing system 

consists of items (i.e., customers or jobs in a queue) and servers. 

Kendall Notation (A/B/C/D/E/F)  is used to synthetize the hypotheses of a queuing 

model [35] where A is the arrival process, B is the service process, C is the service mecha‐

nism, D is the system capacity, E is the population and F is the queue discipline.   

The simplest queueing model (Figure 1) is when, for each item, both interarrival and 

service time are independent among each other (i.i.d), and it is possible to model the cor‐

responding probability distributions with the negative exponential distributions, assum‐

ing, respectively, a constant rate λ= 1⁄MTA (i.e., the Mean Time of Arrive) and a constant 

service rate µ= 1⁄MTS (i.e., the Mean Time of Service). 

This modelling obeys the following hypotheses: 

 Hp1: Interarrival of items can be modelled with a random variable characterized by 

a mean interarrival time. 

 Hp2: The service time can be modelled with a random variable characterized by a 

mean service time. 

 

Figure 1. M/M/1 queueing system diagram representation. 

These  hypotheses  bring  about  a  special  type  of Continuous Time Markov Chain 

(CTMC), the well‐known birth and death process [36] in which jumps exist only among 

the neighbouring  states and each state of  the Markov Chain  represents  the number of 

items in the queue (Figure 2). 

Figure 1. M/M/1 queueing system diagram representation.
Appl. Sci. 2023, 13, x FOR PEER REVIEW  6  of  20 
 

 

Figure 2. Birth and Death process. 

In this process, a Birth is an arrival of a new item into the queueing system, with the 

rate of  𝜆 , and a Death is a departure of a served item, with the rate of  𝜇. Under this as‐
sumption, the amount of time  𝜃௜  the system spends until another birth or death happens 

is exponentially distributed with rate  𝜗  =  𝜆 ൅ 𝜇, and the sojourn probability in the state 
ith can be computed as shown in Equation (1): 

𝑃ሼ𝜃௜ ൑ 𝑡ሽ ൌ 1 െ 𝑒ିణ௧,   𝑡 ൒ 0  (1)

For a long run, it is possible to evaluate the steady‐state system probabilities: 

𝜌 ൌ
𝜆
𝜇
  (2)

𝜋௡ ൌ ሺ1 െ 𝜌ሻ𝜌௡   (3)

𝐿 ൌ
𝜆

𝜇 െ 𝜆
  (4)

𝑊 ൌ 𝐿/𝜆  (5)

where 

 𝜌  is the probability of being served; 
  𝜋௡  is the probability of having n items in the queueing system; 

 L is the mean number of items in the queue; 

 W is the mean waiting time in the queue: 𝑊 ൌ 𝐿/𝜆. 

As it can be understood, this simple queuing model is very unlikely in real case sce‐

narios for which the complexity of the corresponding processes cannot really be captured 

with those assumptions. Therefore, the study of a generic G/G/k must be carried on with 

other computational models such as the hybrid simulation model proposed in Section 4. 

3.2. Reliability (Dynamic) Theory 

Reliability  is the probability that a system will operate for the entire duration of a 

mission, Tm, in the mode for which it was designed, given that it was working at the be‐

ginning of the mission. As known, the mathematic formulation of this concept is based on 

the definition of a random variable  𝜃  that measures the probability of an item to survive 

from time 0 up to time T: 

R(T) = P (𝜃  > T)    (6)

When a small‐time interval is considered,  𝜉ଶ െ 𝜉ଵ ൌ  𝜀, the probability that the sys‐
tem fails is called failure rate  ℎሺ𝑡ሻ  [37], and the following relationships hold [38]:   

ℎሺ𝑡ሻ ൌ  െ 
1

Rሺ𝑡ሻ
 

𝑑
𝑑𝑡

𝑅ሺ𝑡ሻ  (7)

which brings to the general equation of the system reliability the following: 

Rሺ𝑡ሻ ൌ 𝑒ି ׬ ௛ሺ௧ሻ ௗ௧
ഓ

బ   (8)

Figure 2. Birth and Death process.



Appl. Sci. 2023, 13, 271 6 of 19

In this process, a Birth is an arrival of a new item into the queueing system, with
the rate of λ , and a Death is a departure of a served item, with the rate of µ. Under this
assumption, the amount of time θi the system spends until another birth or death happens
is exponentially distributed with rate ϑ = λ + µ, and the sojourn probability in the state ith
can be computed as shown in Equation (1):

P{θi ≤ t} = 1− e−ϑt, t ≥ 0 (1)

For a long run, it is possible to evaluate the steady-state system probabilities:

ρ =
λ

µ
(2)

πn = (1− ρ)ρn (3)

L =
λ

µ− λ
(4)

W = L/λ (5)

where

• ρ is the probability of being served;
• πn is the probability of having n items in the queueing system;
• L is the mean number of items in the queue;
• W is the mean waiting time in the queue: W = L/λ.

As it can be understood, this simple queuing model is very unlikely in real case
scenarios for which the complexity of the corresponding processes cannot really be captured
with those assumptions. Therefore, the study of a generic G/G/k must be carried on with
other computational models such as the hybrid simulation model proposed in Section 4.

3.2. Reliability (Dynamic) Theory

Reliability is the probability that a system will operate for the entire duration of a
mission, Tm, in the mode for which it was designed, given that it was working at the
beginning of the mission. As known, the mathematic formulation of this concept is based
on the definition of a random variable θ that measures the probability of an item to survive
from time 0 up to time T:

R(T) = P·(θ > T) (6)

When a small-time interval is considered, ξ2 − ξ1 = ε, the probability that the system
fails is called failure rate h(t) [37], and the following relationships hold [38]:

h(t) = − 1
R(t)

d
dt

R(t) (7)

which brings to the general equation of the system reliability the following:

R(t) = e−
∫ τ

0 h(t) dt (8)

Dynamic reliability studies those problems for which the failure rate is dynamic, which
varies according to the physical conditions in which the system operates. The concept
of failure rate is involved in most resolution methods of reliability engineering such that,
in many industrial applications, it is assumed to analyse a system during its useful-time
period, assuming three main hypotheses, which simplify the resolution of a problem:

• Hp3: During the useful-time period, there is an approximately constant failure rate
with respect to time, where only random failures can occur.

• Hp4: The behaviour of a component can be defined by means of a dyadic operational
state (on/off).
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• Hp5: The component works under well-defined operative conditions, similar to those
observed by the original manufacturer.

With these assumptions, the failure rate is constant and independent from time and
other external factors. Therefore, Mean Time To Failure (MTTF), generally provided by the
component manufacturer [39], is given, and Equation (8) can be written as follows:

R(t) = e−
t

MTTF (9)

Repairable systems represent the majority of industrial applications. In these cases, a
stochastic model is characterized by another parameter, the system downtime, referred to as
the total time required to repair it, during which the system is not available or operating [37].
A stochastic model of repairable systems is often following the next hypothesis:

• Hp6: Downtime can be modelled with a random variable characterized by its own
expected value.

In this case, it is possible to model the repair distribution with the negative exponential
distribution, characterized by Mean-Time-To-Repair that models the average time it takes
to recover from the failure [37].

For a repairable system, it is possible to calculate the percentage of time that the
component is operational, the Availability (A), and this represents the probability that a
system is available at a given point of time (point availability) [37,38,40]:

A =
average up time

average up time + average down time
=

MTTF
MTTF + MTTR

(10)

3.3. Simulation Algorithm of the Hybrid Dynamic Queueing System

The production process of an industrial product is subjected to interdependent physical
and aleatory phenomena that cannot be caught by Hypotheses Hp1–Hp6. Indeed, these
provide a rigid framework of operations which are not applicable to real cases that are
characterized by complex working and environmental conditions that can modify the
performance of a system and affect its wear. More generally, a system can be subjected to
continuous changes during its mission, and the stochastic modelling requires coupling the
aleatory behaviour of the system (linked to the uncertainties of the features of workloads
and resistance of the materials) with the physical equations that describe its mechanics
and its process. This type of modelling [33], based on the knowledge of the mathematical
relationships that make the dynamic failure rate, changes over time [39]; it aims to relax
the framework defined by the Hypotheses Hp1–Hp6. The conception and resolution of
such models is complex and can be undertaken using simulation techniques. Under this
modelling framework, numerical integration is used to integrate the dynamics equations
of the system, and Monte Carlo simulation is applied to take into account the contribution
of the random variables; the resulting model is defined as hybrid.

The simulation paradigm is required to model and evaluate complex systems for
which a closed analytical solution is difficult to model and compute. From a simulation
perspective, systems can be categorized as discrete or continuous. The difference between a
discrete and continuous system is the change in their variables that may happen in discrete
points in time or continuously.

Simulation models are analysed by numerical methods which employ computational
procedures to solve mathematical models. Within the scope of the simulation, the model
is solved by means of a “run” or “iteration” [41] which constitutes one of the possible
realizations of the system’s evolution. The simulation model must keep track of the results
generated during each run and, at the end of the simulation, it computes the average.
Therefore, in order to achieve an accurate result, simulation can be time consuming.

Figure 3 shows the flowchart of the Monte Carlo simulation (MCS) used as a general
algorithm for combining a queueing system with a dynamic reliability problem. As said, it
is important to highlight that this algorithm is able to combine together a Discrete Event
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Simulation and Time-Driven (Continuous) Simulation engines by adding the complexity
of a repairable queueing system constituted by a simple machine tool that can get broken
and repaired, overcoming the limitations of [39] and [24]. In fact, the Block.4, as explained
in the section of the case study, is the simulation component that manages the scheduling
of the production performed by the service station. The discrete simulation engine has to
consider when the manufacturing station is unavailable and, thus, shifts or extends the
processing of a work item accordingly.
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Let us illustrate the algorithm proposed.
The first block (Block.1) concerns the setting of the parameters which characterize the use

case scenario. Basically, it should be possible to configure the variables and the related distri-
butions of the queueing system (e.g., the machine tool) and of the dynamic reliability problem.

In the Block.2, the simulation engine samples the interarrival (tmi) and service (tsm)
time of each job which will enter in the queueing system, so as to build the table of the
Discrete Events.

In particular, for the ith job, it is possible to compute:

timi = F−1(·, rni) (11)

tism = R−1(·, rmi) (12)

where F−1 is the inverse of the distribution function of the time arrival, and R−1 is the
inverse of the distribution function of the service time; finally, rni and rmi are two real
random number in [0,1] extracted using a uniform distribution.

In the Block.3, the simulation start time is set so that the actual time for starting the
processing of the next job, selected in block 4 according to the FIFO policy (which at the
beginning of the simulation is the Job 1) is computed accordingly (at the beginning of the
simulation t = 0). The relevant time points computed are stored in a memory table, called
the Event-Driven Table.

From Block.5 to Block.11, the continuous Time-Driven simulation is explained. These
blocks perform the update of the dynamic failure rate for every Dtsim and, in Block.9, verify
if the service station (e.g., the machine tool) becomes broken. The operations performed by
these blocks are stored in a memory table, called the Time-Driven Table which contains
the result of a simulation-run. If the Block.9 assesses that the queuing system breaks, the
algorithm gives the control to Block.10 to compute the restoration time using the probability
function of repair characterizing the model. Therefore, the simulation parameters are
updated in Block.6, and the control is given back to the Block.8 for continuing the process
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simulation of the continuous system. During the restoration time window, the service
station of the queueing system stops working on the items enqueued in the queue; therefore,
the time points of the Event-Driven Table are update accordingly, assuming an increase in
the time of their occurrence with a value equal to the restoration time required to repair
the service station. If the Block.9 does not detect any failure, the Time-driven simulation
can proceed until the ith job is completed in Block.11. The process of simulation continues
starting a new job, and this process repeats until all the items are completed.

4. Case Study and Hybrid Modelling

The system under analysis is characterized by a production line where items are en-
queued and processed one by one in a service station. It is assumed that both the interarrival
time and the service time of the system items are random. Moreover, the service station
can be failure prone. It is assumed that smart sensors can monitor the working temperature
of operation which, in this model, will affect the dynamic failure rate of the service station.
Figure 4 shows a schema of the system, where it is possible to identify within the bold contour
the main components of the model, namely the enqueueing conveyor and the service station.
Each item (or job) is characterized by its own time for being processed (time of service),
whereas they are enqueued one by one by the picker robot (interarrival time).
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The main assumptions for this generic production line are thereby listed:

• Interarrival Time follows a rectified Normal Distribution (see Table 1 parameters);
• Service Time follows a rectified Normal Distribution (see Table 1 parameters);
• Mean Time to Failure follows a Weibull Distribution (see Table 2 parameters);
• Mean Time to Repair follows a Uniform Distribution (see Table 2 parameters);
• The machine tool is subjected to aging that depends on the operating temperature,

following the Equations (14) and (15).

Table 1 shows the main parameters of the queueing model. It was assumed that the
interarrival time and the service time follow two rectified Normal distributions to avoid
negative time values and overcome Hypotheses 1 and 2.

Table 1. Normal distribution parameters characterizing the automated factory.

Variable Symbol Value Measuring Unit

Expected service time tsmean 5 h
Standard deviation service time σts 1 h

Expected interarrival time timean 10 h
Standard deviation between jobs σti 2 h
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Table 2. Main parameters for the failure and repair distributions of the machine tool.

Distribution Variable Symbol Value Measuring Unit

Failure Event
(Weibull)

Expected Mean Life α 100 h
Shape Factor β 3 -

Repair Event
(Uniform)

Min Time to Repair TTRmin 1 h
Max Time to Repair TTRmax 8 h

The failure of the service station is modelled using a Weibull distribution characterized
by a shape factor, β = 3, and an expected machine tool life α(T) of 100 hours which
represents the mean time to failure of the service machine if it operates in the same fixed
operational conditions in which it was tested by the Original Equipment Manufacturer
(OEM). Therefore, the failure rate can be written as follows:

h(t, T) =
β

α(T)

(
t

α(T)

)β−1
(13)

The time to repair for the machine tool follows a uniform distribution time between a
maximum repair and a minimum repair time (TTRmin, TTRmax). Table 2 resumes the main
data of the failure and repair model of the machine tool.

In order to model a daily variation of the temperature during the season of the year,
the equation used to model the working temperature is the following:

T(t) = Tm + AT sin
(

2π
T

t
)

(14)

where Tm = 20 ◦C is the mean operation temperature, T = 24 h is the oscillation period of
the temperature, AT = 5 ◦C is the amplitude of the oscillation, and t is the independent
time variable.

As it was said, the machine tool is subjected to aging that depends also on the op-
erating temperature. Under this assumption, the expected machine tool life takes the
following form:

a(T) =
a0
T
T0

(15)

where a0 is the expected lifetime at the nominal working temperature T0.

4.1. Simulation Algorithm of the Hybrid Dynamic Queueing System

In a simulation model, variables can be deterministic (and non-random) or stochastic
(and random). A Monte Carlo simulation (MCS) is basically a stochastic simulation method
and a sampling technique in which random sampling is used. In this paper, the Monte Carlo
simulation (MCS) core algorithm has been codified so as to combine together Discrete-Event
and a Time-Driven simulation. In this way, MCS can change dynamically the parameters
characterizing each run of the system evolution during the mission time. In order to
understand the hybridization of the simulation, let us recall first the generic algorithms for
the queue and reliability independently before merging the two of them.

For a queueing system, one run of the simulation will result in a sample path that
models the number of items in the queue during the time. The interarrival Zi(t) and service
time Si(t), characterizing a generic ith item entering the queue, are simulated by sampling
the inverse of the distribution probability functions, Z−1 and S−1, characterizing the two
processes. This allows one to construct a sample path of the system evolution that, as shown
in Figure 5 [42], depicts for each discrete event time-point the number of items enqueued
in the system. As it can be understood, the advantage of the Monte Carlo simulation is to
overcome the limitation of the analytical “Little’s Law” which is valid only for the Poisson
distribution and to generalize the modelling with the possibility to simulate the behaviour
of a general queueing system.
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For the reliability of a system, the MCS corresponds to performing an experiment for
a certain mission time (TM) in which a large number of identical stochastic systems, each
one behaving differently, runs virtually instead of performing real physical tests.

The simulation algorithm monitors whether a system fails before the completion of
the mission and, in that case, records the time of the failure. This procedure corresponds
to the observation of several realizations of the system process. Based on the amount of
observations fallen into each range, simulation results are examined [41].

In a reliability problem, on the one hand, a set of possible states can be considered
for a component (e.g., functioning, degraded and failed, as shown in Figure 6a), and
based on its failure distribution, random numbers are generated for the duration that the
component remains in each state; on the other hand, an infinite set of other states can be
modelled considering how the failure rate h(t) changes over time, depending on the age of
the component and on the boundary conditions in which it operates (Figure 6b).
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Both these approaches overcome the hypothesis HP4 of dyadic states. With regard to
the first, the sojourn time into a state (duration) is computed by the inverse distribution
function F−1 that characterizes the jump towards another state. To obtain the unreliability
for a given time (t), the number of runs that have jumped into a failure state before the
mission time can be divided by the total number of runs [43]. Figure 6a shows an example of
the sample path generated by 6 runs of a simulation where the transitions among the three
different states of the components occur at different times. For the example of Figure 6a, the
component has reached the failed state in four out of the total six runs before “t”—therefore,
the unreliability of the system, F(t) = 4/6.

With regard to the second, with reference to Figure 6b, modelling the failure rate
evolution enables one to calculate the instantaneous reliability R(T) as the probability that
the component survives over the next times step ∆T. If the jump from one time step to
another can be written with a mathematical functional Г(F, t, ·), which is a combination
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of dynamic failure rates and deterministic (mechanical) system equations (with this latter
taking into account the dynamic change of the component’s failure behaviour and the
working conditions), it is possible to build a hybrid distribution function that overcomes
the limitation of the hypotheses HP3, HP4 and HP5. This type of modelling reconfigures a
reliability problem into a Dynamic Reliability problem where Г is a mathematical functional
that depends on the stochastic distribution function of the failure rate F, the time variable
t and (·) which represents all the other physical parameters included in the mechanical
relationship. Moreover, for this type of problem, the numerical integration of the functional
is carried on through adopting a time-step integration ∆tsim.

For the proposed case study, the time-step integration, ∆tsim, has been set to 1 h and
the dynamic failure rate functional that depends on the environmental temperature can be
written as follows:

∆Гi =
β

αi

[(
t
ai

)β−1
−
(

t− ∆tsim
αi

)β−1
]

(16)

αi =


αi = α0

T0
Ti

, i f Ti > T0

α0 , otherwise
(17)

Ti = Tm + AT sin
(

2π

T
i
)

(18)

The numerical integration of the functional Г can be computed using the
following formula:

Гi+1 = Гi + ∆Гi (19)

In order to overcome the hypothesis HP6, the restoration of a component can be
modelled by sampling the generic repair distribution which will give the time-point at
which the repair transition occurs and bring the component back to the functioning state
(i.e., as good as new with a corrective maintenance policy). Therefore, in the repairable
queue system, whenever the manufacturing station goes into the failed state, it is possible
to assume that during the unavailable state, the queueing system cannot continue its
processing (and thus decreases the number of items in the queue), but, eventually, it can be
subject only to the arrival of new items. Only when the manufacturing station gets restored,
the provision of service will start again. By assuming a general probability distribution of
repair, it is possible to write the general discrete equation of the equipment unavailability
that can be expressed as the ratio of the total accidental shutdown time over the total task
time [31]:

Ui+1 =
E
(
τmin

u
)
E(∑i+1

0 Гi+1) +E
(

τmin
p

)
i ∗ ∆T +E

(
τmin

p

) (20)

where E
(
τmin

u
)

is the expected value o on the jobs scheduling for the minimal repair

duration, E
(

τmin
p

)
is the expected value of the planned maintenance duration, E(∑i+1

0 Гi+1)

is the the expected number of failures in the (i + 1)th timestep.

4.2. Simulation Execution of the Hybrid Monte Carlo Simulation Algorithm

This section describes the results of single iteration of the simulation process for the
use case described in Section 4.1.

As explained in the previous section, the Discrete Event Table is initialized in Block.2
at the beginning of each iteration. For instance, Table 3 shows the main data-points event
times of the ith jobs of a generic iteration, which are sampled using the inverse functions of
Equations (11) and (12).

From Block.4, the continuous simulation starts, and Table 4 shows the evolution of
the system that, among other things, depends on the physical mechanical equations of the
system. The instantaneous dynamic failure rates are updated at any ∆T.



Appl. Sci. 2023, 13, 271 13 of 19

Table 3. Discrete Events Table of the generic ith run of the simulation of the items.

Job Tmi (h) tsm (h) Measuring Unit

1 0 94 h
2 10 89 h
3 46 87 h

. . . . . . . . . h
N . . . . . . h

Table 4. Time-Driven Table of the generic iteration (run) of the simulation process.

SimTime T(t)
[◦C]

α(T)
[h] ∆Г Г Random

Number
Failure

Test
Job

Complete

0 20.0 100.0 - 0.000 0.3834 False False
1 21.3 93.9 1.09 × 10−5 1.086 × 10−5 0.3831 False False
2 22.5 88.9 2.14 × 10−5 3.222 × 10−5 0.9560 False False
3 23.5 85.0 3.42 × 10−5 6.644 × 10−5 0.1671 False False

. . . . . . . . . . . . . . . . . . . . . False
80 24.3 82.2 9.13 × 10−5 2.52 × 10−2 0.0126 True False
87 . . . . . . . . . . . . . . . False False
. . . . . . . . . . . . . . . . . . . . . False
101 . . . . . . . . . . . . . . . . . . True

Let’s explain the meaning of each column for a better understanding of the paper.

• The column SimTime represents the time of simulation that increases according to the
integration time step (∆tsim).

• The column ∆Г is the instantaneous failure rate of the machine tool, computed using
Equation (16).

• The column α(T) is the expected mean life of the machine tool, computed using
Equation (17).

• The column T(t) is the working temperature, computed using Equation (18).
• The column Г is the integral of the instantaneous failure rate functional.
• The column rand_num samples a uniform real random number in [0,1] to perform the

failure test.

Therefore, in the failure test column is indicated the result performed in Block.9 to
verify whether the machine tool of the service station becomes broken (Failure_Test = True)
at that time point:

Failure Test =

{
False, if e−Г < rand_num
True, if e−Г ≥ rand_num

(21)

As shown in Table 3, it is possible to see that the Job 1 would require 94 hours to complete
(see the tsm column). From the evolution of the Time-Driven Table (Table 4), it is possible
to notice that at time 80 h the machine tool becomes broken (see column “Failure Test”→
True), and it resumes after 7 h. Therefore, the next row of the Time-Driven Table has the value
SimTime = 87 h. In the end, the Job 1 completes at time SimTime = 101 h (see column “Job
Complete” True) so that the algorithm executes in Block.4 the next job. During that interval,
the machine has gone under repair, Block.10; the simulation parameters are updated (Block.6),
and the next time of failure for the service station is computed (Block.7 to Block.9).

Otherwise, if the service station is functioning, the simulation process keeps verifying
when the ith job has completed in Block.11. If it is not completed, the parameters are
updated in the Block.6; otherwise, in Block.12, the simulation engine checks whether the
jobs scheduled in Table 3 are completed. If there are other jobs to process, the simulation
starts back from the Block.4; otherwise, the run of the simulation is complete.
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4.3. Design of Experiment and Simulation Results

The case study has been analysed according to the design experiment of Table 5.
The simulation scenarios 0 and 1 model a queueing system without failures, assuming
interarrival and service times according to a negative exponential and a normal distribution;
they are needed in order to validate the coded MCS and compare the results with closed
analytical equations.

Table 5. Design of experiments.

Scenario
0 1 2 3

Parameter Description Symbol Measuring Unit

pdf of interarrival time I - neg exp norm
mean interarrival time tim h 10 10 10 10

std. deviation of interarrival time σti h 10 2 2 2

pdf of service time Z - neg exp norm
mean service time tsm h 5 5 5 5

std. deviation of service time σts h 5 1 1 1

pdf of failure time Λ #N/A Weibull
service station expected life time a0 h - 100 100

shape factor β - 3 3

pdf of repair time Φ #N/A Uniform
maintenance strategy #N/A Corrective

max restoration period TTRmax h - 8 8
min restoration period TTRmin h - 1 1

In scenarios 2 and 3, on the other hand, the restoration of the system and the evolution
of the failure rate due to aging (scenario 2) and due to aging, wear and variations of the
operating conditions (scenario 3) are modelled.

Figure 7 shows the comparison between the simulative process and the analytic
benchmark of scenarios 0. With 103 runs of the simulation, it is possible to observe that
the two models converge. In particular, the simulated mean awaiting in queue time
is W0 = 10.12 h, and the analytic mean awaiting queue time Wref = 10.0 h (mean error

∆e =
W0−Wre f

Wre f
= 1.12 %).
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Figure 7. Scenario 0—Comparison between simulated progressive mean waiting time (W0) and
analytic value (Wref).
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The simulation results of scenario 1 show that the mean waiting time is 5 h. With
regard to this scenario, inferential statistics enables one to define an upper bound for mean
waiting time in queue according to the following equation [44]:

E(Wq) ≤
σ2

ti + σ2
ts

tim(1− ρ)
= 7 h (22)

where p = tsm/tim is the level of service utilization; σti and σts are the standard deviations,
respectively, of interarrival and service time; tim is the mean interarrival time. Both the
previous results confirm the goodness of the MCS coded.

Figure 8 shows the Monte Carlo simulation process of the progressive mean waiting
time of Scenarios 1–3. The reported trends allow a person to conclude that the average
waiting time in queue increases with the increased complexity of the operative scenario.
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In fact, Scenario 1 which characterizes a system that cannot fail (max reliability of the
system) shows the shortest mean waiting time in the queue. In Scenarios 2 and 3, the mean
waiting time increases due to the increasing unavailability of the service station caused by
the modelling of the failure rate. In particular for Scenario 2, this result is mainly given by
the aging of the service station; whereas in Scenario 3, this effect is more emphasized by
the contribution of the operating temperature.

The results given by the simulation shows that the average waiting in queue time is,
respectively, W1 = 5.0 h; W2 = 5.94 h; W3 = 6.12 h. These cannot be compared with an
analytical benchmark because, as explained, the modelling and evaluation of such scenarios
are not doable with analytical methods. Finally, only for the Scenarios 2 and 3, the model
has been used to evaluate the system’s availability, the mean waiting time in queue and
the mean number of jobs in queue for different level of service utilization r = [0.5; 0.6;
0.7; 0.8; 0.9; 0.95; 0.99]. As shown in Table 6, this subset of scenarios confirms that the
performances of the queueing system decrease when operational conditions and aging
are considered, and this is more emphasized in Scenario 3 (Wi: Mean waiting time in the
queue; Ai: Availability of the machine tool; Li: Mean items in the queueing system).
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Table 6. Performances of the system (tsmean = [5, 6, 7, 8, 9, 9.5, 9.9]; σts = 0.2 tsmean).

r W2 W3 A2 A3 L2 L3

[h] [h]

0.5 5.9 6.03 86.9% 84.8% 0.57 0.60

0.6 7.4 7.68 86.9% 84.8% 0.71 0.79

0.7 9.2 9.51 86.9% 84.8% 0.94 0.96

0.8 11.8 13.54 86.9% 84.8% 1.17 1.36

0.9 96.0 188.35 86.9% 84.8% 9.37 18.05

0.95 451.9 472.04 86.9% 84.8% 41.38 43.21

0.99 708.0 811.60 86.9% 84.8% 62.77 70.85

5. Conclusions and Remarks

The importance of a more realistic modelling and evaluation of the manufacturing and
production processes is becoming a key component in the success of modern enterprises
which are called upon to be agile and reactive to the market demand. The revolution
brought with Industry 4.0 is helping to automate and digitalize such processes allowing
us to collect the relevant information to identify bottlenecks and reveal opportunities to
increase the throughput of the system processes.

In this paper, the performance evaluation of a production system has been addressed
by the implementation of a simulation model of a repairable G/G/1 queueing system with
a corrective maintenance policy. The model has been coded adopting a hybrid dynamic
dependability approach able to link the aging and the wearing of the queuing system to the
change of the working conditions, using the mechanical equations of the wearing physical
process. The rationale behind the proposed approach is that the real-time information
produced by the smart factories are now significant and help to extract, and thus model,
with more precision the characteristics of the general stochastic processes and to find out the
relationship between the working conditions and the wearing of the system. The simulation
proposed represents a powerful tool in comparison with the analytical theoretical queueing
models of the referred literature because it has been implemented in order to combine the
physics of the system with the stochastic processes of the queuing theory and reliability.
This has allowed us to consider in the model not only the randomness of the queue and of
the machine reliability but also how the operational conditions affect these two processes.
Moreover, a simple—yet valuable—corrective maintenance is analysed, but the simulation
tool could be eventually improved to model, also, a preventive maintenance policy.

As expected, the results of the analysis performed into the G/G/1 with corrective
maintenance show that the throughput of the system (mean waiting in queue) improves
with the increasing of the system reliability; but, on the other hand, it demonstrates
the importance of such advanced modelling tools that are able to take into account the
influences caused by the working conditions on real production scenarios. The Monte
Carlo simulation model has been coded using the electronic spreadsheet that—by means of
the industrial connectors plug-in (ODBC, Modbus, IoT, OPC, etc.)—can be easily integrated
into the manufacturing process. This demonstrates, on the one hand, that it is possible
to code a complex simulation scenario (Event Driven with Continuous input data) in this
software environment and that it can be used to analyse the system performance or to
evaluate how to improve the weak elements of a production process, even before any
engineering refactoring. Under this viewpoint, in future works, the model can be improved
in order to handle other types of maintenance policies and compare the performance and
the costs with respect to the corrective maintenance policy.

From the management point of view, the paper demonstrates that it is possible to
develop a simulation model that can allow one to estimate the performance of the produc-
tion line with tools which are not too complex or expensive, having a good knowledge of
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the business processes and of mathematical reliability and queuing theory. The proposed
model, moreover, offers the possibility to modify the probability distributions of the queue-
ing and reliability processes which can be customized ad hoc, depending on the production
line modelled. This allows a person not only to estimate the performance of the system as
it is, but also to analyse what modifications can be brought to the production line in order
to understand the effects and the possible improvements.

Of course, the proposed approach presents some limitation. For instance, the Electronic
Spreadsheet is not general enough to model any production scenario which could require
an ad hoc model of the system and tuning of the model. Therefore, further research
should identify other tools and generalize the proposed modelling in order to improve the
effectiveness of the Monte Carlo simulation hybrid approach discussed.
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Nomenclature

CPS Cyber Physical Systems
CTMC Continuous Time Markov Chains
ERP Enterprise Resource Planning
FIFO First-In First-Out
IoT Internet of Things
JPMS Joint Production and Maintenance Scheduling
L Mean number of items in queue
MES Manufacturing Execution System
MCS Monte Carlo Simulation
MTA Mean Time of Arrive
MTS Mean Time of Service
MTTF Mean Time to Failure
MTTR Mean Time to Repair
ODBC Open Database Connectivity
OEM Original Equipment Manufacturer
OPC Open Platform Communications
OPC-DA Open Platform Communications Data-Access
QBD Quasi-Birth–Death
SMEs Small and Medium Enterprises
TTR Time to Repair
W Mean waiting time in queue
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