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Abstract: Recommendation systems based on knowledge graphs often obtain user preferences
through the user’s click matrix. However, the click matrix represents static data and cannot represent
the dynamic preferences of users over time. Therefore, we propose DINK, a knowledge graph-
based deep interest exploration network, to extract users’ dynamic interests. DINK can be divided
into a knowledge graph embedding layer, an interest exploration layer, and a recommendation
layer. The embedding layer expands the receptive field of the user’s click sequence through the
knowledge graph, the interest exploration layer combines the GRU and the attention mechanism to
explore the user’s dynamic interest, and the recommendation layer completes the prediction task. We
demonstrate the effectiveness of DINK by conducting extensive experiments on three public datasets.

Keywords: recommendation; knowledge graph embedding; interest explore

1. Introduction

Due to the diversity and heterogeneity that information knowledge graphs represent,
they are widely used in high-level tasks of deep learning, such as image captioning and text
generation. These methods follow a unified paradigm that uses representation learning
methods to map high-dimensional sparse features and structured features of knowledge
graphs into a vector space and learn the relationship between the vectors through the
model. These methods utilize the fitting ability of deep neural networks to automatically
learn features and improve the generalization ability of the model. The relevant researchers
of recommender systems have found in continuous practice that the user’s interest pref-
erence is a dynamic process. As shown in Figure 1, a user has a soft spot for Apple’s
electronic products, even if he also has other products at the same time. In other words,
the preferences for different items are not the same in the user’s historical interaction
sequence. To extract user sequence interaction features, researchers propose time-series
recommendation methods to capture users’ dynamic interests. These methods draw on
the successful experience in the field of natural language processing and actively explore
how to design recurrent neural networks to extract users’ long-term and short-term interest
preference features.

This method has effectively solved the problems of data sparseness and cold start in
the recommendation, but it still has the following shortcomings:

(1) Recommendation methods based on knowledge graphs usually learn the inter-
action characteristics between users and items in a static click matrix, ignoring that the
interactions between users and items are dynamic and orderly. At the same time, these mod-
els are only suitable for offline training and cannot achieve online training and real-time
recommendation.

(2) Most of the current time series recommendation methods bluntly “migrate” the
models in the field of natural language processing to the recommendation task. However,
in the recommendation task, the user’s interaction records are often not closely continuous,
i.e., the user’s interaction sequence may be jumping time-series data across time and
platforms. It is difficult for models in the traditional natural language processing field to
learn the time-series features in jumping interaction sequences. Most of the current time
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series recommendation methods do not introduce knowledge graphs to assist in exploring
the diverse interests and preferences of users at different times.

We propose DINK (deep interest network based on knowledge graph embedding) to
overcome these shortcomings. The main work of this paper is as follows:

(1) DINK maps the click sequence to a click sequence path in the knowledge graph, and
expands the user preference receptive field at different times through the aggregator.

(2) DINK combines attention with GRU to explore users’ dynamic interests and infer
their interest at the next moment.

(3) We conduct CTR prediction experiments, Top-k recommendation experiments and
performance experiments on three public datasets. Compared to other models, our
experimental results show that DINK can more effectively extract the dynamic interest
features of users and can effectively alleviate the cold start problem.
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2. Related Work
2.1. Recommendation Systems

Currently, researchers divide the recommendation algorithms [1] based on knowl-
edge graph into three categories. (1) Recommendation algorithm based on knowledge
graph embedding [2]. (2) Recommendation algorithm based on knowledge graph path [3].
(3) HyBrid, which is a combination of the two [4].

The Recommendation algorithm based on knowledge graph Embedding represents en-
tities and relationships by the method of graph embedding, and then expands the semantic
information of the original item and user representation. DKN [5] (deep knowledge-aware
network) introduces the knowledge graph into the news recommendation task. It takes a
candidate news and a user’s click history as input, pretrains the entities in the knowledge
graph, uses the VGG network [6] for feature extraction, and the output is the probability
of the user clicking the news. However, this method only uses the words in the title to
make a recommendation and does not effectively utilize the more valuable context in-
formation. CKE [7] (collaborative knowledge base embedding for recommender) uses
three embedding methods to fit the knowledge graph, text, and visual information in the
knowledge base. Then, it combines the three vectors and the implicit feedback of users for
the recommendation system.

The relationship between nodes and paths in knowledge graphs is usually many-to-
many. The information contained in these paths can often be used as a supplement to
enhance the effectiveness and interpretability of the recommendation system. KPRN [8]
(explainable reasoning knowledge graph recommendation) combines the semantics of
entities and relations to generate path representations and uses LSTM [9] (long short term
memory) to effectively reason about the path by using sequential dependencies in the
path, and then infer the rationale of user item interaction. At the same time, a new weight
pool operation is designed to distinguish the importance of different paths in connecting
users and items, so that the model has a certain degree of interpretability. The model using
path traversal can obtain full interpretability and a certain performance improvement,
but it often consumes a lot of computing resources when learning the optimal path. Rule
Guidance [10] proposed a path-based rule mining method, which introduces reinforcement
learning [11] into relational agents for learning. High-quality rules generated by symbol-
based methods are utilized to provide reward supervision for the swing-based agent. This
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method improves the performance of walk-based models without losing interpretability,
but it does not perform well on large-scale datasets.

HyBrid refers to recommendation algorithms that combine graph paths with knowl-
edge graph embeddings, and knowledge graph recommendation algorithms based on
graph neural networks are also classified in this category. KGCN [12] (knowledge graph
convolutional networks for recommender systems) captures the correlation between items
by sampling from the neighbors of each entity in the knowledge graph and mining the
associated attributes of items on the knowledge graph. The user’s potential interests are
captured at a distance. NACF [13] (neighborhood aggregation collaborative filtering based
on knowledge graph) iteratively encodes the potential information of the knowledge graph
into user features and uses the attention mechanism in GCN [14] (graph convolutional
network) to consider the personalized preferences and multiple associations of users during
information aggregation.

2.2. Knowledge Graph Embedding

Knowledge graph embedding [15] refers to the operation of representing entities and
relationships in a knowledge graph by vectors. The vector representations of (h, r, t) triples
are obtained by training each other to facilitate the sharing of features in the knowledge
graph. Specific training methods can be divided into two broad categories:

(1) Translation distance models, including TransE, TransH, TransR [16,17], and other
varieties. They regard the Tail vector as the translation distance obtained from the
Head vector through the Relation vector, and the scoring function can be regarded as
the Euclidean distance between vectors.

(2) Semantic matching models [18,19] score by calculating the semantic similarity between
the Head vector and the Tail vector after the linear transformation of the Relation
space. The score function can be considered as the angle between vectors. Through the
click exposure logs of query and document, DSSM [20] expressed query and document
as low-dimensional semantic vectors, calculated the distance of two semantic vectors
by cosine similarity, and finally trained the semantic similarity model. DistMult [21]
simplifies the relationship matrix to a diagonal matrix, which has the advantage of
being extremely efficient, but it is oversimplified and can only deal with symmetric
relationships, which cannot be fully applied to all scenarios.

2.3. GRU

A sequence is a set of data streams that have pre-and post-dependencies, and the
position changes of data elements in the whole sequence will affect the features expressed
in the whole sequence. Researchers proposed a cyclic neural network to extract the features
of the sequence. At present, common recurrent neural networks include RNN [22], LSTM,
and GRU [23].

RNN is a sequential recursive deep neural network that has achieved good results
in many sequential tasks. RNN extracts the sequence features of elements by setting the
hidden layer ht of the n-layer stack, and each hidden layer extracts the sequence features
of different moments. Due to the features of the iterative learning sequence of RNN, its
gradient accumulates continuously with the length of the sequence, eventually leading to
gradient explosion (gradient continuously accumulates toward positive infinity) or gradient
disappearance (gradient continuously accumulates toward 0), thus losing the long-term
features of the sequence. LSTM improves the hidden layer in RNN, in which forgetting gate
ft, update gate it, and output gate ot are set to filter and discard redundant features. GRU
is an improvement of LSTM, which filters the information of the last moment and transmits
the information of the current moment through a deep update gate. Since GRU only uses
one parameter to control the transmission of information, the number of parameters is
reduced by 25% compared with LSTM.

Much work has been done in the field of recommendation to extract the behavior
characteristics of user click sequences by using recurrent neural networks, and good results
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have been achieved. GRU4Rec [24] regarded the user’s click sequence as a session, and
after each item in the sequence went through N layers of GRU. The extracted features were
used to predict the click summary of each item at the next moment. Bert4rec [25] introduced
Bert into the recommendation task and designed a deep two-way attention to model the
sequence of user behaviors, which allowed each project to integrate the information from
the left and right sides to predict the recommendation generalization at the next moment.
We combine GRU with an attention mechanism and propose a dynamic interest inference
layer to capture the dynamic sequence features of users.

3. Our Approach
3.1. Framework

DINK consists of three parts: an embedding layer, an interest exploration layer and
a prediction layer, and its framework is shown in Figure 2. In the embedding layer, the
user interaction sequence is mapped into the recommended scene knowledge graph, and
the features of the first-order neighbor nodes are extracted by the aggregator to obtain
the central aggregation vector (E(v1), E(v2) . . . E(vt)). At the same time, user features
and candidate item features are also initialized to obtain their embedding vectors. In the
dynamic interest reasoning layer, DINK calculates the similarity score between the user
interaction sequence and the candidate item as the attention weight and then uses the
weighted center aggregation vector as the input of the GRU to obtain the user’s dynamic
interest feature. In the prediction layer, the user vector, the candidate item vector, and the
dynamic interest vector are spliced and pooled to predict the score of the candidate item.
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In DINK, a user set U = {u1, u2, . . . , un} with N users is defined, and item set
I = {i1, i2, . . . , im} with M items and the user’s historical interaction. The item set
V = (V1, V2 . . . , Vu), where Vi = (v1, v2, · · · , vt) represents the historical interaction
records at T moments, and V is the set of historical interaction sequences of all users. At the
same time, this section collects the corresponding scene knowledge graph for each dataset,
which is defined as G = {(h, r, t)|h, r ⊆ E, r ⊆ R}, where I ⊆ E represents the user click
sequence. Items are fully contained within the knowledge graph entities.
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3.2. Embedding Layer

The recommendation based on knowledge graph usually introduces the features
in the knowledge graph into the recommendation task. It generally consists of three
stages: (1) knowledge graph representation learning, (2) obtaining vector representation,
(3) extracting vector features. DINK attempts a novel pattern that introduces a temporal
dimension to item features in recommendation tasks. First, the user interaction sequence
〈v1, v2, . . . , vt〉 is mapped to the entity nodes in the knowledge graph. Then, the entity node
is used as the center to extract the features of its surrounding neighbor nodes. Finally, the
center aggregation vector is used to represent the user at this moment of diverse interests.

In the actual recommendation scene knowledge graph, an entity has multiple semantic
relationships, and the number of relationships owned by different entities is inconsistent.
To make the model more standardized and efficient, we collect the same number of neigh-
bor nodes for each entity in the user interaction sequence to form the user interaction
subgraph sequence G(vt) = (e1, e2, . . . , ek), where G(vt) represents the user interaction
subgraph at time T, K represents the number of subgraph samples, and the complete user
interaction subgraph sequence is represented as 〈G(v1), G(v2), . . . , G(vt)〉 . Finally, DINK
uses different aggregators to calculate the central aggregation vector of the user interaction
subgraph. Equation (1) calculates the central aggregation vector E(vt) at time T. Agg is
the aggregator, and the aggregation vector of the user interaction sequence is expressed as
〈E(v1), E(v2), . . . , E(vt)〉.

E(vt) = Agg(G(vt)) = Agg(e1, e2, . . . , ek) (1)

To capture user preferences at different moments, this chapter proposes an SUM
aggregator, a CONCAT aggregator, and an ATTENTION aggregator to compute the center
aggregation vector.

SUM aggregator
The SUM aggregator adds the center node vector and the neighbor node vector, and

then performs nonlinear transformation.

E(vt) = σ

W·

vt + ∑
e⊆G(vt)

e

+ b

 (2)

CONCAT aggregator
The CONCAT aggregator adds the neighbor node vectors, then concatenates them

with the center node vector, and finally performs nonlinear transformation, as shown in
Equation (3). W, b ∈ R2d are learnable weights and biases, σ is a nonlinear activation
function, and ‖ is a vector stitching operation.

E(vt) = σ

W·

vt ‖ ∑
e⊆G(vt)

e

+ b

 (3)

ATTENTION aggregator
The attention aggregator calculates the attention weights of neighbor nodes and non-

linearly transforms the weighted neighbor node vectors.

αr,e = softmax(σ(Wr·(ei � ri))) (4)

E(vt) = σ

W· ∑
e⊆G(vt)

αr,e·e + b

 (5)
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3.3. Interest Explore Layer

DINK adds an attention mechanism to the user interaction sequence, which considers
the correlation between the central aggregation vector and candidate items at different
times and calculates an attention weight for the central aggregation vector at all times.

αt =
exp(E(vt)We)

∑T
j=1 exp

(
E
(
vj
)
We
) (6)

After obtaining the weight of the user-division sequence, it will take advantage of the
central aggregation vector to indicate the user’s interest in different moments. To explore
the dynamic evolution of interest, DINK uses GRU to extract users’ long short-term interest
preference characteristics.

zl = σ(Wzxl + Uzhl−1) (7)

rl = σ(Wrxl + Urhl−1i) (8)

hl = tan h(Wxl + U(rl × hl−1)) (9)

hl = (1− zl)× hl−1 + zl × hl (10)

where l = (1, 2, . . . , t) represents the moment of the user sequence, and DINK retains
the output vector ht at the last moment as the user’s dynamic interest preference feature.
Wz, Wr, W ∈ R2d are the trainable weights and biases of each cell of the GRU.

3.4. Predicted Layer

To enrich the features for recommendation, DINK uses L-layer fully connected layers
to extract high-level features of users and candidate items when predicting item ratings,
stitches them together with dynamic interest vectors, and uses activation functions to
calculate ratings. The process is shown in Equation (12). Wp ∈ R3d, bp ∈ R3d are trainable
weights and biases to extract the features of the spliced vector.

iL = ML(i) (11)

uL = ML(u) (12)

ŷui = sigmoid
(

Wp

(
uL ‖ iL ‖ ht

)
+ bp

)
(13)

3.5. Training

DINK regards the recommendation task as a binary classification problem. The label
is 1 if the user interacts with the item. Otherwise, the label is 0. At the same time, DINK
adopts the pointwise approach to train the parameters of the model, and uses the cross
entropy as the loss function.

L = − ∑
(u,i)∈O+

log ŷui + ∑
(u,i)∈O−

log(1− ŷui) + λ1‖ θ ‖2
2 (14)

where O+ = {(u, i)|yui = 1} represents a positive sample, and O− = {(u, i)|yui = 0}
represents a negative sample. Furthermore, to prevent overfitting, DINK also introduces
L2 regularization to the training process to train θ, which is a trainable weight in the layer.

The DINK framework is shown in Algorithm 1:
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Algorithm 1: DINK algorithm.

â input: U: Set of user; I: Set of item; G〈E,R〉: Knowledge graph; V: User interaction sequence

â output:Prediction score F(u, i
∣∣∣θ, G〈E,R〉)

1 initialize U,I,E,R,w as trainable parameters;
2 while DINK not converge do:
3 //Embedding
4 Extracting subgraphs→V → G(v1), G(v2), . . . , G(vt) ;
5 for T in length (V) do:
6 E(vt) = Aggregator(G(vt))
7 end
8 //Interest Explore Layer
9 for E(vt) in length (V) do:
10 αt = Attention(E(vt), i)
11 ht = LSTM(αtE(vt))
12 end
13 //Predicted
14 ŷui = f (concat(ht, u, i))
15 Updating training parameters;
16 end

The input of DINK includes a set of users, a set of items, a knowledge graph of rec-
ommended scenarios, and historical interaction sequences of users. Since the set of items is
contained in the knowledge graph, the users and entities and relations in the knowledge graph
meet the Gaussian distribution after vector initialization. In the embedding layer, the central
aggregation vector is calculated by different aggregators for the interactive session. In the
dynamic interest inference layer, the center aggregation vector calculates the attention weight
of the candidate items, the weighted center vector is used as the input of GRU, and GRU
outputs the dynamic interest vector of the user. In the recommendation layer, the user feature
vector, the feature vector of the candidate item, and the dynamic interest vector of the user are
concatenated, and the confidence of the recommendation is calculated by the scoring function.
It can be seen from the above that the trainable parameters of DINK consist of aggregators and
GRU units at different times, which requires a large number of parameters to learn. Therefore,
the Adam algorithm is used to match adaptive learning rates for different parameters.

4. Experiment
4.1. Dataset

In this experiment, we verify the effectiveness of DINK on three public datasets,
MovieLens-1M, Last.FM and Book-Crossings. In addition, this paper collects the corre-
sponding scene knowledge graphs for the three datasets.

MovieLens-1M not only collects user click records and rating records, but also collects
movie metadata and user attribute data. The metadata of the movie include the genre, style,
and era of the movie, while the attribute data of the user include demographic information
such as the user’s age, gender, and occupation. MovieLens-1M is a subset of the MovieLens
dataset, which contains approximately 1 million display ratings (ratings from 1 to 5) for
4000 movies by 6000 users. The knowledge graph corresponding to MovieLens contains
17,633 entities and 20,195 relationships.

Last.FM collects rating data from users of the Last.FM online music platform. This
dataset collects contextual information about music data, including each user’s favorite
artist, song list, and number of plays. In addition, Last.FM also collects user demographic
information including user age and occupation. Last.FM dataset contains 100,000 display
ratings data (ratings from 1 to 352,698) of 2000 users. The knowledge graph corresponding
to Last.FM contains 9366 entities, 15,518 relations, and 60 relation types.
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Book-Crossings contains nearly 1.1 million ratings (ratings ranging from 1 to 10) on
270,000 books by 90,000 users, including both explicit and implicit ratings. The scene knowl-
edge graph corresponding to Book-Crossings contains 12,431 entities and 19,793 relationships.

The details of these three datasets are shown in Table 1

Table 1. Basic statistics of the dataset.

MovieLens-1M Last.FM Book-Crossings

#Users 6036 1872 17,860
#Items 2347 3846 14,910

#Ratings 753,772 423,461 139,746
#Rating Type 3 10 5

#Density of Dataset 2.8× 10−3 58.8× 10−3 0.5× 10−3

#Triple 20,195 15,518 19,793
#Density of Graph 9.49× 10−5 0.35× 10−5 4.99× 10−5

4.2. Baseline

LibFM [26] is a machine learning method that decomposes matrix features through
gradient descent and Bayesian inference. It is suitable for high-order sparse matrices. It is a
classic decomposition model method. Due to its simple structure and remarkable effect, it
is widely used in industry.

Wide&Deep [27] integrates the deep model and the shallow wide model for training,
effectively combining the memory ability of the shallow model and the generalization
ability of the deep model, which is an innovation in the field of engineering.

CKE [7] proposes a knowledge graph coordination filtering framework, which uses a
unified recommendation framework to jointly embed multimodal data, such as knowledge
graph, text information, and image information, into recommendation tasks. It is the SOTA
model in the field of knowledge graph recommendation in 2016.

RippleNet [28] was published in CIKM in 2018. This work proposes a hybrid method
that uses knowledge graph structure information to assist recommendation, which com-
pletes personalized recommendation tasks by exploring users’ potential interest features
on the knowledge graph.

KGCN was published on WWW in 2019. This work proposes a recommendation
model that uses graph convolutional network to extract knowledge graph features.

MKR [29] was published in KDD in 2020. This work proposes a multi-task feature
learning method that combines knowledge embedding and recommendation tasks. By
combining knowledge graph embedding algorithms and recommendation system modules,
the potential information of recommendation scenarios and knowledge graphs can interact
with each other.

GMCF [30] was published in SIGIR in 2021. This work proposes a collaborative
filtering model based on neural network graph matching, which divides the knowledge
graph into multiple subgraphs, and designs a matching algorithm to model and aggregate
attribute interactions in the graph structure, effectively extracting the internal, multi-level
features between subgraphs.

4.3. Metrics

The AUC and ACC are widely used metric in CTR prediction. It measures the goodness
of order by ranking all the ads with predicted CTR, including intra-user and inter-user orders.

ACC =
TP + TN

TP + TN + FP + FN
(15)

AUC =
∑ I
(

Ppos + Pneg
)

M ∗ N
(16)

In the ACC formula, TP is a predicted correct positive sample number, and FP is a
positive sample number of predictive errors. TN is the number of predicted correct negative
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samples, and FN is a negative sample number of predictive errors. In the formula of the
AUC, m and n represent the number of positive samples and negative samples in the
dataset, respectively, and M ∗ N represents the number of sample pairs. The number of
predicted probabilities of the positive sample in the sample is greater than the number of
predicted probabilities of the positive sample.

4.4. Performance in CTR

The result of the hit rate estimation experiment is shown in Table 2. Among them,
DINK-K indicates that the user’s interaction sequence does not introduce a knowledge
graph. At this time, the input vector of the dynamic interesting layer is a random initialized
user sequence vector. DINK-A indicates that the model does not introduce attention
mechanisms in the dynamic interest in the reinforcement layer. At this time, the dynamic
interest in the reinforcement layer is an ordinary GRU model whose input is a polymeric
user sequence vector. (-ATT), (-SUM), and (-CAT) indicate the ATTENTION aggregator,
SUM aggregator, and CONCAT aggregators, respectively. By analyzing the data analysis of
Table 2, the following conclusions can be drawn:

• DINK is better in the case of data density and high knowledge density

The scene knowledge map density of MovieLens-1M and Last.fm is 8.04 and 4.03,
respectively, the density of the Book-Crossing scene knowledge map is only 1.03, and
the user’s interaction data are lower. By observing the results, it is possible to find that
the performance of DINK in these two datasets exceeds the performance in Book-Cross,
whether from the absolute value or relative value. In the Book-Crossing AUC metrics,
DINK is backward to the latest GMCF model 6%, while in two datasets in MovieLens-
1M and Last.fm, DINK’s performance exceeds the rest of the baseline model. Therefore,
DINK can use external knowledge to enhance the recommended effect, but compared to
the nearest excellent model, there is still no improvement in overcoming data sparseness.
Attention aggregator tables in three datasets are due to other aggregators. This is because
the attention aggregator fuses the weight information of the relationship edges in the
aggregation process, which can effectively extract the features strongly related to the items.

• Compared to attention mechanisms, neighbor nodes in knowledge maps are more
meaningful

In the three datasets, DINK-K grew more than DINK-A, which means that knowledge
representation is a more key promotion of the semantic feature in the study. At the same time,
it is noted that DINK-K and DINK-A decline in the Book-Crossing data concentration to a
larger degree, indicating that under the sparse scene, the attention mechanism can better play
the role, and the external information, such as the knowledge map, is also more important.

Table 2. Performance in CTR.

Method
MovieLens-1M Last.FM Book-Crossing

AUC ACC AUC ACC AUC ACC

Wide&Deep 0.898 0.820 0.756 0.688 0.712 0.624
CKE 0.801 0.742 0.744 0.673 0.671 0.673

Ripple 0.920 0.842 0.780 0.702 0.729 0.662
LibFM 0.892 0.812 0.777 0.709 0.685 0.640
MKR 0.921 * 0.847 * 0.796 * 0.739 * 0.738 0.688

KGCN 0.917 0.837 0.796 0.728 0.731 0.678
GMCF 0.918 0.845 0.789 0.711 0.789 * 0.712 *

DINK-ATT 0.929 0.851 0.817 0.752 0.745 0.702
DINK-SUM 0.925 0.851 0.813 0.745 0.730 0.688
DINK-CAT 0.922 0.848 0.808 0.742 0.741 0.697

DINK-K 0.903 0.826 0.782 0.742 0718 0.668
DINK-A 0.921 0.839 0.808 0.746 0.726 0.679

Improve (%) 0.5% 0.3% 2.5% 1.7% −4.2% −1%
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4.5. Performance in Cold Start Simulation

This section verifies whether DINK can effectively alleviate the cold-start problem.
We simulate the cold-start environment by adjusting the proportion of the training set
to increase the proportion of “new users”. The AUC results of each model in the cold
start environment are shown in Figure 3. This shows that DINK can perform better in
a cold start environment. In addition, through further observation of the results, it can
be found that the recommendation model based on a knowledge graph performs better
than traditional recommendation models, such as Wide & Deep, which also proves that
the introduction of a knowledge graph can effectively alleviate the cold start problem in
recommendation tasks.
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4.6. Performance in Different Parameters
4.6.1. Number of Neighbor Nodes

As shown in Figure 4, the AUC of DINK increases gradually with the increase in the
number of item aggregations in MovieLens-1M and Last.FM datasets, but when the number
of aggregations reaches 6, the AUC begins to retrace, while the AUC does not decline in the
Book-Crossing dataset. This shows that in the case of sparse data, as the number of item
sets increases, the features of aggregating items can play a positive role in recommendation,
while in nonsparse cases they will play a negative role.
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4.6.2. Length of Interaction Sequence

As shown in Figure 5, with other parameters unchanged, the AUC metrics of all three
datasets keep rising as the length of the user interaction sequence increases. When the
length of the user sequence reaches 12, the AUC indicator begins to flatten or even decline,
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which indicates that the longer the user interaction sequence is, the better. When the length
exceeds a threshold, DINK cannot extract more dynamic interest features.
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4.6.3. Dimension of Embedding

As shown in Figure 6, with the other parameters unchanged, the AUC of DINK
in MovieLens-1M will gradually increase with increasing d-dimension and achieve the
optimal performance in the case of 64 dimensions. In the Last.FM and Book-Crossing
datasets, the model achieves the best performance at 16 dimensions. However, as the
dimension increases, the performance gradually degrades.
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5. Conclusions

Through research, we found that most recommendation models based on knowledge
graphs take the static interaction matrix as the user’s behavior and interest characteristics,
ignoring the user’s behavior and interest characteristics, which is a dynamic process.
Aiming to resolve this problem, this paper proposes a deep interest network based on
knowledge graph (DINK) to fuse users’ dynamic interest features into recommendation
tasks. DINK consists of three parts: an embedding layer, a dynamic interest reasoning layer
and a prediction layer. In the embedding layer, the user interaction sequence is mapped
into the recommended scene knowledge graph, and the features of the first-order neighbor
nodes are extracted by the aggregator. In the dynamic interest reasoning layer, DINK
calculates the similarity score between the user interaction sequence and the candidate item
as the attention weight and then uses the weighted center aggregation vector as the input
of the GRU to obtain the user’s dynamic interest feature. In the prediction layer, the user
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vector, candidate item vector and dynamic interest vector are spliced and pooled to predict
the score of the candidate item. We conduct click-through rate prediction experiments, Top-
k recommendation experiments, and performance experiments on three public datasets:
Movielens-1M, Book-Crossing, and Last.FM. Experimental results show that, compared
with other models, DINK can more effectively capture the dynamic interest features of
users and can effectively alleviate the cold start problem.
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