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Abstract: As the use of digital currencies, such as cryptocurrencies, increases in popularity, phishing
scams and other cybercriminal activities on blockchain platforms (e.g., Ethereum) have also risen.
Current methods of detecting phishing in Ethereum focus mainly on the transaction features and
local network structure. However, these methods fail to account for the complexity of interactions
between edges and the handling of large graphs. Additionally, these methods face significant issues
due to the limited number of positive labels available. Given this, we propose a scheme that we refer
to as the Bagging Multiedge Graph Convolutional Network to detect phishing scams on Ethereum.
First, we extract the features from transactions and transform the complex Ethereum transaction
network into three simple inter-node graphs. Then, we use graph convolution to generate node
embeddings that leverage the global structural information of the inter-node graphs. Further, we
apply the bagging strategy to overcome the issues of data imbalance and the Positive Unlabeled
(PU) problem in transaction data. Finally, to evaluate our approach’s effectiveness, we conduct
experiments using actual transaction data. The results demonstrate that our Bagging Multiedge
Graph Convolutional Network (0.877 AUC) outperforms all of the baseline classification methods in
detecting phishing scams on Ethereum.

Keywords: phishing node detection; Ethereum; graph convolutional network; node classification,
transaction network

1. Introduction

Ethereum, which provides Turing completeness in smart contracts, has become the
largest smart contract platform. Meanwhile, Ether, i.e., the cash in Ethereum, has become
one of the most popular cryptocurrencies. Hence, it is not surprising that Ethereum has
been targeted extensively by cybercriminals. For example, according to the 2022 crypto
crime report of Chainalysis, illicit transaction activity has reached an all-time-high value,
and scams are the largest form of cryptocurrency-based crime by transaction volume,
with over $7.7 billion of cryptocurrency taken from victims worldwide [1].

Among the various types of cybercriminal activity on Ethereum, phishing scams
are notably prevalent and highly damaging and have garnered significant attention [2].
Currently available approaches to the detection of phishing primarily concentrate on
identifying the specific characteristics of fraudulent emails and websites [3–7]. However,
such methods are ineffective against scams that trick users into transferring cryptocurrency
to Ethereum addresses that belong to or are controlled by scammers.

To detect phishing attempts on Ethereum, many novel methods using the transaction
network were proposed [8–10]. The nodes of the transaction network represent Ethereum
accounts, and the edges represent transactions between accounts. Specifically, these models
transformed the phishing scam detection task into a node classification task [11]. Recently,
researchers have constructed a transaction subgraph for each target node and used the
features of the transaction subgraph as the features of the target node. Thus, the problem of
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phishing node detection in the Ethereum transaction network can be converted from a node
classification task to a graph classification task [12–14]. These existing works, however,
have some limitations in handling large graphs and have few positive labels.

Figure 1 is a schematic representation of the Ethereum transaction network, where
multiple edges are merged into a single edge and the directions of the edges are hidden.
The Ethereum transaction network is a multidigraph and contains rich information about
node behavior patterns. From Figure 1, we can identify the following characteristics of the
Ethereum transaction network.

1. There is a very large amount of transaction data. Although only a few dozen nodes
are shown in the figure, there are hundreds of edges among the nodes. Thus, it can be
concluded that the transaction network is very complex.

2. There is an intricate relationship between the nodes. Figure 1 shows that the nodes in
the transaction network are connected closely with other nodes, and there are multiple
edges between nodes.

3. There is an imbalance in the data. Based on the figure, phishing nodes only account
for a small proportion of the data compared to normal nodes, and this indicates that a
serious data imbalance problem exists in the Ethereum transaction data.

Figure 1. Part of the Ethereum transaction network in which multiedges between nodes are sim-
plified to a single edge. In this network, scam nodes and normal nodes are marked in red and
blue, respectively.

Based on the observations stated above, we can identify the reason for the limitations
in the model’s performance. First, a great deal of computational resources are needed to
process large-scale transaction data. Second, the intricate relationships mean that naive
edge handling approaches can lead to a loss of transaction information. Last but not
least, the serious data imbalance problem causes models to inadequately learn phishing
features. Most researchers alleviate these challenges via graph sampling (e.g., subgraph
extraction) and graph filtering mechanisms. However, these methods have difficulty in
obtaining global structural information. The lack of global structural information in the
node embedding impacts the final phishing node detection.

Therefore, to fully benefit from the structural information of the transaction network
and effectively solve the data imbalance problem, we propose a Bagging Multiedge Graph
Convolutional Network (BM-GCN) model. The model simplifies the complex relationships
between the nodes by breaking down the entire transaction network into three inter-node
graphs. The advantage of this is that it facilitates the extraction of node features while
preserving global structure information. The inter-node graph refers to the fact that each
pair of nodes (a, b) in the graph has at most two edges, one from a to b and one from b
to a. Specifically, in our approach, we preprocess the transaction data and generate three
inter-node graphs to represent the property on the transaction graph. Then, the GCN model
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is utilized as the embedding generation method to make use of structural information in
the graph. During the training of the GCN model, a bagging strategy is adopted to mitigate
the impact of imbalanced data and unlabeled nodes. Consequently, our model can deal
with large-scale data. To the best of our knowledge, this work is the first example that uses
a bagging GCN for the detection of Ethereum phishing scams.

The remainder of this article is organized as follows. Section 2 addresses the research
related to the subject of this article, and Section 3 presents the motivation for the research.
Section 4 describes the BM-GCN model and the strategy that was used when we were
training the model. In Section 5, we introduce the method of evaluating the effectiveness
of the BM-GCN model and analyze the experimental results. Section 6 summarizes the
contributions of this paper and presents our future research plans.

2. Related Work
2.1. Scams on Blockchain Platforms

With the development of blockchain technology and the growth of its community,
the number of fraud attacks on digital currencies is increasing, and this has prompted
researchers to analyze the scams. Vasek et al. [15] presented the first survey of Bitcoin-
based scams; after gathering and combining the various reports of scams, they categorized
the scams into four groups, i.e., Ponzi schemes, mining scams, scam wallets, and fraud-
ulent exchanges. Since Ethereum is an extension of Bitcoin, it can also be categorized in
these ways.

Bitcoin Ponzi schemes have received a great deal of attention because they are a
classical form of economic deception. Vasek et al. [16] identified why Ponzi scams occur
frequently in this ecosystem. Bartoletti et al. [17] analyzed this type of scheme on Ethereum
and studied how Ponzi schemes are promoted on the web. To fuel the detection of Ponzi
schemes on smart contracts, Chen et al. [18] provided an open dataset by gathering real-
world samples, and they used a random forest model built on account features and code
features to identify latent smart Ponzi schemes.

2.2. Detection of Phishing Scams on Ethereum

Phishing scams are among the most severe cybercrimes aimed at Ethereum users,
and many efforts have been made to detect phishing [3]. Wu et al. [8] proposed trans2vec,
which used a weighted random walk to generate the embeddings of nodes, and then
employed a one-class SVM model to classify the embeddings to detect phishing nodes.
Chen et al. [10] extracted graph-based cascade features from transaction records and
developed a lightGBM-based dual-sampling ensemble algorithm to identify phishing
accounts. Chen et al. [9] obtained statistics on the transaction information as features of
nodes and then used a graph convolutional network (GCN) and autoencoder technology
to extract the structural features of the subgraph. The output of the GCN and handcrafted
features are concatenated to obtain the final result for classification. To detect potential
phishing scammers, Zhang et al. [14] proposed a multi-channel graph classification model
(MCGC) with multiple feature extraction channels for GNN to extract richer information
from the input graph.

Although the approaches mentioned above have been able to complete the detection
of Ethereum phishing, their methods of processing graph data are designed for simple
subgraphs, thus ignoring the global structural information of the Ethereum transaction
network. In addition, they do not work in multiedge graphs. To make full use of the
transaction information and structural information, we propose a novel method that
transforms the transaction network into some inter-node graphs for feature extraction.

2.3. Graph Embedding

Graph embedding transforms the data on the graph into a low-dimensional space
while retaining the graph’s structural information and properties as much as possible [19].
This operation facilitates subsequent analytical tasks in both homogeneous and heteroge-
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neous networks. Graph embedding methods can be roughly divided into three categories,
i.e., random walk, matrix decomposition, and deep learning. The basic idea of random-
walk-based graph embedding is to utilize SkipGram on a path set sampled by a truncated
random walk on the graph data to obtain a node embedding [20,21]. Matrix decomposition
methods factorize a proximity matrix that represents node relationships to obtain the node
embedding [22]. For example, ProNE [23] learns embedding both rapidly and efficiently
via matrix factorization with spectral propagation. The core idea of the deep learning
methodology is to obtain a graph embedding directly from the graph structure through
a deep neural network. For example, Kipf et al. [24] proposed the graph convolutional
network (GCN), which introduced a variant of convolutional neural networks that can use
graphs directly and match neighborhoods in the spatial domain.

3. Research Motivations

The Ethereum transaction network is a multiedge graph with a large number of
transactions. In such a graph, phishing nodes generally make up only a tiny percentage of
the nodes. Therefore, there are several factors that can impact the classification performance
when constructing a phishing node detection scheme on the graph.

3.1. Challenges

Transaction graph has complex inter-node relationships
Generally, in the Ethereum transaction network, there are multiple transactions with

varying amounts occurring at different times between two nodes. In other words, there
will be multiple adjacent edges between nodes. Figure 2 shows a simple transaction graph
with only five nodes. The simple addition of weights leads to the unexpected fusion of the
features, which limits the effective utilization of the discrete properties.

1

2
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5

…

…
…

…

…

Figure 2. A simple multiedge graph example in the transaction network. It can be observed in
this figure that there are many edges between nodes, and these edges have different amounts of
transactions and time. Thus, it is challenging to merge them. When the number of transactions is
greater than three, we use the symbol “. . . ” to represent the remaining transactions.

Significant imbalance between phishing and normal nodes
In the Ethereum transaction network example presented in [25], there were 2,973,489 nodes

and 13,551,303 transactions, but only 1165 phishing nodes. In other words, there was a
significant imbalance between phishing and normal nodes, which can impact the results of
the classification.

Unlabeled nodes
The labeling of phishing nodes relies on reports from users of specific websites, such

as etherscamdb.info and etherscan.io. In other words, these websites can track phishing
incidents only if they are reported, and significant numbers of frauds and scams are not
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reported [26,27]. Therefore, having these unknown/undetected phishing nodes in the
“normal node” set can skew and impact the classifier’s performance, a situation that is also
referred to as a Positive Unlabeled (PU) learning challenge.

3.2. Potential Solutions

We posit the potential of using the following approaches to mitigate the challenges
discussed in Section 3.1.

1. To address the multiedge graph problem, we extract three features from the transac-
tions, i.e., inter-node interaction, transaction time variance, and transaction frequency.
For each feature, we replace the edges between two nodes that have the same direction
with a single directed edge and construct a feature graph to represent the information
contained in the multiedges.

2. We use the bagging strategy [28] to deal with both data imbalances and the PU prob-
lem. In doing so, we use bootstrap aggregating techniques to leverage unlabeled data
and mitigate the limitations associated with the PU problem. In addition, the sampling
method used in the bagging strategy also minimizes the impact of the imbalance in
the data on the classification results.

4. Proposed BM-GCN Model
4.1. Representing the Features of the Graph

Due to the complexity of Ethereum transaction networks, the use of GCN directly in
the original network cannot effectively encode the topology around the nodes. Therefore,
we consider extracting features from the original transaction network and transforming the
complex network into three simple graphs, i.e., a node interaction graph, a time variance
graph, and a transaction frequency graph. Then, we use the corresponding adjacency
matrices, Ai, Av, and A f , to represent the three feature graphs (see also Figure 3). Note that
the transactions are directed and the matrices are not symmetrical.
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Figure 3. Feature representation: The property of the transaction graph is extracted into three
inter-node graphs, and the matrices in the right part show the feature representation of each graph.
The numbers in the graphs and matrices are only examples, not the actual information in the
transaction network.

4.1.1. Node Interaction Graph

Transaction records provide a significant amount of information to build inter-node
graphs. For example, if many transaction records exist between node i and node j, there will
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be a closer relationship between these nodes than between nodes with fewer interactions.
With this in mind, we constructed an interaction graph to indicate whether there are
frequent interactions between two nodes. We denote Ii,j as the trade number from i to j,
and we build the interaction graph as follows:

Gi(V, E) weight = TransactionNumber (1)

Ai =


0 I0,1 I0,2 · · · I0,N−1

I1,0 0 · · · · · · I1,N−1
I2,0 I2,1 0 · · · I2,N−1

...
...

...
. . .

...
IN−1,0 · · · · · · · · · 0

 (2)

4.1.2. Time Variance Graph

Intuitively, the interval of transaction time, which shows the changes in trading time
between two nodes, can be used effectively to describe the transaction relationship between
nodes. To introduce the time feature of transactions between nodes, we use the variance of
the time of the transactions to construct the second inter-node graph. Let vi,j denote the
variance in the transaction time from node i to j; the mean value of the transaction time
from i to j is ti,j, the total number of transactions from i to j is ni,j, and the time of k-th
transaction is τk. The graph of the time variance is constructed as follows:

Gv(V, E) weight = TransactionTimeVariance (3)

vi,j =
∑

ni,j
k=1 (τk − ti,j)

2

ni,j
(4)

Av =


0 v0,1 v0,2 · · · v0,N−1

v1,0 0 · · · · · · v1,N−1
v2,0 v2,1 0 · · · v2,N−1

...
...

...
. . .

...
vN−1,0 · · · · · · · · · 0

 (5)

4.1.3. Transaction Frequency Graph

We use the frequency of transactions between nodes as the weight to construct a graph;
specifically, we introduce additional time information into our model, which reflects the
average duration of the intervals of the transactions from node i to node j, also written
as fi,j. We denote the transaction frequency from node i to j as the reciprocal of fi,j. This
also ensures that high-frequency nodes have high weights. The frequency graph can be
represented as follows:

G f (V, E) weight = TransactionFrequency (6)

fi,j =

 0, ni,j = 1
∑

ni,j−1

k=1 τk+1−τk
ni,j

, ni,j ≥ 2
(7)

A f =



0 1
f0,1

1
f0,2

· · · 1
f0,N−1

1
f1,0

0 · · · · · · 1
f1,N−1

1
f2,0

1
f2,1

0 · · · 1
f2,N−1

...
...

...
. . .

...
1

fN−1,0
· · · · · · · · · 0


(8)
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4.2. GCN for Inter-Node Graphs

In this section, we model the phishing detection problem as a binary classification.
The inputs of this model are the three feature graphs discussed earlier and the outputs of
this model are the prediction labels of Ethereum nodes.

In our model, we use the layer-wise propagation rule of Kipf et al. [24] to build a
multilayer GCN. The rule is as follows:

H(l+1) = σ
(

M̃−
1
2 ÃM̃−

1
2 H(l)W(l)

)
(9)

In the above equation, Ã = A + IN denotes the adjacency matrix of the graph G with
self-connections added, IN is the identity matrix, M̃ii = ∑j Ãij and W(l) are the trainable
weight matrices, σ(·) is the activation function, and H(l) ∈ RN×D is the matrix of activations
in the l-th layer, H(0) = X.

Then, we use the propagation rule mentioned above to build a GCN. For each feature
graph, we use graph convolution to generate the embedding of the feature, which is shown
on the left side of Figure 4. The input graph G is denoted by G = {n1, n2, ..., n|V|}, where ni
is the i-th node, and xi is the representation of ni. For the three feature graphs {Gi, Gv, G f }
in our model, we denote the vector of the i-th node as {xi

i, xv
i , x f

i }.
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Figure 4. GCN classification model. On the left is the GCN used to learn the different structures of
the three feature graphs. Although the three graphs have the same topology, the weights of their
edges are different. On the right is the concatenation of the output of the previous GCNs with the
dense layer and softmax layer for classification.

In order to predict the labels of nodes, we concatenate the outputs of three GCN
models as Xi = (xi

i : xv
i : x f

i ), and use a dense layer y = f (w · X + b) and a softmax layer
to obtain the predictions of node labels. The softmax function is as follows:

pi =
exp(yi)

∑n
k=1 exp(yk)

(10)

4.3. Bagging

Considering that there are many unlabeled phishing nodes in the transaction data and
the distribution of positive and negative examples in the data is very asymmetrical, we use
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the transductive bagging strategy [28] to construct a bagging learning approach dealing
with both data imbalances and the PU problem in the transaction graph.

The method that we propose for PU learning in the transaction data is presented in
Algorithm 1. It creates a training set, S, by combining all positive nodes and sampled
unlabeled nodes randomly and using S to train a classifier. Then, labeled and unlabeled
samples are treated as positive and negative, respectively. For each S, the algorithm uses
the Adam optimizer to update the w parameter of the model.

Algorithm 1 Bagging learning
Input: P ,U , K = size of bootstrap samples, T = number of bootstraps
Output: a function f : X → R

for t = 1 to T do
Draw a bagging sample Ut of size K in U.
Make a bootstrap set S from P and Ut with corresponding labels.
Use bootstrap set S to train the classifier f to discriminate P against Ut.
while stopping criterion not met do

Update w with Adam optimizer
end while

end for
return f

5. Evaluation

In this section, we demonstrate that our approach can deal with both data imbalances
and the PU problem while fully utilizing the graph structure information for the detection
of phishing.

First, we introduce the dataset and metrics used in the evaluation. Next, we evaluate
the performance of Wu et al.’s approach [8] over different network scales and different
negative–positive ratios (NP ratios). To verify the effectiveness of our approach, we conduct
the following evaluations: (1) we evaluate the effects of feature numbers to determine their
performance with varying NP ratios; (2) we evaluate the effectiveness of our approach in
dealing with data imbalances; (3) we evaluate the effectiveness of our approach in dealing
with the PU problem. Finally, we present a comparative summary of the performance of
our approach with several graph-embedding-based methods.

5.1. Dataset and Evaluation Metrics

We evaluated our model using the dataset of Chen et al. [25] which is available at
https://xblock.pro/#/dataset/13. The dataset contains 2,973,489 Ethereum accounts,

13,551,303 transactions, and 1165 labeled accounts. The transaction time in the dataset starts
on 7 August 2015 and ends on 19 January 2019. We constructed a transaction graph using
accounts as nodes and transactions as edges, and we transformed it into three inter-node
graphs as the input to our classification model.

We used the Area Under the Curve (AUC) of the Receiver Operating Characteristic
(ROC) curve as an evaluation metric. In the testing phase, we calculated both the True
Positive Rate (TPR) and the False Positive Rate (FPR) of the classification result, with T as
the varying parameter, where T is the threshold of probability X that the node is classified
as “positive” if X > T and “negative” otherwise. Then, the ROC curve was defined by FPR
and TPR as the x and y axes, respectively. To evaluate the performance of each baseline
model, we used different ratios of both positive and negative instances.

Since the performance of schemes given different positive and negative proportions
varies dramatically, we evaluated the classification results of several models using different
NP ratio numbers.

https://xblock.pro/#/dataset/13
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5.2. Baseline Methods

We empirically compared the performance of our proposed approach with the per-
formance of the Support Vector Machine (SVM), Logistic Regression (LR), and Random
Forest (RF).

1. SVM represents the examples as vectors in space, and it chooses a hyperplane that
represents the largest separation between examples in order to classify them.

2. As a statistical classification method, LR models a binary dependent variable using a
logistic function and obtains the corresponding probability of the class of examples.

3. RF is an ensemble learning method that constructs a large number of decision trees at
training time and outputs the modes of the classes as the classification result.

Since the above classification approaches require vectors as input, we utilized Deep-
walk [20], trans2vec [8], ProNE [23], and NETSMF [22] to obtain node embeddings for the
baseline methods.

DeepWalk is the first Word2vec-based node vectorization model. It uses the ran-
dom walking paths of nodes on the network to imitate the process of generating text,
and then treats the paths of the nodes as the equivalents of sentences and applies the
language model to vectorize each node. Trans2vec introduces biased random walks to
determine whether each walk is affected by transaction time bias or amount bias, and then
it concatenates these two biases to balance their effects.

Different from DeepWalk and Trans2vec, ProNE and NETS-MF use matrix factorization
directly to embed graphs. We introduce them into the baseline system to evaluate our
scheme from another perspective. The embedding vector generated by ProNE contains
both localized smoothing information and global clustering information, making it able to
utilize the graph information more effectively. NETSMF is proposed to provide an efficient
way to obtain embeddings from large graphs.

The baseline models were DeepWalk-SVM, DeepWalk-LR, DeepWalk-RF, Trans2vec-
SVM, Trans2vec-LR, Trans2vec-RF, ProNE-SVM, ProNE-LR, ProNE-RF, NETSMF-SVM,
NETS-MF-LR, and NETSMF-RF. We ran these baseline models on the entire transaction
network and obtained the corresponding embeddings for all nodes. To ensure that the
comparison was relatively fair, we used the publicly released source codes in the DeepWalk
and ProNE papers and their default parameters. For Trans2vec, we added random walking
weights in the source code of DeepWalk, following the parameters proposed in [8] to build
this baseline model. Moreover, for NETSMF, we also used their source code. However,
we reduced the number of training rounds to 80 due to the high usage of memory during
training. (After only 80 rounds of training on the Ethereum transaction data, NETSMF had
used more than 200 GB of memory.)

5.3. Findings

In our evaluations, we followed the guideline in [28] to set our bagging parameters,
which were T = 100 and K = 1165. The parameters of our GCN were as follows: the num-
ber of hidden layers was 3, and the units of hidden layers 1, 2, and 3 were 16, 16, and 8,
respectively. The maximum epoch number per bag was 20, the learning rate was 0.01,
and the dropout rate was set to 0.5. We selected the value of the NP ratio among the
following: 5, 10, 20, 50, 100, 200, 500, and “All”, where “All” means that we used all nodes
in the experiment (the NP ratio was 2,972,324:1165).

Evaluation of Wu et al.’s method: Figure 5 shows the performance of Wu et al.’s
approach [8] for various NP ratios and graph scales. For each scale, we constructed three
test graphs following the approach, and we used their average AUC when evaluating the
performance. The average node and edge numbers are provided in Table 1. The following
two limitations can be observed in their scheme.

1. As the NP ratio increases, the performance of their scheme decreases consistently.
Specifically, the average classification AUC value of Trans2vec decreased from 0.886
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to 0.732 when the NP ratio increased from 1 to 25. In other words, Trans2vec is not
capable of dealing with data imbalances.

2. As the network scales, the performance of their model decreases gradually. In other
words, the scale of the network impacts the node representation capabilities of their
scheme and degrades the classification performance (i.e., Trans2vec is not inadequate
for large-scale transaction graphs).

Table 1. Average scale of different test graphs

Scale Node Number Edge Number

1 32,582 70,082
3 39,606 95,154
5 45,397 134,552
10 59,250 188,875
15 76,344 241,639
20 90,388 283,260
30 119,368 375,159
50 162,388 535,819
All 2,973,489 13,551,303

G@1

G@3

G@5

G@10

G@15

G@20

G@30

G@50

G@All

1 5 10 15 20 25
0.6

0.7

0.8

0.9

1.0

NP-Ratio

A
U
C

Figure 5. Curves of average AUC of Wu et al.’s model [8], with varying NP ratios. Each curve
represents a network scale, and it refers to the number after “G” in the legend. It indicates the
proportion of positive and negative examples when the network is initialized.

Effect of different features: We evaluated the effect of different feature combinations
on the proposed BM-GCN model using two NP ratios, i.e., 50 and “All”. Table 2 displays
the aggregate AUC of the GCN with different feature combinations. We observe that the
classification performance is most significantly improved by the feature Gi out of the three
analyzed. For multiple feature combinations, we found that the combination of Gi, G f ,
and Gv worked best. Gi is an indicator that describes the total number of transactions
between nodes, which evidently reflects the closeness of the relationships between nodes.
It outperforms the other two. G f and Gv describe the time properties of transactions from
the perspective of transaction frequency and changes in transaction time. This combination
effectively improves the AUC value as they complement each other. The combination of all
three features allows us to achieve the best classification performance. This implies that
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the features reflect the topological characteristics of the nodes to a certain extent, and our
transaction feature extraction scheme is effective.

Table 2. AUC with different features

Features NP-ratio@50 NP-ratio@All

G f 0.852591 0.851575
Gv 0.863451 0.848624
Gi 0.872630 0.867106

G f + Gv 0.861069 0.867045
G f + Gi 0.867851 0.855019
Gv + Gi 0.869612 0.875120

Gi + G f + Gv 0.883325 0.875443

Bagging vs. no bagging: In this section, we maintain the NP ratio to evaluate the
impact of removing the bagging strategy on the classification performance of the model.
As shown in Table 3, in the case of no bagging, the classification performance of the
model decreases rapidly as the NP ratio increases. Even when the NP ratio is equal to 50,
the AUC of the model drops below 0.5. The findings show that if the bagging strategy is
not used in the model’s training process, the original GCN solution will not be able to cope
with extreme data imbalances in the Ethereum transaction network and detect phishing
nodes effectively.

Table 3. AUC without bagging strategy

NP Ratio No Bagging Bagging

5 0.855752 0.870561
10 0.798114 0.880036
20 0.745765 0.877302
50 0.495823 0.883325

Evaluation of the PU problem: Next, we utilized the spy technique [29] to set false
negative examples to evaluate the robustness of our model with respect to the PU problem.
In the evaluation, we selected 15% positive examples and set them as negative examples,
and we placed them in the training set to simulate the PU problem in the training set. Then,
we checked whether these examples that were intentionally marked as negative examples
could be detected by the model. Specifically, we evaluated the classification performance
of the BM-GCN model with 173 spy nodes at NP ratios of 5, 20, 50, and “All”.

Table 4 shows the model’s capability of recovering spy nodes’ labels. It also indicates
that the AUC value of classification increases as the NP ratio increases, which intuitively
reflects the negative impact of unlabeled data. For small datasets, such as when the NP ratio
equals 5, there are only 4141 negative examples. Thus, the introduction of 173 unlabeled
nodes confuses the model significantly, resulting in the degradation of its performance.
However, even in the worst case, 97.6 of the 173 spy nodes are restored successfully by the
model. Thus, our model effectively avoids the adverse impact of the unlabeled nodes on
the results of the classification. In addition, it illustrates that our model can deal with the
PU problem in the Ethereum transaction data.
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Table 4. Results of the spy test

NP Ratio Restored Nodes AUC

5 97.6 0.819079
20 115.8 0.852759
50 123.0 0.858245
All 133.6 0.870821

Baseline evaluation: Figure 6 shows the aggregate AUC of our approach and all of
the baselines with varying NP ratios. We can see that the model (GCN with Gi + G f + Gv)
outperforms all of the baseline systems. First, on the entire range of NP ratios, our model
achieves a higher AUC than all of the baselines. Second, the BM-GCN model achieves
an average AUC of 0.877, whereas the Deepwalk-LR only achieves an average AUC of
0.661. Thus, we conclude that our BM-GCN model uses more transaction information
than other models. Moreover, our model is more robust than all of the baseline models.
For example, Figure 6 shows that the performance of all the baselines decreased rapidly as
the NP ratio increased, but our scheme remained stable. This implies the potential in using
our BM-GCN model for larger datasets.

GCN with Gi+Gf+Gv

DeepWalk-SVM

DeepWalk-LR

DeepWalk-RF

Trans2vec-SVM

Trans2vec-LR

Trans2vec-RF

ProNE-SVM

ProNE-LR

ProNE-RF

NETSMF_SVM

METSMF_LR

NETSMF_RF

5 10 20 50 100 200 500 All

0.5

0.6

0.7

0.8

0.9

NP-Ratio

A
U
C

Figure 6. Curves showing the average AUC values of our model and the baseline models as the NP
ratio is increased from 5 to “All”.

Comparison with other methods: Table 5 shows the comparison between the pro-
posed method and other methods in terms of the AUC metric. All the methods use
transaction data for phishing node detection. However, compared to other methods that
directly use raw transaction data or relevant statistical features, BM-GCN extracts the
global structural features and preprocesses the raw transaction information into three types
of interactive information, i.e., node interaction, time variance, and transaction frequency.
As shown in Table 5, our method achieves the best results.
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Table 5. Comparison with other methods

Methods Features AUC

Chen et al. [9] Handcrafted features + local structural features 0.5866
Chen et al. [10] Handcrafted features 0.8071

Zhang et al. [14] Hierarchical structural features 0.8274
BM-GCN Global structural features 0.8771

6. Conclusions

In this work, we introduce a BM-GCN model to detect phishing scams targeting
Ethereum. This model extracts features of transactions by converting the multiedge transac-
tion graph into several simple graphs. A bagging strategy is introduced during the training
of the BM-GCN model to deal with the PU problem and the data imbalance problem in the
transaction data. Compared with the baselines, BM-GCN is more effective in three respects:
(1) it fully uses complex relations in multiedges; (2) it is able to cope with the problems
of data imbalance and unlabeled nodes in the Ethereum transaction network; and (3) the
model performs well on both small- and large-scale graphs.

Future research will include conducting systematic statistical tests to make the experi-
mental results more convincing and extending this work to evaluate Ethereum-related trans-
actions in real time. These tasks will require collaboration with the relevant stakeholders.
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