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Abstract: In the present paper, a new approach to identifying an arbitrary number of inclusions, their
geometry and their location in 2D and 3D structures using topological optimization was proposed.
The new approach was based on the lack of initial information about the geometry of the inclusions
and their location in the structure. The numerical solutions were obtained by the finite element
method in combination with the method of moving asymptotes. The convergence of the finite element
method at the coincidence of functions and their derivatives was analyzed. Results with an error
of no more than 0.5%, i.e., almost exact solutions, were obtained. Identification at impact on the
plate temperature and heat flux by solving the inverse problem of heat conduction was produced.
Topological optimization for identifying an arbitrary number of inclusions, their geometry and their
location in 2D problems was investigated.

Keywords: topological optimization; inverse heat conduction problem; inclusions; finite element
method; identification; heat flux; the theory of elasticity; mechanical load; convergence solutions

1. Introduction

Static and dynamic loads, as well as the wear process of a structure, can cause various
types of structural damage. Damage, such as cracks and pores, causes a decrease in the
mass and stiffness of mechanical structures, resulting in changes in their properties the
latter being the main cause of failure in structural systems. This can be avoided by prior
identification of damage present in the structure, and the service life of the structure can be
extended by repairing the damages in time. In recent years, special attention has been given
to methods that can detect damage at an early stage. Gomez et al. [1] proposed the use of
inverse problems as a basic strategy for damage detection and identification in Structural
Health Monitoring (SHM). Das et al. [2] presented an efficient multi-stage optimization
damage detection method for truss and frame structures equipped with a limited number
of sensors. In this approach, a Finite Element (FE) model was developed to simulate
the response of the actual structure. De Assis et al. [3] applied metaheuristic sunflower
optimization, the artificial neural networks and the response surface method to solve the
inverse problem of crack identification. The crack was modeled as a thin elliptical hole in a
rectangular layered plate using the finite element method. The methods yielded various
approaches to solve the problem, and provided reliable identification of the shape, size and
position of a crack ranging in size from 3 to 30 mm. Hatlas et al. [4] conducted multi-scale
global identification. To solve the identification problem, task global optimization methods
(evolutionary algorithm), finite element method commercial software, the response surface
approach and the numerical homogenization algorithm were combined. Lee et al. [5] used
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eigenfrequency sensitivity analysis to detect defects in beams. The effectiveness of the
boundary element method (BEM) was compared with that of the finite element method
(FEM). Vinh et al. [6] analyzed the static bending and buckling of bi-directional, functionally
graded (BFG) plates with porosity using a new, first-order shear deformation theory (FSDT)
based on the mixed finite element method (FEM). Cuong-Le et al. [7] studied the linear
and nonlinear solutions of a sigmoid functional-gradient nanoplate (S-FGM) with porous
effects. Numerical size-dependent solutions were obtained using strain gradient theory
and an isogeometric finite-element formulation.

Please note that the application of the FEM and the BEM is one of the effective ap-
proaches for solving the direct problem and detecting structural damage. The inverse
problem of determining the location and size of the damage was modeled using methods
such as: (1) methods based on artificial neural networks [8-12]; (2) multiple loading meth-
ods [13-16] and (3) methods based on topological optimization approaches [17-24]. The
topological derivative representing the sensitivity for an arbitrary shape, which is func-
tional with respect to the generation of an infinitesimal singular domain perturbation, such
as inclusion, was introduced by Sokotowski et al. [17], and its development was found [18].
Kefal et al. [19] developed a robust and accurate approach based on the innovative coupling
of peridynamics (PD) (a meshless method) and topology optimization (TO) to determine
the optimum topology of load-bearing structures. Park [20] considered the topological
derivative in a limited-aperture inverse scattering problem for noniterative imaging of thin
inhomogeneity. Wahab et al. [21] established a topological sensitivity framework for far
field detection of diametrically small electromagnetic inclusions. Pena et al. [22] studied
the use of steady and time-harmonic thermograms for structural health monitoring of thin
plates. The Topological-Shape Sensitivity Method in various fields of technology, including
shape and topology optimization [23], inverse problems [24] and damage development
modeling [25], has been used. Fernandez et al. [26,27] used the topological derivative
method to solve a pollution sources reconstruction problem governed by a steady-state
convection—diffusion equation. Xue et al. [28] applied the contingent probability method to
track sources of pollutants in open air with a constant emission. Da Silva et al. [29] proposed
a new approach to the problem of damage identification in plate structures based on the
method of topological derivatives. Three inclusions were identified with 32% confidence.
Wei et al. [30] developed an approach based on an improved particle swarm optimization
(PSO) algorithm for damage detection in structures. Khatir et al. [31] applied extended iso-
geometric analysis (X-IGA) combined with PSO for crack identification in two-dimensional
linear elastic problems based on the inverse problem. Pereira et al. [32] developed numeri-
cal identification and characterization of damage propagation using a new optimization
technique called Lichtenberg optimization (LA). Fathi et al. [33] presented a new geometry-
based crack detection approach for plate structures based on the integration of the dynamic
extended finite element method (XFEM) and an optimization algorithm called the enhanced
vibrating particle system (EVPS). Hassine et al. [34] focused on the detection of objects
immersed in an anisotropic medium by boundary measurements. A one-iteration algo-
rithm based on the Kona-Vogelius formulation and the topological gradient method was
proposed. The inverse problem was formulated as a topological optimization approach.
Machado et al. [35] proposed rewriting the inverse source problem as an optimization
problem, where the functional Con-Vogelius type was minimized with respect to the set
of admissible point sources. Goncalves et al. [36] considered the identification of acoustic
parameters in the frequency domain using a topological problem optimization approach.
Pena et al. [37] applied active time-harmonic infrared thermography to detect defects inside
of thin plates. Burchinski et al. [38] reviewed bioinspired methods for solving various
inverse problems for mechanical systems. Abda et al. [39] proposed an approach based on
the so-called energy-like error functional, in combination with the topological sensitivity
method. The topological derivative of the energy-like error functional was calculated using
the topological shape sensitivity method. Numerical tests to indicate the effectiveness of
the developed approach were performed. Krysko et al. [40-43] proposed the application
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of topological optimization methods based on temperature and heat flux measurements.
The effects on the optimal topology of the composite in the presence of two competing
materials were investigated, in addition to the optimality criteria, using linear weight
functions. Pareto spaces were constructed, providing an in-depth understanding of how
these goals compete to achieve optimal topology. The problem of topological optimization
of multilayer structural elements of MEMS/NEMS resonators with an adhesive layer under
the action of mechanical loads was also considered. The problems of the finite element
method were solved using the method of sliding asymptotes.

According to the author’s knowledge, and as summarized in the above review, the
application of topological optimization methods for the identification of holes/inclusions
is still finite. The available publications are devoted to the identification of single holes/
inclusions of the simplest geometry (ellipse and circle), and the quality of the identification
work described is not acceptable. Therefore, the main aim of this work was to develop
a new approach to identifying an arbitrary number of inclusions, their geometries and
locations in 2D and 3D structures, with high recognition quality. Numerical solutions
were obtained using the FEM in conjunction with the sliding asymptote method. Damage
identification is the first step in the investigations of the stress—strain state (5SS) and stability
of mechanical structures, followed by the study of the SSS and stability of perforated
mechanical structures [44] with already-known inclusion locations, determined by TO.

The work is organized as follows. Section 2 describes a new approach to the determina-
tion of an arbitrary number of inclusions, their geometry and their location in the structure
by means of topological optimization. Then, Section 3 discusses the obtained numerical
results, and Section 4 presents the concluding remarks on the results of this study.

2. Materials and Methods

A new approach to identifying an arbitrary number of inclusions, their geometry and
their location in 2D and 3D structures was based on the influence of temperature and heat
flux on the structure. This solves the inverse heat conduction problem.

Consider an isotropic flat cuboid body (Figure 1), inside which there are inclusions
occupying thearea V = {x € [0;a], y € [0;]], z € [0;c]} V1, Vo, ... Vipym=1,2....

Z

X

Figure 1. The cuboid isotropic flat body with selected areas Vi, V3, ... Vj.
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The body was under the action of both the temperature at the boundary B (the
Dirichlet (or first type) boundary condition) and the heat flux at the boundary B, (the
Neumann (or second type) boundary condition). The temperature field T inside V satisfies
the heat conduction equation [40]

kAT =0, inV(x,y,z), 1)
and boundary conditions
T|g, = To, ()
aT
k% Bq - ‘70/ (3)

where A(+) = V2(-) = 9%(-)/9x* + 9%(-) /9y? + 8%(-) /922, Ty is the set temperature at Br;
qo is the heat flux determined on B,; n—is the unit normal vector directed outward of the
area. In the area of V defined subdomains V4, V5, ..., V;, with the coefficient of thermal
conductivity ky, ky, ... , k.

To form the topological optimization procedure, the area V was divided into N finite
elements. Then, each element was assigned a variable density, p,(x)(n = 1, N) which
depends on the vector of design variables x (x, y, z). The thermal conductivity coefficient
depends on the artificially introduced density p,(x), which will be the control variable
when using the Solid Isotropic Material with Penalty method (SIMP) [45].

The thermal conductivity coefficient was introduced as follows:

k(x) = k1ph(x) + k2 (1 — pi(x)) (4)

where ki, ky—are thermal conductivity coefficients in volumes V;;,, respectively, and p > 1
is a penalty factor for the SIMP method. The goal function was defined as follows [40]:

%/ IVo(x)[*dVi + (1 —;()/ [(T— TV 1 (g — ﬁﬂde )

mes
Vin Vin

fx)=x

where the first term is the penalty function to eliminate the “checkerboard” effect; 0 < x < 1

is the coefficient for matching the target function and the penalty function; kg represents

the initial grid size; himax is the current grid size; mes (V) is the area of the inclusions; p (x)

is the physical density; T is the temperature on a flat area and T is calculated temperature

on a flat area; g is a given flow on an area and 7 is the calculated flow on a flat area.
Limitations for physical density p (x) are chosen as the following:

0< [ p(x)d Vi < y-mes (V) (6)
an

where 7 denotes the fraction of material in the inclusions. Identification consists of mini-
mizing the difference in temperature distribution and heat fluxes in the original design,
and obtaining them in this iteration step.

3. Numeric Experiments and Results Discussion

We intend to examine some examples of challenges of identifying an arbitrary number
and planning inclusions, their geometry and their location in a plate, under the influence
of temperature and thermal flows, using topological optimization. Let us consider an
isotropic flat body in the form of a thin plate occupying the area Q = {x € [0;a], y € [0;b]},
inside which are inclusions occupying the area ();, i = 1, m, with the thermal conductivity
coefficients k,, (Figure 2).
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Figure 2. Plate design with marked areas ()1, Oy, ... Q.

We write the classical differential heat equation [40] for the temperature field T inside
the area ()

*T T :
k|:ax2+ax2:| =0, in Q(X,y), (7)
and boundary conditions
T|s; = To, (®)
aT
k= - q0, )

where Tj is the given temperature at I'r; q is the heat flux, installed on the I}, and # is the
vector of the normal to the boundary of the area. The equations were reduced to their
dimensionless forms in the standard way [46]. Next, problems (7)—(9) were solved by the
Finite Element Method using the COMSOL Multiphysics software.

3.1. Problem 1: Investigating the Convergence of a Solution by the FEM Using the COMSOL
Multiphysics Software

To obtain reliable results, the convergence of the solution by the finite element method
was studied using the COMSOL Multiphysics software. The basic material of the plate in
the ()y area was steel, with the coefficient of thermal conductivity (CTC) ky = 44.5, and
(),—stood for inclusions of aluminum with the CTC k, = 238 . The reliability of the
obtained results was considered achieved if the error did not exceed 0.5% of the previous
solution. The study was carried out for three types of inclusions related to geometry
(rectangle, rhombus, square), but the total number of inclusions was equal to 18. The
obtained results are reported in Table 1.

Let us examine the partition into FE of 18 inclusions in the form of rectangles, which
are located: vertically (Table 2), horizontally (Table 3) and at an angle of 45 degrees (Table 4).
Let us also study the influence of location and geometry on the identification result. The
tables are reported: the width of the rectangle; rectangle length; the number of FEs when
splitting into a small grid and the number of FEs when splitting into a large grid. Each table
presents data on the partition into finite elements for three similar cases, while gradually
decreasing the width of the plate. The partitions are presented for two values of the size
inclusion: @)a=2-102m, b=1-10"'m;(b)a=1-102m, b=1-10"! m.
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Table 1. The area (), divided into 18 rectangular inclusions, with corresponding coordinates of the
inclusion center—problem 1.

Coordinates of Location of Centers

of Rectangular Inclusions 2 Lix=1ye[01]} Q
1 L
b Q. Q. o
0.8F %—T [ Q. D Q; Hgs :;
v A
Qp={a=1-1"1b=2-10"%}, n=12,...,18 0-6-; Q@ (o o &
1. (0.2,0.9), 2. (0.5,0.9), 3. (0.8, 0.9), 4. (0.2, 0.75), 5. (0.5, 0.75), 6. [ Q0 [Qn [Q. =
(0.8,0.75), 7. (0.2, 0.6), 8. (0.5, 0.6), 9. (0.8, 0.6), 10. (0.2, 0.45), 11. 04r 2> o 0. |0 &
(0.5, 0.45), 12. (0.8, 0.45), 13. (0.2, 0.3), 14. (0.5, 0.3), 15. (0.8, 0.3), = = &
16. (0.2, 0.15), 17. (0.5, 0.15), 18. (0.8, 0.15) 0.2r 12 [Qn [Qu
0 .«
i {x =0,ye [0,1]}
0 02 04 06 08 1 Y
Table 2. Location of inclusions in the area and number of FEs for different size a.
X X lX
1 1
b ] ’— : — — g,;‘ @ll /
0.8 Fa J L 0.8 Ta . 038 a/b 7 /7
Geometry and 0.6 [ | \ 0.6l = = = 06y Z  Z Z
Dimensions Inclusions 0.4 \ ] \ 0.4 | [ — 04|
| | I — = 7 4/
02 L J L 0.2 — — — 0.2 2 7 2
0 0
02 04 06 08 1Y 0 0204 0608 1Y 0 02040608 17
Number FE Nj for _ _ _ _ _ _
4=2-102m b=1-10""m N; = 1453, N, = 2552 N; = 1462, N, = 3036 N; = 1351, N, = 2922
Number FE N, for . . _ _ _ _
1=1-102m, b=1-10"m N; = 2345, N, = 5744 N7 = 2448, N, = 3284 N; = 2469, N, = 6251

Table 3. Distribution of the thermal field and the result of identification of rectangular shapes.
Inclusions (18 elements)—Problem 2; O, = {a=1-1"1,b=2- 10_2}.

- s Results of th
Type of Boundary Conditions (10)—(12) Temperature Distribution esu ts o .tc.a .
Topological Optimization
X =0 X T=0

1
0.8

<06 -

id L
(10) “04
0.2
0

0 02 04 06 08 1 Y o7 i o5 o5+ Y

T=0 T=0
@) Om,m=1,2,... 18 (d) Om,m=1,2,... 18
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Table 3. Cont.
- e Results of the
Type of Boundary Conditions (10)-(12) Temperature Distribution Topological Optimization
q=60 X q=60
o
2 4 T
1) -
<
0 02 04 06 08
T=0
(b) Om, m=1,2,... 18
q=60 X
H 1
[ 0.8
=) U — o 0.6 g
= | = Il
I [ o I, o
(12) H 0.4
H 0.2
: X ’ ; ; 0
0 02 04 06 08 002 04 06 o8 1 ¥

q=60
() OQypm,m=1,2,...18

q=60
) On,m=1,2,...18

Table 4. Distribution of the thermal field and identification results for rectangular-shaped inclusions
(18 elements) rotated by 90 degrees—Problem 3; Q, = {a =1-171,b =2-1072}.

Type of Boundary Conditions Temperature Results of the
(10)-(12) Distribution Topological Optimization
X T=0 X T=0
1f 1r
0.8 0.8¢
< 06t o o 06f o
V=1 I =] Il
8 = I S
(10) 0.4} 0.4
0.2 0.2

002 04 06 o5 T Y
T=0
(d) Om,m=1,2,... 18
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Table 4. Cont.

Type of Boundary Conditions Temperature Results of the
(10)-(12) Distribution Topological Optimization
- 4=60 % q=60

0.8
—~ 0.6
® T
I A
(1) 04 S
0.2
of ! . . . . . @ ok
0 02 04 06 08 1 e ke W
= T=0
(®) Omym=1,2,... 18 (€ Om,m=1,2,... 18
X q=60 X q=60
it I
0.8 0.8
0.6} o 06
¥ T L
(12) T o “ 04t
0.2 0.2
U' U. )
0 02 04 06 08 1 Y 002 07 06 08 T
q=60 q=60
(&) Om,m=1,2,... 18 ) Qm,m=1,2,... 18

From the data presented in Table 2, several conclusions can be drawn: (1) The location
of rectangular inclusions significantly effects the partition of the grid (N, N2); (2) size
width is decreased—a, for rectangular inclusions, leads to an increase in the number of FE,
and for Ny, the increase is by more than 2 times.

3.2. Problem 2: Investigation of the Influence of the Boundary Conditions of the Thermal Problem
on the Identification of a Large Number of Inclusions in the Form of Rectangles

In this example, the influence of three types of boundary conditions of the thermal
problem on the identification of a large number of inclusions in the form of rectangles was
considered. The following boundary conditions for the thermal problem (7) were used:

ar
k%|11 :q:6O,T|12:T|]3 :T|[4 =0 (10)
dr dr
k%hl = k%'lz =4q= 60/ T|l3 = T‘l4 =0 (11)
aT aT ar
k%hl: %‘lzzk%|l4:q:6O,T|1320 (12)

The results of the distribution of the thermal field and identification of inclusions for
the different boundary conditions of the thermal Equation (7) are shown in Table 3.
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Upon impact of heat flux only to the left boundary of the plate (boundary condition
(10) (Table 3a)), the left column of inclusions was identified. Inclusions number 2 and 17
in the center column are incompletely identified (Table 3d). In the case of an impact of
heat flux on the left and upper boundary of the plate (boundary condition (11), (Table 3b)),
inclusions 17 and 18 were not completely identified (Table 3e). In the case when the heat
fluxes impacted on the left, upper and lower boundaries of the plate (boundary condition
(12), (Table 3c)), then all inclusions were identified (Table 3f). Thus, the use of the boundary
condition (12) allows you to fully identify all inclusions. It can be concluded that these
boundary conditions significantly affect the inclusion’s identification (Table 3f) and allow
them to identify completely.

3.3. Problem 3: Investigation of the Influence of the Boundary Conditions of the Thermal Problem
on the Identification of 18 Inclusions in the Form of Rectangles Rotated by 90 Degrees Compared to
Problem 2

Table 4 shows the heat flux distribution, as well as the results of a study of the impact
of the boundary conditions of the thermal problem on the identification of 18 rectangular
shaped inclusions, rotated by 90 degrees compared to problem 2.

With impact of the heat flux only on the left boundary of the plate (boundary condition
(10) (Table 4a)), the left and central columns are identified (Table 4d). In the case of impact of
heat flux on the left and upper boundaries of the plate (boundary condition (11), (Table 4b))
inclusions 15, 17 and 18 (Table 4e) were not identified. In the case of heat flux impact on
the left, upper and lower boundaries of the plate (boundary condition (12), (Table 4c)), all
inclusions were identified (Table 4f). The results show that, as in the previous case (Table 3),
when changing the direction of the inclusions. the best identification occurs when using
the boundary condition (12).

3.4. Problem 4: Investigation of the Influence of the Boundary Conditions of the Thermal Problem
on the Identification of 18 Inclusions in the Form of Rectangles Rotated by 45 Degrees Compared to
Problem 3

Let us consider the case when the plate contains 18 rectangular-shaped inclusions
rotated by 45 degrees, compared to problem 3.

Upon impact of heat flux only on the left border of the plate (boundary condition
(10), (Table 5a)), the left and central columns were identified, except for two inclusions in
column number 3 (Table 5d). In the case of impact of heat flux on the left and top plate
boundary (boundary condition (11), (Table 5b)), inclusions 12, 15 and 18 (Table 5e) were
not identified. In the case where heat flux impacted on the left, top and bottom of the plate
(boundary condition (12), (Table 5c)), all inclusions were identified (Table 5f). The best
identification occurred for the boundary condition (12), as well as for the examples given
in Tables 3 and 4. Based on the examples above, it should be concluded that the angle of
rotation of rectangular inclusions relative to the Y-axis does not affect the identification of
the boundary conditions (12).

3.5. Problem 5: Identification of the 18 Rhombuses Inclusions, under the Influence of Temperature
and Heat Fluxes

Further, consider a problem with 18 inclusions in the shape of a rhombus with a side
size of 0.05 m along the plate. The coordinates of the centers of these inclusions coincide
with the coordinates of the rectangles (Table 1). The boundary conditions and the form of
temperature and heat fluxes are the same as in Problem 2. The convergence of FEM when
solving the direct problem of revealing of rhomboidal inclusions is presented in Table 6.
The boundary conditions and the location of inclusions are presented in Table 7.
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Table 5. Distribution of the thermal field and identification results for rectangular-shaped inclusions
(18 elements) rotated by 45 degrees—Problem 4; 0, = {a =1- 11p=2. 10_2}.

. Temperature Results of the
Type of Boundary Conditions (10)-(12) Distribution Topological Optimization
X T=0 X T=0
l l
0.8 0.8
= 0.6 =3 - 0.6 -
T & ¥ L
(10) 04 o4
0.2 0.2
0 ¢ .
o 02 04 06 oz 1 Y 02 04 06 o8 1 Y
=0 T=0
(@) Om,m=1,2,... 18 d) O, m=1,2,... 18
x (]:6” X L]=()“
1
&
0.8 Y
o 06 . z
(11) & 0.4
0.2
0 '
0 02 04 06 o8 1 Y 002 04 06 o8 1 Y
T=0 I=0
b) O, m=1,2,... 18 (€) Om,m=1,2,... 18
X ‘.1:60 X L]:GO
it
Y
0.8
Vi
0.6f
i 9 7 i
(12) “ o4} Z = =
V4
0.2
7
oh

[=

0.2 0.4 0.6
q=60

() Om,m=1,2,...18

A%

02 04 06 08 1
q=60

) Om,m=1,2,... 18

Table 6. Investigation of convergence of FEM with different numbers of finite elements (FEs)—problem 5.

N
FE number 643 1222
1)
. 1.612 0.5142
(in percent)
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Table 7. Distribution of the thermal field and the outcome of identification of rhomboidal inclusions
(18 elements) with a side equal to 0.05 m—Problem 5.

. Temperature Results of the
Type of Boundary Conditions (10)-(12) Distribution Topological Optimization
X -
X T=0 -0
1t Ir
08 0.8
= 06 - 0.6 i
(10) 0.4F o 04
0.2 0.2
0.1 ok
0 02 04 06 o8 1 Y o5 o3 o8 oz 1 ¥
T=0 T=0
(@Om,m=1,2,...18 (d)Om,m=1,2,... 18
X X q=60
1t Ir
0.8 0.8
0.6
< 06 o .
If = ki 1
(11) o4t > 04
02 02
of of
L s L L 1 L Y (l) 0.2 0.4 ()I(, o'g i X
0 02 04 06 08 1 ’ : ’ ’
T=0 T=0
() Om,m=1,2,... 18 (€) Omym=1,2,... 18
X q=60 X q=60
1 Ir
\
08 08
&
_ 06} O = = 06 i
I S ¥ =
(12) 7 04 . T
&
0.2 o 02
0 0r
0 02 04 06 08 Y 0 0'_3 0.'4 06 08 J Y
q=60 q=60
() Om,m=1,2,... 18 () Om,m=1,2,... 18

The analysis of the obtained results (Table 6) shows that 1222 finite elements with an
error = 0.5142% are sufficient to identify an area with 18 lozenge-like inclusions.

With the influence of heat flux only on the left border of the plate (boundary condition
(10) (Table 7a)), identification occurred only for the left column of inclusions (Table 7d).
A portion of the rhombuses, located in the 3rd column of the plate, was not identified.
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With the influence of heat flux on the left and top of the plate (boundary condition (11),
(Table 7b)), unlike in the first case, almost all inclusions were identified except for the
bottom one in the third column (Table 7e). In the case where heat flux influenced the left,
bottom and top of the plate (boundary condition (12), (Table 7c)), almost all inclusions
were identified (Table 7f). In Problems 2, 3 and 4, the best identification occurred for the
boundary condition (12). It should be noted that changing the inclusions’ geometry does
not have an effect on the identification process under the boundary condition (12).

3.6. Problem 6: Identification of the 18 Inclusions in the Form of a Square under the Influence of
Temperature and Heat Fluxes

Let us consider the case when the plate contains 18 inclusions in the form of squares,
each with a side size of 0.08 m. The coordinates of these inclusions are the same as
the coordinates of the rectangles (Table 1). The boundary conditions and the form of
temperature and heat fluxes are the same as in Problem 2. Investigation of the convergence
of FEM to solve the direct problem of identifying inclusions in the form of squares were

presented in Table 8. The boundary conditions and the location of inclusions were presented
in Table 9.

Table 8. Convergence and number of used finite elements (FEs)—problem 6.

N
FE number 304 1330
0 1.5863 0.5112

(in percent)

Table 9. Distribution of the thermal field and the outcome of identification of square inclusions
(18 elements) with a side equal to 0.08 m—Problem 6.
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Analysis of the results obtained (Table 8) showed that to identify an area with 18 square
inclusions, 1330 finite elements are sufficient, with an error of = 0.5112%.

With the influence of the heat flux only on the left border of the plate (boundary
condition ((10), (Table 9a)), not all inclusions are fully identified (Table 9d). This is due
to the action of heat flux. It should be noted that the top and bottom inclusions are not
fully identified. In the case when heat flux is applied to the left and upper boundaries of
the plate (boundary condition (11), (Table 9b)), then the identification results (Table 9e) are
better in contrast to Problem 2, but the upper and lower inclusions are also not completely
identified. In the case when the heat flux is applied to the top, right and left boundaries
of the plate (boundary condition (12), (Table 9¢)), all inclusions are identified with good
accuracy (Table 9f). An analysis of the results, which are presented in Tables 3-5, 7 and 9,
leads to the following conclusions. Under the action of the heat flux only on the left
boundary of the plate (boundary condition (10), (Tables 3a, 4a, 5a, 7a and 9a)) only the left
column and the middle of the middle column were defined (Tables 3d, 4d, 5d, 7d and 9d). It
should be noted that the best identification result was obtained for small square inclusions;
for rthombuses, it was slightly worse and for large square inclusions, identification was
minimal. Thus, the type and size of the hole affects the process of determining the location
and type of inclusions. In the case of action of the heat fluxes on the left and upper border
of the plate (boundary condition (11), (Tables 3b, 4b, 5b, 7b and 9b) parts of the inclusions
in the lower rows were not defined (Tables 3e, 4e, 5e, 7e and 9e¢). In the case when heat
flux acted on the left, upper and lower boundaries of the plate (boundary condition (12),
(Tables 3f, 4f, 5f, 7f and 9f), then all inclusions were well-defined. As discussed in the above
study, we can conclude that for all studies considered, the identification of all inclusions
was fully achieved only when the heat flux was applied to three boundaries and boundary
condition (12) was considered.

3.7. Problem 7: Identification of Inclusions by Changing Their Location, Number and Size

Let us consider the square plate containing inclusions in the form of rectangles with
different types of arrangements (the data are presented in Table 10). For rectangles, two
types of geometries were used, namely when the width, b, decreases, and the value length,
a, does not change. The parameters for changing the width of the rectangles are shown in
Table 10, in Roman numerals II and I. In addition, in Table 10, the distributions of heat flux
for three cases of heat flux action, as well as boundary conditions (10)—(12), were presented.
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Table 10. Geometry, location of the inclusions and temperature distribution.
La=6-10"1m,b=1-10"1m ILa=6-10"1m,b=25-10"2m
Coordinates Centers of the Rectangles: ~ Coordinates Centers of the Rectangles:

Coordinates Centers of the Rectangles:

A (0.5, 0.9), B (0.1, 0.5), A (0.5, 0.5), B (0.1, 0.5),

A (0.5, 0.35), B (0.5, 0.75) C (0.5,0.1) C (0.9, 0.5)

a _ b [:Hb b b
— A
e
a
B [ ]
a
l a ’

I :
Boundary condition (10) Boundary condition (11) Boundary condition (12)

X
1

X q=60
#

X q=60

0.8¢

0.6

60

q=

0.4r

0.2r

0 02 04 06 08 o °

q=60

Identification results for cases I and II are presented in Table 11. However, one may
also notice that, when the value of thickness (b) decreases, then the plate must be divided
into a larger number of FEs. In this case, inclusions were identified with good accuracy. The
heat flux was determined for three types of boundary conditions (10)—(12). It was found
that for each variant of the boundary conditions, the identification results were different.
This was especially noticeable in the case when the heat flux was specified from three sides
of the plate and the boundary condition (12) was taken into account. Note that the size of
the inclusions did not affect the quality of the identification.

Identification results and distribution of thermal fields for three «C» shaped rectan-
gles are presented in Table 12. In order to obtain a good result for identifying narrower
inclusions, the mesh was divided into a larger number of FEs than in the previous case.
Afterwards, the inclusions were identified completely, especially in the case when the
heat flux was supplied from three sides of the plate (boundary condition 12). Note that
when the boundary conditions (10) and (11) were taken into account, the identification
result was not of high quality. At the same time, for a “thin” inclusion, the identification
under the boundary condition (11) was much better than for a “thick” inclusion, unlike the
previous case.

Identification results and distribution of thermal fields for three “H” -shaped rect-
angles are presented in Table 13. Inclusions took the shape we need, and were fully
identified, when the heat flux was supplied from three sides, taking into account boundary
conditions (12).
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Table 11. Mesh configuration for inclusions in T-shape, and the results of identification for different
boundary conditions.
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Table 12. Mesh configuration for inclusions in C-shape, and the results of identifications for different
boundary conditions.
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Table 13. Mesh configuration for inclusions in H-shape and the result of identification for different
boundary conditions.
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For problem 7, for the identification of inclusions by changing their location, number
and size, it can be concluded that when the boundary condition (12) was taken into account,
the identification results did not depend on the location, number or size of inclusions.

4. Conclusions

This work discloses a new approach to identifying an arbitrary number of inclusions,
their geometry and their location in 2D and 3D structures. This new approach is based on
the use of topological optimization techniques, specifically the SIMP (Solid Isotropic Mi-
crostructure with Penalization for intermediate densities) method. The numerical solutions
were obtained by the finite element method in combination with the method of moving
asymptotes. Comsol Multiphysics software was used to simulate the constructed algorithm.
Note that all previously known approaches are based on measuring the temperature and
heat fluxes in the initial structure. This leads to the problem of determining the local ther-
mal conductivity coefficient. The proposed approach is not affected by those constraints,
and is applicable to the identification of any form of geometry or arrangement of inclu-
sions in the three-dimensional problem of elasticity theory, as well as the two-dimensional
problems of the theory of shells, plates and beams, and the plane problem of elasticity
theory. According to the study presented herein, we can conclude that the newly developed
approach is effective. In the present study, a large numerical experiment was conducted to
determine the increase in the number of inclusions, their geometry and their location in the
structure, which allowed us to draw the following conclusions:

1. The best results for determining an arbitrary number of inclusions were obtained
when taking into account heat flux from three sides of the boundary conditions (12).
Note that, for boundary condition (12), the identification results are not affected by
the location of the inclusion and its dimensions.

2. The novelty of the proposed approach for inclusion identification allows us to neglect
the initial information about the location of inclusions.
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3. Numerical results in the investigated problems were obtained “practically” as an
exact solution. The calculation error does not exceed 0.5% of the exact one.

4.  The proposed approach and methodology for its implementation are the first step of
the analysis of the stress—strain state of fracture of a structure during crack formation.

5. Anew approach for determining an arbitrary number of inclusions, their geometry
and their location can be used to identify inclusions in 3D solids.
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