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Abstract: Landslide displacement prediction is an important part of monitoring and early warning
systems. Effective displacement prediction is instrumental in reducing the risk of landslide disasters.
This paper proposes a displacement prediction model based on variational mode decomposition
and a genetic algorithm optimization of the Elman neural network (VMD–GA–Elman). First, using
VMD, the landslide displacement sequence is decomposed into the three subsequences of the trend
term, the periodic term, and the random term. Then, appropriate influencing factors are selected
for each of the three subsequences to construct input datasets; the rationality of the selection of the
influencing factors is evaluated using the gray correlation analysis method. The GA–Elman model
is used to forecast the trend item, periodic item and random item. Finally, the total displacement is
obtained by superimposing the three subsequences to verify the performance of the model. A case
study of the Shuizhuyuan landslide (China) is presented for the validation of the developed model.
The results show that the model in this paper is in good agreement with the actual situation and has
good prediction accuracy; it can, therefore, provide a basis for early warning systems for landslide
displacement and deformation.

Keywords: landslide displacement prediction; variational mode decomposition; genetic algorithm;
Elman neural network; gray relational analysis

1. Introduction

Landslides cause significant casualties and property damage each year around the
world [1–3]. With the rapid development of the global economy and society, and the
concomitant intensification of climate extremes and human engineering activities, land-
slide disasters increase in frequency day by day. Notably, many large hydropower plants
and reservoirs have been built around the world to reduce air pollution and carbon emis-
sions from coal power stations; this often leads to landslides around the reservoirs [4,5].
Such landslides are extremely harmful, not only affecting the safety of reservoirs and
hydropower stations, but also impacting the surrounding residents, ships in the rivers, and
the surrounding roads [6,7]. Therefore, large reservoir landslides are a pressing problem for
geological disaster prevention and reduction. It is of great significance to make reasonable
and accurate predictions of land displacement in large reservoir areas.

The process whereby landslides develop in large reservoir areas is a result of the
interaction of many factors, which exhibit complex and nonlinear characteristics [8]. These
factors can be divided into two categories: internal and external [9–11]. The internal
factors include changes in landslide stress and geometry, while the external factors include
local precipitation, changes in reservoir water levels, and snow melting. Due to the
complex processes of geological change and the conditions of landslide formation, it
remains challenging to accurately predict landslide displacement; as such, much geological
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research has been devoted to this issue. Since the Japanese scholar Saito Masahiro proposed
the empirical prediction formula for landslide displacement in the 1960s, many scholars
have devoted their efforts to the field of landslide displacement prediction, achieving some
significant results [12–15]. Intrieri et al. systematically summarized the different types
of landslide displacement prediction methods, classified these methods, and discussed
their respective differences and characteristics [16]. At present, landslide displacement
prediction models can be roughly divided into the following four types:

(1) The empirical prediction model. This kind of method uses strict derivation methods,
such as mathematics and physics, to analyze a large number of landslide monitoring
data and experimental data; this is combined with the transformation of relevant
formulas to predict the occurrence of landslide displacement. Focusing on the intrinsic
causes of landslide displacement, various parameters of landslides are expressed
numerically and according to relevant mathematical formulas. Representative models
include the Saito model (1965), the HOCK method (1977), and the Crosta and Agliardi
model (2012). However, the scope of application of the model is greatly limited by the
lack of understanding of the nature of landslides; moreover, the prediction accuracy
of the model is not high.

(2) The statistical prediction model. This method uses the theoretical knowledge derived
from modern mathematics to design a landslide prediction model. In contrast to the
empirical prediction period, which focuses on the mathematical expression of the
landslide’s own mechanisms [17], this method includes an investigation and statistical
analysis of the geological environment surrounding the landslide, as well as the
external factors. At the same time, the prediction accuracy and application scope of
the model are also significantly improved at this stage. The rapid development of the
statistical prediction model is attributed to the emergence and widespread application
of modern mathematical theories, such as mathematical statistics, gray system theory,
and probability theory. In recent years, many new theories and methods have been
formed. For example, Xu et al. (2011) introduced the GM (1,1) model of gray system
theory into the field of landslide displacement [18]. In addition, there are gray vector
angle models, models based on landslide slope changes [19,20], etc. Most of these
models are linear models, which show better results in predicting the displacement of
landslides affected by a single factor, but have poor predictive effects for landslides
with complex causes and many influencing factors.

(3) The nonlinear prediction model. With the development and widespread application
of system science and nonlinear science, scholars have realized that landslides are
an open and complex system. To predict a landslide, qualitative discrimination and
quantitative prediction must be combined to study the basic problems that lead to a
landslide. Qualitative discrimination refers to the combination of precursor features,
such as those exhibited prior to the evolution of the landslide, and the surrounding
geological environment [21] Quantitative prediction refers to the quantitative analysis
of the observed landslide displacement information data. During this period, BP
and Elman neural network models were widely used [22–26]. The extreme learning
machine model and the decision tree model have also been gradually introduced and
applied to the field of landslide prediction [5,27,28].

(4) The comprehensive prediction model. When using a single nonlinear model to predict
landslides, the application range and prediction accuracy of the model are sometimes
limited [9]. In recent years, the comprehensive use of multiple models has become
a new trend in the development of landslide prediction models. For instance, Miao
et al. proposed a landslide displacement prediction model based on GA–SVR [29],
while Zhang et al. studied the WCA–ELM model, which is applicable to step-type
landslides [30]. Methods for the decomposition of displacement data include empirical
mode decomposition [31,32], ensemble empirical mode decomposition [33–35], and
variational mode decomposition [36,37]. Although these methods can completely
decompose the data and effectively improve prediction accuracy, the physical meaning
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of each component cannot be clarified due to the large number of components acquired
(generally more than five); as such, they cannot effectively reflect the relationship
between each displacement component and the influencing factors [38]. The Elman
neural network has good dynamic characteristics and global stability, and it has been
widely used to analyze and process nonlinear and dynamic complex data. Chen et al.
(2017) verified the feasibility of using the Elman neural network model in landslide
monitoring and prediction [39]. Taking into account the nonlinear characteristics of
landslide displacement monitoring data, they proposed an improved recurrent neural
network based on Elman, and they proved the accuracy of the Elman neural network
in short-term predictions. In addition, the research shows that a genetic algorithm
(GA) can effectively improve the training speed and accuracy of the neural network
by optimizing Elman’s connection weight and threshold.

In this study, the Shuizhuyuan landslide in the Three Gorges Reservoir area was
taken as a case study. First, VMD was used to decompose the landslide displacement
sequence into three subsequences: trend displacement, periodic displacement, and random
displacement. Combined with the gray relational analysis method, the influencing factors
that affect landslide displacement deformation were selected. Then, the training set, the
test set, and the validation set were divided in the dataset. The GA–Elman model was used
to predict and analyze the training set and the test set to determine the optimal training
combination model. Finally, the displacement prediction of the landslide’s cumulative
displacement validation set was realized on the basis of the optimal prediction model.
The main contributions of this paper are as follows: (1) the displacement data and the
influencing factor data are decomposed by VMD and respectively integrated into the trend
displacement dataset, the periodic displacement dataset, and the random displacement
dataset; (2) each dataset is substituted into the GA–Elman model to train the model and
make predictions; (3) the effect of model prediction is compared with the evaluation index
to obtain the optimal prediction model; (4) the validation dataset is substituted to verify
the prediction effect of the optimal prediction model.

2. Theory and Method
2.1. Variational Mode Decomposition

Variational modal decomposition was first proposed by K. Dragomiretskiy and D.
Zosso in 2014 [40]. It is an adaptive, completely non-recursive approach to modal varia-
tional problem and signal processing. The basis of this method is to construct a variational
problem and then solve the variational problem by decomposing a deterministic real-
valued signal Y into a discrete number of modes Yk(t), k = 1, 2, 3, · · · , K. In this process,
it is assumed that each decomposed mode fluctuates around a central pulsation. The
biggest advantage of VMD compared with EMD is that it can determine the number of
modal decompositions by itself. It overcomes the problems of endpoint effects and modal
component aliasing in EMD, and it has a solid theoretical foundation. It can be used to deal
with nonlinear sequences with poor regularity and high complexity, and to decompose
nonlinear sequences into relatively stable subsequences.

The process whereby VMD decomposes displacement data is as follows:
Step 1: Construct the variational problem, decompose the signal Y into K components,

determine the penalty parameter α and the rising step τ, and set the constraint condition
that the sum of all modes is equal to the original signal. The corresponding constraint
variational expression is

min
{uk}{ωk}

{
K
∑

k=1

∥∥∥∂t

[(
σ(t) + j

πt

)
uk(t)

]
e−jωkt

∥∥∥2

2

}
s.t.

K
∑

k=1
uk = f (t)

(1)
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where {uk} and {ωk} are the decomposed modal component and the center frequency of
the modal component, respectively,

(
σ(t) + j

πt

)
uk(t) is the analytical signal of the modal

component, and f (t) is the original signal.
Step 2: By introducing the Lagrange penalty operator λ, the constrained problem is

transformed into an unconstrained problem, and Equation (2) is obtained.

L({uk}, {ωk}, λ) = α∑
k

∥∥∥∂t

[(
σt +

j
πt

)
uk(t)

]
e−jωkt

∥∥∥2

2

+

∥∥∥∥ f (t)−∑
k

uk(t)
∥∥∥∥2

2
+

〈
λ(t), f (t)−∑

k
uk(t)

〉 (2)

where α is the penalty factor.
Step 3: Substitute the saddle point obtained in the second step into the first step,

and the value obtained is the solution of the model. The detailed process of alternating
the iterative optimization of {uk}, {ωk}, and λ when solving with VMD is shown in
Equations (3)–(5).

ûn+1
k (ω)←

f̂ (ω)−∑i 6=k ûi(ω) + λ̂(ω)/2

1 + 2α(ω−ωk)
2 (3)

ωn+1
k ←

∫ ∞
0 ω

∣∣∣ûn+1
k (ω)

∣∣∣2dω∫ ∞
0

∣∣∣ûn+1
k (ω)

∣∣∣2dω

(4)

λ̂n+1(ω)← λ̂n(ω) + γ

(
f̂ (ω)−∑

k
ûn+1

k (ω)

)
(5)

The K IMF components of the original signal f (t) can be obtained through the above
formula.

2.2. Elman Neural Network

The Elman neural network is a neural network with a local recursive function [22].
Compared with traditional neural networks, the Elman neural network introduces a fixed
feedback link, which can monitor data changes in real time and enhance the network’s
ability to dynamically process information. The basic premise is to minimize the mean
square error between the actual output and the expected output by using the least square
method and the gradient search technique. Elman’s main structure comprises two parts:
the feedforward connection and the feedback connection. The feedforward connection
includes the input layer, the hidden layer, and the output layer. The input layer unit plays
the role of the signal transmission, the output layer unit plays a linear weighting role, and
the transfer function of the hidden layer unit can adopt a tansig nonlinear function. The
feedback connection is composed of a group of “connection” units. Its function in the
network is to remember the output value of the hidden layer unit at the previous instance,
and return it to the input of the network. It can be regarded as a one-step delay operator.
Therefore, the biggest advantage of the Elman neural network is its memory ability, which
can better reflect the nonlinear and dynamic characteristics of the model.

2.3. GA–Elman Model

GA has three main applications in the field of neural networks: training connection
weights, designing network structures, and finding optimal learning rules. The first
two applications have been widely studied by many scholars and have achieved good
results. However, most published studies focus on feedforward neural networks rather
than recursive neural networks. In this study, we use GA to optimize the initial weight
and threshold of the Elman neural network. The traditional Elman model adopts the
gradient descent method when updating the weight. This method not only runs slowly, but
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also easily falls into local optimization, which cannot ensure the accuracy of the model’s
prediction results [41]. The GA’s global search for the optimal solution can make up for this
deficiency of the Elman neural network [42]. Using the data optimized by the GA as the
weight and threshold of the Elman neural network input can greatly improve the accuracy
of the model [43].

2.4. Displacement Prediction Process

The landslide displacement prediction process based on VMD and the GA–Elman
model used in this paper is shown in Figure 1. The main prediction steps are described
below.
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Figure 1. Flowchart of displacement prediction. Figure 1. Flowchart of displacement prediction.

(1) Preprocess the monitoring data. The displacement, rainfall, and reservoir level data
observed at the monitoring points are preprocessed, and the types of influencing
factors are identified.

(2) Decompose the data. VMD is used to decompose the displacement data into three
subseries of trend, periodic, and random terms, and to decompose the influence factor
data into two subseries of periodic and random terms.

(3) Consolidate the datasets. The decomposed data are integrated into corresponding
datasets according to the decomposition; then, the training set, test set, and validation
set are divided up.

(4) Train the GA–Elman model and compare the prediction results. The training set
is substituted into the GA–Elman model separately to train the model parameters,
and then the test set is substituted into the model to determine the optimal training
combination.
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(5) Determine the optimal prediction model for cumulative displacement. The optimal
prediction model for cumulative displacement is obtained by accumulating the op-
timal training combinations from the trend dataset, the periodic dataset, and the
random dataset.

(6) Verify the feasibility of the optimal prediction model. Substitute the validation set data
into the optimal prediction model and verify the feasibility of the model combined
with the operation results of each evaluation index.

3. Research Area
3.1. General State of the Engineering Geology of the Shuizhuyuan Landslide

The Shuizhuyuan landslide was located in Group 1 of Ganju Village, Quchi Township,
Wushan County, on the left bank of the Yangtze River (31◦00′59.37′′ E, 109◦43′27.33′′ N). It
was 14.82 km away from the new urban area of Wushan and 170 km away from the Three
Gorges Dam in the east (Figure 2).
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Figure 2. Location of the Shuizhuyuan landslide.

The elevation of the rear edge of the landslide was 350 m and the elevation of the
front edge was 90 m; the front edge was submerged below the water level of the reservoir
area at 145 m. The relative elevation difference was 260 m, and the main sliding direction
was 150◦. The landslide had a length of about 800 m, a width of 360–1200 m, an average
thickness of 30 m, an area of 62 × 104 m2, and a volume of 1850 × 104 m3. The landslide
potentially threatened 375 people in 65 households (191 permanent residents) and the
safety of shipping in the Yangtze River. In 2002, it was found that there was a crack, 300 m
long and 2–3 cm wide, in the middle and rear edge of the landslide. In May 2003, it was
first found that the upper house (adobe house) had signs of cracking and deformation,
with a maximum crack size of 20 cm. Since the monitoring work was carried out in
2006, the landslide deformation has generally shown a nearly uniform creep deformation
trend. The main deformation characteristic is that the deformation of the front edge of
the landslide was large, and the deformation of the rear edge was relatively small. Small
collapses occurred at the wading part of the front edge of the landslide, showing obvious
deformation characteristics of a traction landslide.

The sliding mass was composed of loose Quaternary deposits. The engineering
geological profile of the landslide is shown in Figure 3. The bedrock outcrop section in the
middle–lower part of the landslide comprised siltstone and silty mudstone of the Middle
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Triassic Badong Formation (T2b). The exposed stratum in the middle and trailing edge of
the landslide was Upper Triassic Xujiahe Formation (T3xj) sandstone. The sliding zone
material of the landslide was mainly silty clay, due to the sliding zone being filled with
water and softer plastic, which are prone to sliding deformation. On the basis of the above
analysis, the landslide could be characterized as a soil landslide with precipitation and
reservoir as the main inducing factors.
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Therefore, the main aspects of the landslide that require monitoring are surface dis-
placement, rainfall, change in the reservoir water level, and macro patrol monitoring. Seven
GNSS deformation monitoring points and one GNSS reference point were identified on the
landslide, forming three longitudinal monitoring profiles, one rainfall monitoring point,
and one point for monitoring reservoir water level change using the collected data. The
layout plan of the monitoring network is shown in Figure 4. Since the deployment of
the monitoring equipment, a continuous state of deformation has been observed in the
landslide; the deformation of the middle front edge on the left side of the landslide was rel-
atively strong. The Shuizhuyuan landslide is a typical landslide located in the Three Gorges
Reservoir area. It is of great significance to analyze it and accurately predict its development.
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3.2. Landslide Monitoring Data Preprocessing

This paper selected the No. 3 GNSS monitoring station, which recorded obvious
deformation of the Shuizhuyuan landslide in the Three Gorges Reservoir area, for data
analysis. We used as the research object the data produced at the observation point across a
period of 840 days from 1 July 2018 to 18 October 2020. The data were processed in terms
of weeks, and a total of 120 weeks of data were obtained (Figure 5). The data for the first
80 weeks were used as the training set used to train the model and determine its relevant
parameters. The data from 81 to 100 weeks were used as the test set of the model to compare
the results of each model and determine the optimal prediction model. The data from 101
to 120 weeks were used as the validation set of the model to compare the error between the
prediction results of the optimal model and the actual displacement, in order to verify the
feasibility of the model. To determine the impact of different combinations of training sets
on the prediction accuracy of the model, and to analyze the timeliness of the displacement
data, four groups of different training sets were constructed to train the model, as shown
in Table 1. The test set took the data from the middle 20 weeks, i.e., the data from 81 to
100 weeks. The optimal training combination was determined by comparing the operation
results of different combinations of training sets input into the GA–Elman model.

Table 1. The training set of the prediction model.

Model Number Training Set Data Volume
Time Included in the Training Data

1–20 Weeks 21–40 Weeks 41–60 Weeks 61–80 Weeks

Model 1 20
√

Model 2 40
√ √

Model 3 60
√ √ √

Model 4 80
√ √ √ √Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 21 
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4. Application Research and Method Comparison
4.1. Monitoring Data Processing

The monitoring data obtained from the Shuizhuyuan landslide mainly comprised
GNSS surface displacement data, precipitation data, and reservoir water level data. In
this section, we carry out the following steps: (i) decomposing the landslide displacement
data and the influencing factor data into different components using VMD; (ii) conducting
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gray correlation analysis on the decomposed displacement and influencing factor data,
according to the number of data contained in different sets of training sets.

4.1.1. Decomposition of Landslide Displacement Data

The displacement deformation of a landslide is influenced by multiple factors. There-
fore, in order to obtain an accurate prediction result of the landslide displacement, it
is necessary to decompose the acquired landslide displacement into several subcompo-
nents, corresponding to the influences of different factors [11,23,44,45]. The landslide
undergoes displacement deformation under the influence of its own geological conditions.
This displacement deformation component caused by the landslide itself is defined as the
trend displacement component. Many studies have shown that seasonal precipitation and
changes in the water level of the reservoir area in the Three Gorges region indirectly affect
the displacement deformation of the landslide [14,32,46]. Therefore, the displacement de-
formation components caused by the influencing factors with periodic changes are defined
as the periodic displacement components. In addition, the landslide displacement is de-
formed by other external factors, such as artificial activities and earthquakes. These kinds of
displacement deformation components are defined as random displacement components.

The parameters need to be set before VMD can be used for the cumulative 120 weeks
of displacement data. Considering that the displacement component contains at least three
terms (trend, period, and random), the modal number K = 3. During the experiment, the
penalty parameter and the rising step have a great influence on the decomposition results
of the data, especially in the periodic term and random term. The parameters were set to
α = 2000, τ = 0, DC = 0, and init = 1 after several trials.

It was determined that, when K = 3, the decomposed periodic term was not obvious.
Therefore, K = 4 was adopted for the decomposition, and the results of the decomposition
were processed analytically. The more significant IMF1 and IMF2 were used in the trend
term displacement. IMF3, which had good periodicity and low-frequency characteristics,
was used as the periodic term. The higher-frequency IMF4 was used as the random term.
The decomposition results are shown in Figure 6.
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4.1.2. Selection and Decomposition of Influencing Factors

The trend displacement of the landslide is related to the internal factors of the landslide.
The rock and soil composition of the landslide, changes in the internal stress, and changes in
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geometric shape, along with other factors, influence the trend displacement of the landslide;
moreover, these factors often change over time. Therefore, the main factor influencing the
trend displacement of the landslide is the monitoring time. It can be seen from Figure 5 that
the cumulative displacement increased to varying degrees with the amount of precipitation.
A large increase in cumulative displacement occurred when precipitation was abundant,
and displacement slowed down when precipitation was relatively low, which shows that
the cumulative displacement increased more obviously in the rainy season. In addition,
according to related research [47], the reservoir water level also has obvious periodicity.
When the water level in the reservoir area tends to fall, the water pressure applied to
the surface of the slope decreases and the support capacity of the slope is weakened,
accelerating the deformation of the landslide; at these times, the accumulated displacement
of the landslide appears to rise rapidly. When the water level in the reservoir area rises, the
water pressure acting on the surface of the slope is greater than the force of the slope sliding
outwards, inhibiting landslide deformation and slowing down the increase in cumulative
displacement. The above analysis demonstrates that precipitation and reservoir levels are
important external factors that influence landslide deformation.

On the basis of previous research [38], four factors were selected as those influencing
periodic displacement: the displacement increment last week (P1), the cumulative precipi-
tation this week (P2), the average elevation of the reservoir water level this week (P3), and
the variation range of the reservoir water level this week (P4). For the VMD decomposition
of influencing factor data, the decomposition mode number K was set first. Considering
that there was no possibility of trend items being present in the list of influencing factors, K
= 2 was set during the decomposition. The decomposed component with a large proportion
and low frequency was taken as the periodic term component of the influencing factors.
The decomposed component with a relatively small proportion and high frequency was
taken as the random term component of the influencing factors. The effect of decomposing
the influencing factors is shown in Figure 7.
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4.1.3. Relational Analysis of Displacement Components and Influencing
Factor Components

In order to verify the rationality of the influencing factor selection after decomposing
the displacement data and the influencing factor data, it was necessary to analyze the corre-
lation between the displacement data components and the influencing factor components.
Gray relational degree theory is an evaluation method in gray system theory [48]. It can
compare the relational degrees between different sequences and is suitable for studying the
problems of insufficient data, poor information, and uncertainty [49]. The gray relational
degree model holds that, when the resolution coefficient ρ is 0.5, the closer the value of the
correlation degree r is to 1, and the better the correlation is between the two variables. In
order to ensure the effectiveness and reliability of the data selection, gray relational analysis
was used for the displacement component data and the influencing factor component data
when the number of training sets was 20 weeks, 40 weeks, 60 weeks, and 80 weeks. The
results are shown in Table 2. When the data volume of the training set was 40 weeks, the
data in the periodic component dataset and the random component dataset both showed a
strong correlation. It can also be seen from the table that the degree of correlation between
the displacement component data and the influencing factor data had little to do with the
type of influencing factor, but was mainly related to the number of weeks of the training
set contained in the dataset; this proves that the selected influencing factors had a strong
correlation with the displacement data.
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Table 2. Analysis of the relational degree between the displacement component and the influence
factor component.

Model Number Component Type
Influencing Factors

P1 P2 P3 P4

Model 1
Periodic component 0.5769 0.5751 0.5747 0.5734
Random component 0.5663 0.5693 0.5690 0.5685

Model 2
Periodic component 0.8505 0.8509 0.8507 0.5349
Random component 0.9759 0.5920 0.9762 0.9764

Model 3
Periodic component 0.6532 0.6559 0.6544 0.6703
Random component 0.8916 0.6057 0.9194 0.9139

Model 4
Periodic component 0.6293 0.6300 0.6297 0.6357
Random component 0.8234 0.8957 0.9099 0.6676

4.2. Prediction of Trend Displacement

When the trend component data of the displacement were substituted into the model
for prediction, the model prediction results under different training sets were compared
using evaluation indices such as MAPE (mean absolute percentage error), MSE (mean
square error), RMSE (root-mean-square error), and R2 (coefficient of determination). When
the GA–Elman model is used for training and prediction, it is necessary to determine the
values of the relevant parameters involved in the model. Through multiple trial calculations,
the relevant parameters of GA were set as follows: the number of population iterations
was 30, the population size was 30, the crossover probability was 0.3, and the mutation
probability was 0.1. In the setting of relevant parameters for the Elman algorithm, the
learning rate was 0.5, the momentum factor was 0.9, and the model accuracy was 0.00001.

The operation results, generated after the trend component dataset was substituted
into the model, are shown in Figure 8a–d. It can be seen that, when the training set was
40 weeks, 60 weeks, and 80 weeks, there was a concave phenomenon of nearly 5 mm
in one section of the trend displacement. By verifying the original monitoring data of
the monitoring points, it was confirmed that there was a decrease in one section of the
displacement monitoring data. Through further observation and analysis, no obvious
changes in the precipitation data and the water level data for the reservoir area were
identified during this period. On the basis of the situation detailed above, it can be
suggested that the concave displacement of the trend term in this section was due to the
influence of external environmental factors (search satellite, fog, moisture, etc.), which
influenced the monitoring accuracy. However, this did not affect the overall working
performance of the monitoring equipment. The results of the runs show that the prediction
accuracy of the model tended to increase and then decrease with the increase in the base
data in the training set. The relevant evaluation index values in the prediction results are
shown in Table 3. According to the operation results in Table 3, the MAPE, MSE, RMSE,
and R2 of Model 2 were 0.06%, 0.0361, 0.9876, and 0.0217, respectively, which are better
results than those produced by the other models. The prediction accuracy of this model
was the highest. That is to say, in the prediction process of trend displacement, when the
basic training set data volume was 40 weeks, the model prediction effect was the best. This
indicates that the timeliness of the trend displacement component data of the landslide was
strong, and the real-time monitoring of landslide displacement data must be strengthened.



Appl. Sci. 2023, 13, 450 13 of 21

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 21 
 

the other models. The prediction accuracy of this model was the highest. That is to say, in 
the prediction process of trend displacement, when the basic training set data volume was 
40 weeks, the model prediction effect was the best. This indicates that the timeliness of the 
trend displacement component data of the landslide was strong, and the real-time moni-
toring of landslide displacement data must be strengthened. 

  
(a) (b) 

  
(c) (d) 

Figure 8. Trend displacement prediction results for different training sets: (a) prediction results of 
Model 1; (b) prediction results of Model 2; (c) prediction results of Model 3; (d) prediction results 
of Model 4. 

Table 3. Evaluation index values of different models in trend displacement. 

Model Number 
Evaluation Index 

MAPE (%) MSE RMSE R2 
Model 1 0.3000 1.0276 0.6998 0.6462 
Model 2 0.0600 0.0361 0.0217 0.9876 
Model 3 0.2000 0.2279 0.4529 0.9215 
Model 4 0.5400 2.0526 1.2501 0.2933 

Figure 8. Trend displacement prediction results for different training sets: (a) prediction results of
Model 1; (b) prediction results of Model 2; (c) prediction results of Model 3; (d) prediction results of
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Table 3. Evaluation index values of different models in trend displacement.

Model Number
Evaluation Index

MAPE (%) MSE RMSE R2

Model 1 0.3000 1.0276 0.6998 0.6462
Model 2 0.0600 0.0361 0.0217 0.9876
Model 3 0.2000 0.2279 0.4529 0.9215
Model 4 0.5400 2.0526 1.2501 0.2933

4.3. Prediction of Periodic Displacement

The periodic term component dataset was substituted into the model, and the opera-
tion results are shown in Figure 9a–d. The evaluation index values are shown in Table 4.
According to the values of various evaluation indices in Table 4, it can be seen that the
prediction accuracy of the model showed a gradual decrease as the training set of data
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increased. When the training set was 20 weeks of data, the best run for Model 1, MAPE
was 1.5661%, MSE was 0.0001, RMSE was 0.0097, and R2 was 0.9994. This means that the
periodic displacement component data were also timely, and their timeliness was stronger
than that of the trend item component.
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Table 4. Evaluation index values of different models of periodic displacement.

Model Number
Evaluation Index

MAPE (%) MSE RMSE R2

Model 1 1.5661 0.0001 0.0097 0.9994
Model 2 10.5000 0.0066 0.0811 0.9611
Model 3 7.9905 0.0039 0.0628 0.9766
Model 4 23.3792 0.0327 0.1808 0.8067
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4.4. Prediction of Random Displacement

After the random item component dataset was substituted into the model, and the
operation results were generated, as shown in Figure 10a–d.
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The evaluation indices in Table 5 show that, as the data in the training set increased,
the model prediction accuracy went through a trend of increasing, then decreasing, and
then increasing again. The best operation results were generated by Model 4, i.e., when the
training set data volume was 80 weeks. Here, MAPE was 13.73%, MSE was 0.0007, RMSE
was 0.0261, and R2 was 0.9765. Moreover, the random displacement term accounted for
a small proportion in the total displacement, and the influencing factors were difficult to
identify.
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Table 5. Evaluation index values of different models of random displacement.

Model Number
Evaluation Index

MAPE (%) MSE RMSE R2

Model 1 32.96 0.0049 0.0699 0.8326
Model 2 112.88 0.0031 0.0560 0.8926
Model 3 33.87 0.0057 0.0758 0.8028
Model 4 13.73 0.0007 0.0261 0.9765

4.5. Prediction of Cumulative Displacement

The cumulative displacement prediction model could be obtained by accumulating
the predicted values obtained by substituting the trend item, periodic item, and random
item datasets into the model. The results are shown in Figure 11a–d.
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of Model 4.

The evaluation index values are shown in Table 6. From the graph, we can see more
intuitively that the model fit best when the training set was 40 weeks, and the real value
of the cumulative displacement was closest to the model prediction. The data in Table 6
show that the prediction effects of Model 2 were the best. At this time, MAPE was 0.1883%,
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MSE was 0.0377, R2 was 0.9891, and RMSE was 0.0469. However, in conjunction with the
prediction results in Sections 4.2–4.4, the optimal prediction model for the trend component
was Model 2, the optimal prediction model for the periodic component was Model 1, and
the optimal prediction model for the random component was Model 4. Although the
prediction effect of Model 2 was optimal on a whole, it was not locally optimal in all places,
and there was room for improvement. After combining the optimal models corresponding
to the trend term, periodic term, and random term, the test set was predicted. The results
are shown in Figure 12, and the value of each evaluation index is shown in the last row of
Table 6. Compared with Model 2, the evaluation index values tended to be more optimal.

Table 6. Evaluation index values of different models for cumulative displacement.

Model Number
Evaluation Index

MAPE (%) MSE RMSE R2

Model 1 0.2763 0.9469 0.6396 0.7261
Model 2 0.1883 0.0377 0.0469 0.9891
Model 3 0.2565 0.3728 0.5914 0.8922
Model 4 0.6082 2.4631 1.4048 0.2875

Combined model 0.1685 0.0371 0.0384 0.9893
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4.6. Feasibility Verification of the Prediction Model

To further verify the prediction effect of the optimal combination prediction model
obtained in Section 4.5, the data from 101 to 120 weeks were used as the validation set and
substituted into the model for prediction. The prediction results are shown in Figure 13.
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Figure 13. The cumulative displacement prediction results of the validation set.

It can be observed from Figure 13 that the two curves produced by the actual value of
the validation set and the predicted value of the model were relatively close. The corre-
sponding evaluation index values were MAPE = 0.3493%, MSE = 1.1635, RMSE = 0.9001,
and R2 = 0.9895. This further verifies that the combined model had a good prediction effect,
thus offering a solution problem in the field of landslide displacement prediction.

4.7. Model Comparison

After determining the prediction model for the Shuizhuyuan area in the Three Gorges,
this paper further compares the results of this model with other landslide displacement
prediction models. In order to verify the validity and feasibility of VMD, the results
of the model are compared with the results of the GA–Elman model, and, to verify the
practicability of the GA–Elman algorithm, the model is compared with the Elman model.
The comparison results are shown in Table 7. It can be seen that the MAPE values of the
Elman and GA–Elman models were both greater than 100%; the prediction effect of the
model was poor, and not as good as the prediction effect of the combined model. The
model proposed in this paper had the advantage of higher prediction accuracy.

Table 7. Comparison of the prediction accuracy of different prediction models.

Model Name
Evaluation Index

MAPE (%) MSE RMSE R2

Elman 372.55 98.6357 9.3709 0.3633
GA–Elman 153.04 23.1281 3.8904 0.8507

VMD–GA–Elman
(Combined model) 0.3493 1.1635 0.9001 0.9895

5. Discussion and Conclusions

In this study, a new landslide displacement prediction method was proposed by com-
bining the VMD, GA, and Elman models. Taking the Shuizhuyuan landslide in the Three
Gorges Reservoir area as a case study, the trend, periodic, and random term components
of the cumulative landslide displacement were obtained separately using VMD. The GA–
Elman model was used to conduct an accurate prediction of landslide displacement, and
the optimal combination model under different training sets was obtained. At the same
time, the applicability of the model was verified in comparison with the basic Elman and
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GA–Elman models. However, due to the classification of different training sets, some
training sets exhibited an overfitting phenomenon in the process of prediction. Therefore,
in the future landslide displacement prediction, the type of training set and the influencing
factors of landslides should be selected reasonably to avoid the overfitting phenomenon
and obtain the best landslide displacement prediction effect.

(1) In this paper, VMD was used to achieve the effective decomposition of landslide
displacements, solving the modal mixing problem of traditional empirical modal
decomposition. The Elman neural network was optimized using GA, which effectively
solved the problem posed by the difficulty of determining the weights, thresholds,
and neurons of the Elman neural network; moreover, it effectively improved the
model’s prediction accuracy.

(2) This study accounted for the internal and external factors that influence landslide
deformation, such as past cumulative displacement, precipitation, and the reservoir
water level. The changes in monitoring data were analyzed in detail, in conjunction
with previous research, and four influencing factors were ultimately identified. The
gray correlation among these four influencing factors and the displacement of the
fluctuating term was greater than 0.5, indicating that the influencing factors were
selected effectively.

(3) The prediction results showed that the model had high prediction accuracy and predic-
tion capabilities with the effective acquisition of early monitoring data of landslides.
This study, therefore, provides a new basis for predictions in the study of similar
landslides.
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