
Citation: Koumatzidis, D.; Seimenis,

I.; Loukas, C.; Constantinidis, T.;

Adamopoulos, A. Impact of

Quarantine and Vaccination Policies

on Viral Load. Appl. Sci. 2023, 13, 396.

https://doi.org/10.3390/

app13010396

Academic Editors: Andrea Ballini,

Michele Covelli, Dario Di Stasio,

Antonio Boccaccio and Maria

Contaldo

Received: 22 November 2022

Revised: 16 December 2022

Accepted: 19 December 2022

Published: 28 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Impact of Quarantine and Vaccination Policies on Viral Load
Dimitrios Koumatzidis 1, Ioannis Seimenis 2, Constantinos Loukas 2,* , Theodoros Constantinidis 2

and Adam Adamopoulos 1

1 Medical Physics Laboratory, Department of Medicine, Democritus University of Thrace,
68133 Alexandroupolis, Greece

2 Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
* Correspondence: cloukas@med.uoa.gr

Abstract: Epidemics and pandemics are a field of scientific research since ancient times. The intensity
of the repeated phenomena demonstrates their cyclicality in time. The ongoing COVID-19 pandemic,
also known as the coronavirus pandemic, confirmed observations made in previous disease out-
breaks. Epidemics are mainly characterized by two factors: (a) the population dynamics and (b) the
nature of the disease. This article uses continuous mathematical models, on the basis of a scalable
compartmental approach, characterized by systems of ordinary differential equations under the
condition that individuals can freely move from one compartment to another. Numerous experiments
were carried out to examine the impact of quarantine and vaccination policies, separately or in
combination, on cumulative viral load, a measure adopted to reflect the cumulative viral burden of
an infected population for a given time period. Current findings demonstrate that quarantine may
play a crucial role in controlling an epidemic at its early stages, as well as the importance of early and
widespread implementation of a vaccination program. The suggested approach may be utilized to
study specific quarantine and vaccination scenarios, by manipulating various parameters such as the
duration and extent of social distancing measures or the effectiveness and compliance to vaccination
policies, and thus assist in decision making.

Keywords: viral load; epidemics; epidemic policy

1. Introduction

Pandemics, characterized by exponential disease growth affecting a wide geographical
area, constitute a topic of interest since the Hippocrates era. Scientists are trying to confront
pandemics mainly by developing treatments to cure the disease and by implementing
measures of social distancing, such as quarantine, to restrict the spread of the virus [1].
Panolis, a medieval pandemic that killed millions, had the characteristics of waves that
demonstrated the cyclicity of infectious diseases [2]. The role of isolating infected individu-
als in the fight against Panolis was crucial, saving thousands from death.Hansen’s disease
(also known as leprosy) which killed millions too, was satisfactorily tackled following the
discovery of a suitable vaccine and subsequent mass vaccination. Nowadays, the relevant
infectious bacteria have diminished but not erased. Leprosy is consistently present but
limited to a particular region and with low numbers of infected individuals. Thus, it is now
considered to be endemic [3,4].

In 1927, Kermack and McKendrick [5] published pioneer research about an epidemic,
considered to be an unexpected increase in the number of disease cases in a specific
geographical area. In the deterministic approach of the so-called SIR model, the entire
population N is assumed constant and it is divided into three compartmental groups:
Susceptible (S), Infected (I) and Recovered or Removed (R). Individuals are free to contact
each other, and they are infected through contact with a rate of α. There is no time delay
in the exposure to the infecting agent (e.g., virus). Following recovery (or removal) of the
infected individual, the subject is moved into the R group at a rate of β. The initial SIR
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model was shaped to its current compartmental forms in 1978 [6]. Compartmental models,
introduced to study epidemics, are either stochastic or deterministic. Stochastic models
include elements of random variation and probability distributions, while deterministic
ones give the same result every time they run since they consider average rates with no
random deviations [7]. During the 1980s, studies based on network theory were also added
to the epidemiology research arena [8]. Stochastic compartmental models and theoretical
networks (random, small world, etc.) were combined to facilitate the study of epidemics
in disease outbreaks, such as that of HIV. Both stochastic and deterministic models can
employ either continuous or discrete formulations. The booming of computational power
and software development in the last decades allowed scientists to represent models by
systems of Ordinary Dynamical Equations (ODE) which can be solved numerically [9].

Contemporary policies to eliminate a pandemic can be grouped into two main cate-
gories. Quarantine and vaccination policies [10]. Quarantine policies can implement either
as prevention or contagion rehabilitation of an infection. It is the movement restriction of
persons who are presumed to have been exposed to a contagious disease but are not ill, ei-
ther because they did not become infected or because they are still in the incubation period.
Isolation, containment and social distancing are also some other public health policies to
control epidemics [11]. Vaccination policies are the decision to vaccinate individuals and
provide immunity to the communities. Decision-makers should take intoaccount factors
such as time of vaccination, age groups and vaccine ethics [12]. In this study the vaccines
are similar and vaccination effects are the same for all.

Viral load is the amount of strain in the body of an individual. Its value is connected
to the severity of the disease and the shedding volume [13]. Current studiesin the viral
load focus on comparing various individual viral loads and their role in the epidemic’s
evolution [14,15], as in the COVID-19 epidemic [16]. Researchers try to study the kinetics of
the using mostly stochastic models [17]. However, it is also important to take into account
the total viral load in the community and its dependence on quarantine and vaccination
policies that may be applied.

In the current work, a scalable compartmental approach based on ODE systems is
applied to study viral and/or bacterial load in a pandemic, under the condition that
individuals can freely move from one compartment to another. Initially, we examine
the viral load in the original SIR system. Secondly, we introduce a model with a cyclic
(waving) approach. Then, we add the quarantine and vaccination procedures, separatelyor
in combination, to study the beneficial impact of respective policies. The equilibrium states
are investigated, as well as their dependence on the different policies. The viral load in
each model is determined and is used as a marker for inter-model comparisons and for
monitoring the pandemic evolution.

2. Materials and Methods
2.1. The SIR Model

The epidemic process in the SIR model is schematically represented in Figure 1. As
shown, a fraction of the subpopulation S turns to I with rate α and another fraction of the
subpopulation I turns to R with rate β.

Figure 1. Schematic representation of the SIR model.

The total size of the population N is given by:

N = S + I + R (1)

Moreover, N is normalized. So, we set N = 1; therefore, the S , I and R stand as a
fraction of the population.
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We denote:
dS
dt

= rate o f Susceptible over time (2)

dI
dt

= rate o f In f ected over time (3)

dR
dt

= rate o f Recovered (removed)over time (4)

According to Figure 1 and Equations (2)–(4), the system of ODEs describing the SIR
model is:

dS
dt = −aSI
dI
dt = aSI − βI
dR
dt = βI

(5)

We can easily prove from the ODE that limSt→∞limIt→∞limRt→∞ exist. From Equation (5)
we obtain

dS
dt = −aS

dR
dt
β

dS
dR = − aS

β
dS
S = − a

β dR
ln S = − a

β R + c
S = S0 exp(− a

β R)

(6)

Since 0 < R < 1, susceptible individuals are

lim
t→∞

S = lim
t→∞

S0 exp(− α

β
R)→ St→∞ > 0 (7)

Equation (5) results in:
dS
dI = − aS

aS−β
dI
dS = − aS−β

aS
dI = −ds + β dS

a S∫
dI =

∫
−ds +

∫ β dS
a S

I = −S + β
α ln S + c

(8)

Equation (8) indicates that I at infinity will be 0 since it is assumed that all individuals
will again fall within the S group.

The SIR model has an equilibrium solution at

lim
t→∞

(S(t), I(t), R(t)) (9)

The solution of the above system for S, I, and R is at time S (∞)

S (∞) = S(0)× exp(− a
β
(1− S∞)→ 0 (10)

R (∞) = 1− S(∞)→ 1 (11)

I (∞) = 0 (12)

where S0 and I0 are the initial conditions and regarding inter-compartmental rates, a > b is
assumed. The above solution also shows that moving to infinity a number of Susceptible
and a number of Recovered individuals will be present.

2.2. The CSIR Model

To facilitate decision-making under real conditions, the basic SIR model was gradually
enhanced by adding extra inter-compartmental interactions and/or compartments. The
CSIR model employed in this work is based on the widely known as the SIRS model [18,19].
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Thus, as a second step, we considered the loss of immunity by amending the system
accordingly. Individuals from the R group are re-transferred to the S group with a constant
γ, while the SIR notation and assumptions are maintained.

The system named CSIR (Circular SIR) is shown in Figure 2.

Figure 2. Schematic representation of the CSIR model.

Based on Equation (5) of the original SIR model, the ODE that describes the CSIR
system is the following:

dS
dt = −aSI + γR
dI
dt = aSI − βI
dR
dt = βI − γR

(13)

The CSIR model has an infection-free equilibrium when dS
dt = 0, dI

dt = 0, dR
dt = 0 and

S = 1, I = 0, R = 0.
A steady-state solution of this ODE system also exists for I 6= 0. By denoting Sss, Iss

and Rss the steady state solution for the S, I and R subpopulations, respectively, the system
is given by the following equations:

Sss =
β

α
(14)

Iss =
1− β

α

1 + α
γ

(15)

Rss =
βI
γ

(16)

Equations (14)–(16) give steady states as an expression of the coefficients α, β, γ of
the model.

2.3. The CSIRQ Model

When a disease is turning into an epidemic, one of the basic measures available to
restrict it is the implementation of quarantine, which may also turn into a curfew. By
incorporating the quarantine, the CSIR model transforms into the CSIRQ one. As shown
in Figure 3, a new compartment of individuals that are quarantined (Q) is added, which
is fed by the S group with a rate of δ. A counter transfer, from Q to S, with rate µ is also
assumed. The rate ζ corresponds to the repositioning of infected individuals from I to Q,
whilst the rate ι characterizes the transition from the Q group to the R compartment. The
rate ζ should equal the rate α, but, in general, it is assumed that not all infected individuals
comply with the social distancing and quarantine measures. Therefore, the CSIRQ model
can be described by the following ODE system:

dS
dt = −aSI + γR− δS + µQ
dI
dt = aSI − βI − ζ I
dR
dt = βI − γR + ιQ
dQ
dt = δS + ζ I − µQ− ιQ

(17)
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Figure 3. Schematic representation of the CSIRQ model.

2.4. The CSIRV Model

In the next step of the proposed methodology, an alternative compartment is intro-
duced into the CSIR model, that of the vaccinated individuals. We denote the group of
vaccinated individuals as V and the new model, schematically represented in Figure 4,
as CSIRV.

Figure 4. Schematic representation of the CSIRV model.

We assume that the vaccinated group has social contact with infected individuals and,
therefore, we set θ as the rate of vaccinated individuals that become infected.

It is also assumed that individuals in the S compartment are repositioned in V with
a constant rate ε that depends on the vaccination scheme adopted. We also assume that
vaccinated individuals may relapse to compartment S due to various reasons (e.g., loss of
immunity, ineffective vaccination) with a constant rate κ. The CSIRV model is described by
the following ODE system:

dS
dt = −aSI + γR− εS + κV
dI
dt = aSI + θ IV − βI
dR
dt = βI − γR
dV
dt = εS− θ IV − κV

(18)

Considering that initially, the recovered individuals are zero and that the number of
infected is small, we can set:

S = 1−V (19)

which indicates that each subject is either vaccinated or not at initial conditions.
Before the viral outbreak, the steady is free of infected individuals, R0 = 0

SSS = −aSI + γR− εS + κV
ISS = aSI + θ IV − βI
RSS = βI − γR
VSS = εS− θ IV − κV

(20)

One free of the infected steady state exists, i.e.,

1 = S + I + R + V (21)
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and assuming that a part of the population is vaccinated, the subpopulations at a steady
state will be

Initial SS = [S, 0, 0, 1−V] (22)

There is another steady state for I 6= 0, under the assumption (β > α), which will be
reached after a sufficient time interval and will turn the pandemic into an endemic.

Assuming that all susceptible individuals were vaccinated, the steady state for I 6= 0
is described by

dI
dt = aSI + θ IV − βI
0 = I(αS + θV − β)

Sss = β−θVss

α , (Sss = Vss)

Sss = β
α+θ

(23)

2.5. The CSIRQV Model

The CSIRQV model combines all five compartments discussed above into a general,
comprehensive model. Considering that inter-compartmental interactions are characterized
by the constant rates α, β, γ, δ, ε, ζ, η, θ, ι, κ λ and µ, where η and λ relate to the interactions
between the Q and V compartments. The CSIRQV model can be described by the following
ODE system:

dS
dt = −aSI + γR− εS + κV − δS + µQ
dI
dt = aSI + θ IV − βI − ζ I
dR
dt = βI − γR + ιQ
dV
dt = εS− θ IV − κV − ηV + λQ
dQ
dt = δS + ζ I + ηV − λQ− µQ− ιQ

(24)

The above system is illustrated in Figure 5.

Figure 5. Schematic representation of the CSIRVQ model.

The CSIRVQ model has difficultyfinding solutions. To examine the equilibrium of the
system and then estimate its steady-state parameters, we first have to estimate the Jacobian
matrix of the system, which is given by

J =



( ∂S
∂t )
∂S

( ∂S
∂t )
∂I

( ∂S
∂t )

∂R
( ∂S

∂t )
∂V

( ∂S
∂t )

∂Q
( ∂I

∂t )
∂S

( ∂I
∂t )
∂I

( ∂I
∂t )

∂R
( ∂I

∂t )
∂V

( ∂I
∂t )

∂Q
( ∂R

∂t )
∂S

( ∂R
∂t )
∂I

( ∂R
∂t )

∂R
( ∂R

∂t )
∂V

( ∂R
∂t )

∂Q
( ∂V

∂t )
∂S

( ∂V
∂t )
∂I

( ∂V
∂t )

∂R
( ∂V

∂t )
∂V

( ∂V
∂t )

∂Q(
∂Q
∂t

)
λS

(
∂Q
∂t

)
∂I

(
∂Q
∂t

)
∂D

(
∂Q
∂t

)
∂V

(
∂Q
∂t

)
∂Ω


(25)
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By applying Equation (25) to the system of Equation (24), we derive:

J =


−aI − ε− δ −αS γ κ µ

αI αS + θV − β− ζ 0 ιθ 0
0 β γ 0 ι
ε θ I 0 ιθ − κ − η η
δ ζ 0 η −λ− µ− 1

 (26)

which can identify the stability of the steady states [20,21].

2.6. Estimation of Viral Load

To facilitate the comparison between the different models and scenarios studied,
the relative measure of cumulative viral load, CVL(t), is adopted. CVL(t) reflects the
cumulative viral burden of the infected population for a given period of time, t. If each
infected individual carries a mean individual viral load, m, considered to be stable and
identical for all individuals, then CVL(t) is provided by Equation (27).

CVL(t) = m
∫ t

0
I(t)dt (27)

In a simplified approach m = 1 and Equation (27) reduces to the total number of
infected individuals over the time period, t.

3. Results
3.1. The SIR Model

Figure 6 presents typical results for the original SIR model figuring the S, I and R dy-
namics of an epidemic. In this case, as well as in the following ones, the rates α and β have
been assumed equal to 0.18 and 0.06, respectively, according to the statistical analysis made
with data from COVID Live—Coronavirus Statistics—Worldometer worldometers.info) in
order to match the COVID19 pandemic [22].

Figure 6. Typical dynamics of the SIR model for the following constant rates: α = 0.18, β = 0.06.
Cumulative Viral load (t = 365): 15.67.

If β converges towards α (e.g., α= 0.18, β = 0.18), then the viral load reduces to 0.24,
suggesting that the system transforms to aninfected-free state.

3.2. The CSIR Model

In the CSIR model, if we assume that β and γ rates are constant and much lower than
α, then the relatively high α rate drives towards lower S and higher I.Figure 7 demonstrates
the cyclic waves of the model, for α and β values that equal those used in Figure 6. It is
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evident that the viral load increases by 88%, even for a relatively low rate of individual
repositioning from R to S (γ = 0.006).

Figure 7. Typical dynamics of the CSIR for the following constant rates α = 0.18, β = 0.06, γ = 0.006
(see Figure 2 for notation of rates); Cumulative viral load = 29.48 (for t = 365).

For a relatively high β = 0.12 (double that adopted in Figure 7) and assuming un-
changed α and γ rates (i.e., equal to those applied in Figure 7), the I compartment dimin-
ishes and the viral load decreases by 76%. With regard to the γ rate and assuming that
α and β rates remain unchanged, a γ value of 0.012 (double that adopted in Figure 7)
increases not only S but also I, according to Equation(11). As a result, viral load increases
by 49%.

Since we set β < α, there is an epidemic that finally turns to an endemic equilibrium
where Iss > 0. Figures 8 and 9 display the steady state phase portraits for S against I and I
against R, respectively.

Figure 8. Phase portrait of I against S, for the stable state of the CSIR model.
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Figure 9. Phase portrait of R against I, for the stable state of the CSIR model.

3.3. The CSIRQ Model

Setting up a quarantine policy leads to the CSIRQ model. The time evolution of the
S, I, R and Q compartments, keeping the α, β and γ rates unchanged and implementing
quarantine to the infected individuals at a rate ζ = 0.06 (I to Q) and employing a Q to R rate
of i = 0.06, is depicted in Figure 10. The employed ζ rate of 0.06 assumes a time interval of
15 days covering both the incubation and infection periods.

Figure 10. Typical dynamics of the CSIRQ for the following constant rates α = 0.18, β = 0.06, γ = 0.006,
ζ = 0.06, ι = 0.006, µ = 0, δ = 0, Cumulative viral load = 5.68 (for t = 365 days).

Figure 10 shows the dynamics of compartments over a time interval of 1500 days.
There are four peaks, one every year, where they drive to increase the quarantine of
individuals. Steady-state is achieved at about t = 1500 days when the number of infected
individuals stabilizes, and the disease is regarded as endemic.

By implementing quarantine not only for the infected individuals but also for the
susceptible ones, the infected population decreases sharply. This is demonstrated in
Figure 11, which depicts the time evolution of the S, I, R and Q compartments, after
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introducing the rates δ = 0.001 and µ = 0.0001 that describe the interaction between Q and S
compartments (Figure 3).

Figure 11. Typical dynamics of the CSIRQ model for the following constant rates (α = 0.18, β = 0.06,
γ = 0.006, δ = 0.001, µ = 0.0001, ζ = 0.06, ι = 0.006, Cumulative viral load = 4.32 (for t = 365 days)).

Figure 11 illustrates the dynamics of the compartments in the CSIRQ model. Estimated
waves are weaker compared to the corresponding ones presented in Figure 10. The first
peak of I, at t = 99 days, I = 0.048, is lower than the first peak of Figure 10 at t = 99 I = 0.067,
thus resulting in lower R from R = 0.22 shown in Figure 10 to R = 0.18 displayed in Figure 11.

Figure 12 presents the steady state phase portrait for S against I. The rates are identical
to those corresponding to Figure 11, with t being equal to 1500 days.

Figure 12. Phase portrait of I against S for the CSIRQ model.

3.4. The CSIRV Model

The dynamics of the CSIRV model, incorporating compartment V, is shown in Figure 13.
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Figure 13. Dynamics of the CSIRV model (α = 0.18, β = 0.06, γ = 0.006 ε = 0.008333, θ = 0.0006,
κ = 0.00008333). Cumulative Viral load = 7.56 (for t = 365 days).

Figure 13 depicts the time evolution of the S, I, R and V compartments, after intro-
ducing the rates ε = 0.008333, κ = 0.000008333 and θ = 0.0006 that describe the interaction
among V, S and I compartments (Figure 4). The adopted value of rate ε assumes that all
individuals in the population get vaccinated within 4 months from the outbreak onset.
According to the model, the rate of vaccinated people is stable. That means that the number
of vaccinated individuals every day is lower. The adopted rate κ assumes a 1/1000 vaccine
failure, whilst the rate θ = 0.0006 assumes a moderate loss of immunity. The viral load was
found to be 7.56 365 days post-onset.

3.5. The CSIRVQ Model

The comprehensive CSIRVQ model combines both quarantine and vaccination policies
and, thus, the V and Q compartments are included, as shown in Figure 5. Using the main
rates mentioned above, the model’s dynamics are depicted in Figure 14. As seen, the
number of infected individuals reaches the first peak at approximately date 40 which,
however, is extremely low resulting in a viral load of 0.23.

Figure 14. Dynamics of the CSIRVQ model (α = 0.18, β = 0.06, γ = 0.006, δ = 0.001, ε = 0.008333,
ζ = 0.06, η = 0.0001, θ = 0.0006, ι = 0.006, κ = 0.00008333, λ = 0.00001, µ = 0.0001). Cumulative Viral
load: 0.23 (t = 365 days).

3.6. Viral Load

Table 1 presents estimations of the cumulative viral load in different experiments of
the CSIRQ model keeping the rates of the CSIR model (α, β, γ) constant.
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Table 1. Cumulative Viral load estimations for different scenarios of the CSIRQ model (t = 365 days).

Model Rates Cumulative Viral Load

CSIRQ
α = 0.18, β = 0.06, γ = 0.006,
δ = 0.001, µ = 0.0001, ζ = 0.06,

ι = 0.006
4.32

CSIRQ_1
α = 0.18, β = 0.06, γ = 0.006,
δ = 0.002, µ = 0.0002, ζ = 0.06,

ι = 0.006
3.02

CSIRQ_2
α = 0.18, β = 0.06, γ = 0.006,

δ = 0.0005, µ = 0.00005, ζ = 0.06,
ι = 0.006

4.99

CSIRQ viral load of the basic scenario presented in Figure 11 results in a viral load
of 4.32. In the CSIRQ_1 scenario, the δ and µ rates are doubled (0.002 and 0.0002, respec-
tively) compared to the basic situation. An increase in δ represents a tighter quarantine
policy, although µ (from Q to S) is also assumed to increase in a realistic approach. In the
CSIRQ_2 scenario, the δ and µ rates are sub doubled (0.0005 and 0.00005, respectively)
compared to the basic situation, thus representing a more relaxed quarantine policy. As
seen viral load decreases by 26% in CSIRQ_1 and increases by 16% in CSIRQ_2 in relation
to the reference CSIRQ, although viral loads remain relatively low in all situations.

Similarly, Table 2 presents estimations of the viral load in different experiments of
the CSIRV model keeping the rates of the CSIR model (α, β, γ) constant. Apart from the
basic vaccination scenario, graphically depicted in Figure 13, two additional vaccination
strategies are examined. In all three situations, vaccination starts at time zero. In the
CSIRV_1 scenario representing a higher vaccination compliance in relation to the standard
scenario, rates ε (S to V) and κ (V to S) are doubled (0.016666 and 0.00016666, respectively)
compared to the corresponding values in the basic CSIRV model. As a result, the viral load
reduces by a factor of 3. On the other hand, subdoubling the ε and κ rates in the CSIRV_2
scenario (0.004167 and 0.00004167, respectively) almost doubles the viral load in relation to
the reference scenario.

Table 2. Cumulative Viral load estimations for different scenarios of the CSIRV model (t = 365 days).

Model Rates Cumulative Viral Load

CSIRV
α = 0.18, β = 0.06, γ = 0.006
ε = 0.008333, θ = 0.0006,

κ = 0.00008333
7.56

CSIRV_1
α = 0.18, β = 0.06, γ = 0.006
ε = 0.016666, θ = 0.0006,

κ = 0.00016666
1.64

CSIRV_2
α = 0.18, β = 0.06, γ = 0.006
ε = 0.004167, θ = 0.0006,

κ = 0.00004167
14.01

4. Discussion

Combining CSIRQ and CSIRV leads to the CSIRVQ model (Figure 5). Many runs were
conducted to check stability from phase portraits. It was found that all equilibriums were
unstable as shown in Figure 12.

A comparison of the results obtained from the basic CSIR, CSIRQ and CSIRV models
presented in Figures 7, 11 and 13, respectively, indicate that either quarantine or vaccination
effectively reduces viral load in relation to the basic CSIR scheme (29.48), with quarantine
being more powerful than vaccination under the specific conditions studied (4.32 vs. 7.56).
Undoubtedly, combining both quarantine and vaccination policies drastically reduces viral
load to 0.23 (Figure 14) under the same conditions. Table 3 also presents two alternative
scenarios for the CSIRQV model. In the CSIRQV_1 scenario, the rates δ (S to Q) and µ (Q
to S) are increased by an order of magnitude to describe a more severe quarantine protocol
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than the basic one. The resultant viral load is 0.09, demonstrating the pivotal role that
social distancing can play in diminishing the infected subpopulation. In the CSIRQV_2
scenario, there is no interaction between the S and Q compartments (δ = 0 and µ = 0). In
this case, the viral load obtains a value of 0.27, close to the corresponding value of the
basic scenario. It is assumed, therefore, that social distancing measures on the susceptible
individuals have a minor impact on the overall viral load in a comprehensive scenario also
incorporating vaccination.

Table 3. Viral Load estimations for different scenarios of the CSIRQV model (t = 365 days).

Model Model Parameters of the Model Cumulative Viral Load

CSIRQV

α = 0.18, β = 0.06, γ = 0.006
δ = 0.001, ε = 0.008333, ζ = 0.06,
η = 0.0001, θ = 0.0006, ι = 0.006,
κ = 0.00008333, λ = 0.00001,

µ = 0.0001

0.23

CSIRQV_1

α = 0.18, β = 0.06, γ = 0.006
δ = 0.01, ε = 0.008333, ζ = 0.06,
η = 0.0001, θ = 0.0006, ι = 0.006,
κ = 0.00008333, λ = 0.00001,

µ = 0.001

0.09

CSIRQV_2

α = 0.18, β = 0.06, γ = 0.006 δ = 0,
ε = 0.008333, ζ = 0.06, η = 0.0001,

θ = 0.0006, ι = 0.006,
κ = 0.00008333, λ = 0.00001, µ = 0

0.27

This research attempts to provide a generalized approach that may be of interest
in studying epidemics and in providing insights with regard to the effect that various
policies, such as vaccination and quarantine, may have on the cumulative viral load. The
proposed approach allows for the consideration of combined policies and different levels
of vaccination compliance and quarantine stringency. It also allows for studying the crucial
role of time parameters, such as the timepoint of adoption of constraining measures, or
other factors, such as vaccination coverage and the emergence of vaccine resistance, that
may play in epidemic control. By incorporating realistic statistical data and/or data from
molecular biology into the model, the proposed approach may provide a useful decision-
making tool for mitigating or suppressing a viral epidemic or pandemic.

Current results (Table 1) reveal that quarantine plays an important role in the first
stages of an epidemic. Our findings are in good agreement with those of other studies
which have shown that stringent restrictions in the quarantine framework reduce the
infected subpopulation [23,24]. With regard to vaccination, the current study assumed
that all vaccines available possess the same effectiveness and that they build immunity
to the same extent in all individuals. It demonstrated, however, the pivotal role of a
successful vaccination program in eliminating an epidemic wave (Table 3). Other studies
have also shown that efficient vaccination programs with high compliance rates lead to
disease restriction. [25]. Moreover, a recently published study [26,27] based on a stochastic
approach has confirmed that social distancing measures can be relaxed after the successful
implementation of a vaccination program [28].

The above analysis suggests that the proposed straightforward approach can be easily
implementedto examine in-silico different pandemic or epidemic situations and infer
conclusions that may facilitate decision-making. Nevertheless, realistic rates based on
real-world data have to be employed to carry out reliable simulations. Viral load seems to
be a feature that can provide insights into the disease evolution and can largely facilitate
inter-comparisons between models and/or between different scenarios within the same
model. Viral load estimation for a certain period of time constitutes a useful tool for
physicians and policymakers to decide on precautionary measures and for physicians to
plan and develop therapeutic interventions. Policymakers can weigh the potential benefits
of certain policies against the costs emanating from the employment of such policies.
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This work suffers from certain limitations [29,30]. In the CSIRQV model studied sev-
eral assumptions have been made (e.g., constant inter-compartmental rates were assumed,
although involved rates, such as the infection to recovery rate, β, may be time-dependent;
seasonal infection was not considered; no time-delays in vaccination were examined; immu-
nity waning was not investigated; variable social contact was not considered). Additionally,
validation of the described models with real-world data was not performed, in particular,
with regard to rates η, λ and ι. However, the main scope of the current study was to
computationally approach the relevant models available and highlight their differences
rather than validating specific models with data that may be subject to under-reporting. A
vaccine-resistant mutation virus was not studied separately from a wild-type virus and,
subsequently, different mutation rates were not considered.

5. Conclusions

The proposed approach seems to be able to study different scenarios regarding the
onset and the evolution of an epidemic or a pandemic before resulting in an endemic.
This approach could also be utilized to investigate the mutation of the initial virus into
various strainsif we consider the mutation strain as a new disease. The normalized viral
load adopted in this study seems to be a simple and efficient marker for disease moni-
toring, which allows for intercomparison between different models and, thus, facilitates
benchmarking of different policies and strategies.
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