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Abstract: To address the issue of low accuracy in insulator object detection within power systems
due to a scarcity of image sample data, this paper proposes a method for identifying insulator objects
based on improved few-shot object detection through feature reweighting. The approach utilizes a
meta-feature transfer model in conjunction with the improved YOLOv5 network to realize insulator
recognition under conditions of few-shot. Firstly, the feature extraction module of the model incor-
porates an improved self-calibrated feature extraction network to extract feature information from
multi-scale insulators. Secondly, the reweighting module integrates the SKNet attention mechanism
to facilitate precise segmentation of the mask. Finally, the multi-stage non-maximum suppression
algorithm is designed in the prediction layer, and the penalty function about confidence is set. The
results of multiple prediction boxes are retained to reduce the occurrence of false detection and
missing detection. For the poor detection results due to a low diversity of sample space, the transfer
learning strategy is applied in the training to transfer the entire trained model to the detection of
insulator targets. The experimental results show that the insulator detection mAP reaches 29.6%,
36.0%, and 48.3% at 5-shot, 10-shot, and 30-shot settings, respectively. These findings serve as
evidence of improved accuracy levels of the insulator image detection under the condition of few
shots. Furthermore, the proposed method enables the recognition of insulators under challenging
conditions such as defects, occlusion, and other special circumstances.

Keywords: insulator; few-shot object detection; feature extraction network; attention mechanism;
non-maximum suppression algorithm

1. Introduction

With the continuous expansion and rapid growth of the scale of the power system,
the sustainability of reliable operation of the power grid becomes more important. Given
the supportive and isolative functions of insulators, their operating status determines
the overall safety of the power system’s operation [1]. In the inspection task of electrical
equipment such as insulators, real-time identification and detection of image samples are
carried out by using object detection network models based on deep learning. These models
include the faster region-convolution neural network (Faster R-CNN) [2], the single-shot
multibox detector (SSD) [3], you only look once (YOLO) [4], etc. Because of its technical
advantages, it can replace the manual to realize automatic and intelligent detection, which
has obtained some applications and research. In the literature [5], Faster R-CNN was
used as the object detection network; the optimal parameters were obtained by adjusting
different network layers and comparing the size of the convolution kernel; and sample
expansion was carried out by image rotation. Experimental results showed that this method
has high detection performance in the identification of transmission line components and
defects. Literature [6] improved the anchor point generation method for the Faster R-CNN
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network to improve the detection effect, aiming at the situation that the insulators of
transmission and transformation are difficult to identify due to different image scales and
mutual occlusion. Literature [7] proposed a transmission line component detection method
that combined the SSD network with the feature pyramid network, which improved the
automatic detection accuracy of insulator faults in unmanned aerial vehicle (UAV) power
inspection mode. Literature [8] improved the SSD network according to the specificity of
images of electrical equipment components in substations. They introduced an additional
feature extraction layer, optimized the quantity and proportion of prediction boxes, and
improved the soft-penalty non-maximum suppression algorithm. These modifications
led to increased detection accuracy of five types of electrical equipment images, achieved
through the utilization of transfer learning during the training process. Literature [9]
proposed an improved YOLOv3 [10] detection method for insulator foreign bodies. A
dense network is designed to replace the original convolutional network through the reuse
of multilayer features and the fusion of insulator images, which can improve detection
accuracy while reducing false detection occurrences. Literature [11] proposed an insulator
self-detonation identification method based on YOLOv4 [12], which designed a modified
detection network with a multi-layer information fusion and attention mechanism. The
results showed that the detection precision had improved.

Most object detection technologies with a wide range of applications rely on a large
amount of annotated data to achieve model training and use network models with good
performance to achieve sample detection. Therefore, large-scale open-source general data
sets such as MS COCO [13] and Pascal VOC [14] have been widely used. However, the
confidentiality and particularity of the actual operation process of the power system usually
result in difficulty in obtaining large-scale insulator image data sets for training. For exam-
ple, in extremely bad weather conditions, it is difficult to obtain sufficient clear and usable
images by using a manual or UAV, and there are certain security risks. Given the above
problems, the object detection method based on the few-shot theory has gradually entered
the field of vision of researchers. Literature [15] made use of a data enhancement approach
to handle the problem of few-shot. The saliency network was used to integrate the feature
information of foreground and background in the image to achieve data amplification, and
then the intraclass and interclass hybrid schemes were used to make the expanded data
set play a role in guiding and training the network. Literature [16] proposed a two-stage
fine-tuning approach (TFA), which achieved better performance in both the source domain
and target domain. They first used the Faster R-CNN model as the detection framework,
utilizing base-class image samples for pre-training the detection network and freezing the
class-irrelevant part of the network. Then, they used new class samples of few-shot to fine-
tune the model in the second stage. In the literature [17], the few-shot object detection via
feature reweighting (FSRW) method was proposed for few-shot detection. This approach
employed transfer learning and a reweighting strategy. The feature reweighting vector,
generated by the support set and query set, guided the model to learn the discriminant
ability and quickly generalized it for the detection of new classes. In addition, there are
metric learning methods [18,19] and graph convolutional network-based methods [20,21].

However, as shown in Figure 1, insulators have their own characteristics. For example,
the scale of the insulator target shown in (a) is slightly smaller in the image, and the
defective part of the insulator shown in (b) and the insulator blocked by other equipment
shown in (c) appear. It can be seen that the current few-shot object detection methods
on the targeted insulators are difficult to achieve. Therefore, based on the FSRW model,
an object detection method for few-shot insulators is proposed in this paper. The main
contributions are as follows:

• The article uses YOLOv5 as the main detection network of the whole model, the feature
extraction network of YOLOv5 is replaced by a corrected self-calibrated convolutional
(SCconv) network [22] to develop the ability of the model to detect insulators with
different scale targets;
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• The article embeds the selective kernel network (SKNet) attention mechanism [23]
before the input of the reweighting module, to generate a detailed mask and enhance
the capacity of the network to obtain key detail meta-feature information of the support
set;

• The article proposes an improved multi-stage non-maximum suppression (NMS)
algorithm to avoid the wrong deletion of candidate boxes with insulator targets and
reduce the missing detection of occluding insulators.
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Figure 1. Example insulator image. (a) Examples of small-scale insulators; (b) Examples of defective
insulators; (c) Examples of blocking insulators.

2. Improved Feature Reweighting Model

In this paper, the few-shot object detection via feature reweighting model is improved
to deal with insulator identification. The improved model structure is shown in Figure 2,
mainly including the feature extraction module, reweighting module, and prediction mod-
ule, respectively, in improving the corresponding feature extractor, reweighting module,
and prediction layer. Among them, a feature extractor is used to extract image meta-
features. In the part of the feature extraction network of the model where a self-calibrated
convolutional feature extraction network is introduced and improved, the model can obtain
multi-scale and finer meta-feature information. The convolutional neural network in the
reweighting module consists of six convolutional layers, five maximum pooling layers,
and a global pooling layer. The input of this module is the splicing of a support set image
composed of few-shot insulator images and its mask, among which the mask is a detailed
mask generated after processing based on the SKNet attentional mechanism module. After
the convolution integration of the meta-feature reweighting module, the reweighted meta-
feature vector is generated, and the channel convolution integration is carried out. The
prediction layer uses the reweighting meta-feature information to get the classification and
positioning score of the target. To reduce false detection, the non-maximum suppression
algorithm is improved in the prediction layer. The training strategy of the network uses the
data set with abundant sample space to train the whole model initially and then quickly
transfer the trained meta-knowledge to the recognition of few-shot insulator images.
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3. Methodology
3.1. Improved Self-Calibrated Feature Extraction Network

For the promotion of the positioning ability of the network for the multi-scaled insula-
tors, the self-calibrated convolutional network with the Focus layer is used in the feature
extraction module, which enhances the data. Moreover, it adaptively establishes a potential
space around each specific location containing contextual information, which expands the
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receptive field of the convolutional layer. It enables the network to combine more abun-
dant information and improves the network’s ability to obtain characteristic information
when the insulator sample is small-sized. The structure of the improved self-calibrated
convolutional feature extraction network is shown in Figure 3.
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Specifically, the Focus layer is inserted at the head end of the improved self-calibrated
feature extraction network. The original 640 × 640 × 3 image is input into the Focus
structure and then transformed into a 320 × 320 × 12 feature map by slice operation.
After contact, a convolution operation is implemented again. The feature map has finally
changed to 320 × 320 × 64. The Focus layer carries out the down-sampling process, which
rapidly and efficiently improves the extent of the effective receptive field while retaining
the feature information of the object. Then, the feature graph with an input size of 320 ×
320 × 64 is divided into two 320 × 320 × 32 parts, which are respectively input into two
scale spaces for convolutional feature conversion. After average pooled down-sampling in
the self-calibration space, up-sampling is performed, and the Sigmoid activation function
is used to calibrate the features extracted from the convolution. Finally, the feature map is
derived from the fusion of the contact.

Figure 4 shows the comparison of heat maps between CSPDarknet53 and the improved
SCconv feature extraction network. From it, the expanded receptive field, the decreasing
influence of irrelevant background information, and the promoted locating accuracy of
targeted insulators in the network model can be seen.
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3.2. Mask Generation Method Based on SKNet

The input in the reweighted part is the stitching of the original image and the object
mask. Since the mask used in the original model is the target location in the rectangular
frame, the precise contour of the target cannot be located. To reduce the negative effects
of background on the discriminability of the pixel feature vector of the insulator image, a
selective kernel network-based attention mechanism is introduced to generate the detailed
pixel-level mask adaptively.

As shown in Figure 5, SKNet can be divided into three portions: Segmentation, Fusion,
and Selection. In the segmentation part, the original input image passes two convolution
kernels with sizes 3 × 3 and 5 × 5, respectively, to generate two feature graphs, U1 and
U2. In the fusion part, firstly, the feature map is fused by element-wise summation, then
the feature information is embedded by global average pooling, dimensionality is reduced
by the full connection layer, and the binary classification task is completed by the Softmax
activation function. Finally, two feature diagrams, S1 and S2, are generated, respectively, in
the selection part, and the output feature mask is obtained by element-wise multiplication
and weighting.
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The mask used in the reweighting module of this method is generated by SKNet
after training with the above method. The comparison of the generated mask is shown
in Figure 6. As shown in this figure, the mask generated by the selective kernel attention
mechanism network is increasingly focusing on the fine features of the insulator target
region and can extract pixel-level feature information more effectively. This helps optimize
the model’s differentiation performance for small differences in insulators on different
scales.
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3.3. Multi-Stage Non-Maximum Suppression Algorithm

In the prediction module of the network, since a great deal of prediction boxes would
be generated at each anchor, the detector deletes all the prediction boxes that IoU is
less than the threshold when the original non-maximum suppression algorithm of the
YOLOv5 network was used. Based on the above unsettled problems, an improved multi-
stage adaptive NMS algorithm is proposed to improve the ability to detect the occluding
insulators. The multi-stage penalty function is introduced, and the application of this
function makes the detection box whose IoU value is greater than the threshold value not
discarded. Additionally, the results of all prediction boxes are retained as far as possible
to decrease the missed detection rate of insulators in the case of occlusion. The penalty
function is shown in Equation (1):

Pi =


Si

√
1 − IoU(M, bi)

3, IoU(M, bi) < N1

Si[0.7 − lg(IoU(M, bi) + 0.5)], N1 ≤ IoU(M, bi) ≤ N1

Si

√
1 − IoU(M, bi)

2, IoU(M, bi) > N2

(1)

where Si represents the confidence score of the i-th prediction box; N1 and N2 represent
the two thresholds of the penalty function, and 0 < N1 < N2 < 1. The pseudocode of the
improved multi-stage non-maximum suppression algorithm is shown in Algorithm 1.

Algorithm 1. Multi-stage non-maximum suppression algorithm pseudocode.

Input:
Initial candidate box set B = {b1, . . . , bN}

Confidence set K = {K1, . . . , KN}
Begin

Define empty set D
while The candidate box set B is not empty do

Order by confidence score from highest to lowest
The candidate box M with the highest confidence is moved into set D and removed from

set B
for Candidate boxes in set bi do
if 0 < The IoU of candidate frame M and candidate frame bi < N1 then
Si = [1 − IoU(M,bi)3]1/2

else if N1 5 The IoU of candidate frame M and candidate frame bi 5 N2 then
Si = 0.7 − lg(IoU(M,bi)) + 0.5
else Si = [1 − IoU(M,bi)2]1/2

Recalculate the confidence Ki
end

end
Output: Set D and the confidence set K

End

4. Experiment and Analysis
4.1. Experiment Preparation and Data Sets Settings

The hardware and environment used in this experiment are shown in Table 1.

Table 1. Experimental hardware and environment.

Configuration Parameters

Operating system Windows 10
CPU Intel(R) Core(TM) i7-10700 CPU @ 2.90 GHz
GPU NVIDIA Geforce RTX2080 Ti

Experimental environment version Python3.6, Pytorch1.6, Cuda10.1
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The base insulator image samples are from the open-source insulator data sets CPLID [24]
and IDID [25]. The new insulator image samples are composed of field shot images and a
small part of the CPLID and IDID data sets, which are set into four categories. The number
of samples is set at 5, 10, and 30. Therefore, three kinds of experiments are set up in this
paper, and the experimental settings are 4-way 5-shot and 4-way 10-shot, and 4-way 30-shot
respectively. Labelimg software is used to annotate the category and location information.
The category and label information are shown in Table 2.

Table 2. Insulator categories and labeling information.

Categories Labels

Glass normal insulator Insulator1
Missing part of glass insulator Defect1
Composite normal insulator Insulator2

Missing part of composite insulator Defect2

4.2. Training Strategy

In the process of training, base insulator data sets with sufficient data samples are
first used to train the whole model, including the improved SCconv network, the feature
reweighting module inserted into the SKNet attention mechanism, and the detector after the
improved NMS algorithm is introduced. After the training is completed, the meta-feature
in the retention network and the meta-knowlege are transferred successively. The new
insulator images with only k-shots are divided into query sets and support sets according
to the ratio of 1:4 for training.

In this experiment, the combination of warmup preheating learning rate and cosine
annealing learning rate decline can make the learning at the early stage of training first
maintained at a low level, the training process maintained stable through linear growth,
and then the learning is slow first and then declined rapidly. This learning rate adjustment
can ensure that the model tends to converge at an appropriate speed. By obtaining optimal
parameters, the model’s performance can be improved. The experimental parameters are
shown in Table 3.

Table 3. Training parameter setting.

Parameters Settings

Base lr 0.001
Batch size 16
Decay rate 0.9

Epoch 100

In addition, to simulate image noise caused by bad weather and other conditions in
real scenes, salt-and-pepper noise and Gaussian noise are introduced into 20% of image
samples, as shown in Figure 7.
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Due to insufficient occlusion in field images, to strengthen the learning capacity of the
model under occlusion conditions, the cutout data enhancement strategy is introduced for
10% of image samples; that is, rectangular boxes are used to block images randomly, as
shown in Figure 8.
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4.3. Evaluation Index

Precision refers to the proportion of real cases in all predicted positive cases, and recall
refers to the proportion of real cases in all positive cases [26]. The calculation method is
shown in Equations (2) and (3):

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

where TP represents a positive sample detected and is in fact a positive sample; FP repre-
sents a positive sample when in fact it is a negative sample; and FN means it is tested as a
negative sample but is actually a positive sample.

Furthermore, the average accuracy index of mainstream evaluation indicators of object
detection is introduced, as shown in Equation (4):

mAP =

n
∑

i=1
APn

n
(4)

To comprehensively evaluate the effectiveness of the improved method, the harmonic
average evaluation indexes F1-score and F2-score of precision ratio and recall ratio are
introduced, as shown in Equations (5) and (6):

F1 =
TP

TP+0.5FP+0.5FN
(5)

F2 =
TP

TP+0.8FP+0.2FN
(6)

Given the unique characteristics of insulator images, the method aims to highlight the
detection capability of insulators with varying scales. To achieve this, weights are adjusted
based on different AP values, and a multi-scale accuracy metric, APms, is defined, as shown
in Equation (7):

APms = 0. 5×APS + 0.15 × APM + 0.35 × APL (7)

where the APS boundary frame area is less than 32 × 32, the APM boundary frame area is
between 32 × 32 and 96 × 96, and the APL boundary frame area is greater than 96 × 96.

4.4. Experimental Results and Analysis

Figure 9 shows the comparison of insulator test diagram samples of large-scale sam-
ples, small-scale samples, defect samples, block samples, samples with salt-and-pepper
noise, samples with Gaussian noise, and samples with cutout data enhancement under
the 30-shot setting. The first column is the test result for the original FSRW model. The
second is the test result of the improved model. As can be seen from Figure 9a, the im-
proved method’s positioning ability on large-scale insulator targets is improved by a large
margin compared with the original FSRW model. From Figure 9b, the improved model not
only improves the positioning ability of small-scale insulator targets but also reduces the
occurrence of missed detection. From Figure 9c, the improved method avoids a range of
false detections on the whole string of insulators for multiple strings and can better identify
the defective part of the insulator. From Figure 9d, compared with the original method, this
method can better detect the location and classification information of blocking insulators.
Figure 9e,f show that the detection accuracy of this method is still improved after the
influence of salt-and-pepper noise and Gaussian noise is introduced, which proves the
noise suppression performance of this method. Figure 9g shows that insulator targets can
also be detected by this method after cutout rectangular frame occlusion is introduced. This
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proves that this method can also realize positioning and recognition by using a small part of
the insulator’s characteristic information after occlusion. Figure 9 shows the effectiveness
of the improved model.
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Figure 9. Comparison of insulator detection. (a) Comparison of large scale insulator detection;
(b) Comparison of small scale insulator detection; (c) Comparison of insulator detection with the de-
fect; (d) Comparison of insulator detection with blocking; (e) Comparison of insulator detection with
salt-and-pepper noise; (f) Comparison of insulator detection with Gaussian noise; (g) Comparison of
insulator detection with cutout rectangular frame occlusion.

Figure 10 shows the P-R graph under different shot settings before and after the
improvement, in which the abscissa is recalled and the ordinate is precision. As can be
seen from the figure, the improved model has a larger area enclosed by the horizontal
and vertical coordinates. This indicates that this method has achieved better detection
performance in few-shot insulator detection tasks, especially in the settings of 10-shot and
30-shot.
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In order to visually showcase the enhancement brought by the improved self-calibrated
feature extraction network in detecting few-shot insulator images of various scales, the
backbone network in this model is replaced with different architectures. Specifically,
Resnet [27], VGG16 [28] from Faster R-CNN, CSP Darknet53 [12] from YOLOv4, and
SCconv are utilized as alternative backbone networks in the model. Under the setting of
30-shot, the detection accuracy results of different feature extraction networks at different
scales are shown in Table 4. According to the table, the APS of this method is increased
by 1.4–13.3% when detecting insulator targets on a small scale, which proves that the
performance of this method is improved. The APM of the proposed method also increases by
0.7–11.6% when detecting medium-insulator targets. When detecting large-sized insulators,
the APL of this method is slightly lower than that of Resnet, but it exceeds most feature
extraction networks, increasing by 0.6–2.6%. The multi-scale accuracy APms of the feature
extraction network improved by this method is increased by 1.8–9.9% when detecting
insulators with different boundary frame areas, which shows the validity of the improved
method.

Table 4. Comparison of insulator detection accuracy of different feature extraction networks.

Method APS APM APL APms

Resnet 0.416 0.485 0.518 0.462
VGG16 0.324 0.376 0.465 0.381

Darknet53 0.348 0.401 0.482 0.403
SCconv 0.457 0.465 0.462 0.460

Ours 0.471 0.492 0.488 0.480

To show the comparison of the detection effects of this method before and after the
insertion of the SKNet attention mechanism module, Figure 11 shows the F1-score and
F2-score of different categories of this method under the setting of 30-shot. The scores of
F1 and F2 in the detection of normal insulators increase by 0.059–0.104 and 0.046–0.075,
respectively. Similarly, in the detection of defective insulator parts, the results increase by
0.120–0.156 and 0.056–0.120, respectively. These improvements indicate a broader range
of enhancements achieved by the method. The observed improvements can be attributed
to the integration of the attention mechanism module into the network. This integration
enables the improved network to effectively identify more subtle differences between
defects and normal insulators by combining the more detailed features of the insulator
image. As a result, the model’s identification ability is further enhanced.
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Table 5 shows the average precision rate of different NMS algorithms under two
different learning rate decline strategies. As can be seen from the table, under the same
NMS algorithm, a higher mAP can be obtained by the warmup cosine annealing strategy,
which increases by 0.2–1.5%. Under the same learning rate reduction strategy, the improved
multi-stage NMS algorithm effectively strengthens the detection ability of the model, and
mAP is improved by 3.6–5.9%. Using the improved method with the combination of the
network of NMS and the learning rate decline strategy algorithm, the maximum mAP
achieved under the settings of 5-shot, 10-shot, and 30-shot is 29.6%, 36.0%, and 48.3%,
respectively. These results demonstrate an improvement of 5.4%, 6.3%, and 4.3% compared
to other methods. It shows that the NMS algorithm and warmup cosine annealing training
strategy can efficaciously improve the detection ability of the model.

Table 5. Comparison of network identification ability (mAP) for insulators under different algorithms.

NMS Algorithm Learning Rate Decline
Strategy 5-Shot 10-Shot 30-Shot

Hard-NMS Gradient descent 0.242 0.298 0.440
Hard-NMS Warmup cosine annealing 0.247 0.301 0.447

Linear-NMS Gradient descent 0.255 0.297 0.457
Linear-NMS Warmup cosine annealing 0.257 0.304 0.462

Gaussian-NMS Gradient descent 0.265 0.318 0.451
Gaussian-NMS Warmup cosine annealing 0.272 0.321 0.458

Multistage NMS Gradient descent 0.281 0.350 0.468
Multistage NMS Warmup cosine annealing 0.296 0.360 0.483

Finally, Figure 12 shows the comparison between the improved method and mAP of
TFA [16] and the original FSRW method [17] for few-shot object detection. As can be seen
from the results, the mAP of the improved method increased by 5.1% and 8.3% in 5-shot
settings and increased by 4.2% and 6.1% in 10-shot settings. In 30-shot settings, the results
are improved by 8.6% and 11.1%. This significant improvement indicates that the proposed
method has a targeted improvement in few-shot insulator detection tasks compared with
the baseline method in dealing with few-shot object detection, which verifies the validity
of the improved method.
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5. Conclusions

This paper presents a method for identifying insulators under few-shot conditions,
utilizing few-shot object detection via a feature reweighting approach. The proposed
method addresses the challenges of low accuracy and high omission rates encountered
when detecting insulator images with varying sizes, defects, and occlusions under few-shot
conditions. In the feature extraction network part, the self-calibrated convolutional network
is introduced and promoted the feature extraction ability for insulators of different sizes.
The SKNet attention mechanism is embedded before the input of the reweighting module,
which enhances the performance of the model by extracting the key detail meta-feature
information of the support set. Finally, a multi-stage non-maximum suppression algorithm
for missing values is introduced to set a penalty function for confidence. The results
of multiple prediction boxes are retained to reduce the occurrence of false checks and
cases. In the experiment, data enhancement and a warmup cosine annealing learning rate
reduction strategy are adopted to further develop the detection ability of the model. The
experimental results show that the average accuracy achieved by this method reaches up to
48.3%. This accuracy level is significantly higher, with an improvement of 8.6% compared
to the original method. This substantial enhancement in accuracy greatly improves the
detection and recognition ability of the network for normal and special insulators under
few-shot conditions.

Although the accuracy of this paper has been improved to some extent, it is still
difficult to reach the same level as the model developed by using large-scale data training.
In future work, we can try to use a deeper and more complicated network structure to
further increase the accuracy of insulator identification under few-shot conditions.
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