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Abstract: This article addresses the telecommunications industry’s priority of ensuring information
security during the transition to next-generation networks. It proposes an image encryption system
that combines watermarking techniques and a discrete fractional sine chaotic map. The authors also
incorporate the principles of blockchain to enhance the security of transmitted and received image
data. The proposed system utilizes a newly developed sine chaotic map with a fractional difference
operator, exhibiting long-term chaotic dynamics. The complexity of this map is demonstrated by
comparing it with three other fractional chaotic maps from existing literature, using bifurcation
diagrams and the largest Lyapunov exponent. The authors also show the map’s sensitivity to changes
in initial conditions through time-series diagrams. To encrypt images, the authors suggest a method
involving watermarking of two secret images and encryption based on blockchain technology. The
cover image is watermarked with the two hidden images using discrete wavelet transformations.
Then, the image pixels undergo diffusion using a chaotic matrix generated from the discrete fractional
sine chaotic map. This encryption process aims to protect the image data and make it resistant
to unauthorized access. To evaluate the algorithm, the authors perform statistical analysis and
critical sensitivity analysis to examine its characteristics. They also analyse different attacks to
assess the algorithm’s ability to resist such threats and maintain image quality after decryption. The
results demonstrate that the proposed algorithm effectively defends against attacks and ensures
image security.

Keywords: discrete fractional calculus; chaotic map; bifurcation; image encryption; blockchain
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1. Introduction

Ensuring the confidentiality of sensitive information in the digital era is a critical
concern. Various research fields, such as cryptography and cyber forensics, aim to protect
information from unauthorized access. Information security revolves around prevent-
ing unauthorized disclosure, maintaining data integrity, and ensuring accessibility when
needed. Image encryption plays a crucial role in securely transmitting information through
images, with applications ranging from medical imaging to military operations. With
the advancement of technology, the need for robust image encryption algorithms has
grown. Multimedia data, including images, are susceptible to attacks and alterations. In
military operations, even a slight information leak can pose a significant risk to national
security. Therefore, algorithms need to provide strong security measures against various
attacks and prevent information detection. One technology that offers advanced data
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security is blockchain. Industries are exploring blockchain for secure record-keeping, as it
replaces centralized systems with decentralized ones involving only the relevant parties in
a transaction. Blockchain technology is not limited to financial transactions; it is used for
energy transfers between neighbours, copyright verifications in the media industry, and
supply chain management. Many industries are embracing blockchain technology due to
its advantages.

The working process of blockchain can be explained in simple terms. Transaction data,
including details of the parties, conditions, and assets exchanged, are recorded. Consensus
is reached among the participants, and the information is securely stored as a block, forming
a chain. A final ledger copy is shared with all participants.

Emerging technologies have encouraged industries to explore new methods for en-
hancing security and overcoming limitations. Blockchain technology offers high security,
making it difficult for unauthorized changes to be made to transaction records. It also
improves efficiency, transparency, and allows for quick data auditing. Researchers have
explored the application of blockchain in secure image sharing [1] and its integration with
the Internet of Things (IoT) [2].

Image encryption is a vast field with contributions from researchers across various
disciplines. In simple terms, image encryption involves converting an image into an
encrypted form using a secret key. The encrypted image is then decrypted by the receiver
using the same secret key, but in reverse order. The key used in encryption is of utmost
importance. Typically, there are two types of keys: private and public. A private key
is a unique key used for both encryption and decryption processes, while public keys
consist of separate keys for encryption and decryption. The literature on image encryption
encompasses a wide range of algorithms developed to address security requirements. These
algorithms aim to protect the confidentiality and integrity of images during transmission
and storage. Some methods include the techniques of watermarking [3], steganography [4]
and scrambling of images [5]. Over the past few decades, there has been a growing interest
in utilizing chaotic systems for cryptography. Chaotic systems have gained popularity
due to their unique characteristics such as sensitivity to initial conditions, unpredictability,
and randomness. Their implementation in cryptography offers advantages such as cost-
effectiveness, computational efficiency, and complexity.

The study of chaos is not a recent development; it was first introduced by Poincare in
the 1880s while investigating the three-body problem. However, at that time, there was no
formal theory to support the observation of non-periodic oscillations, which hindered the
progress of the field. It was in the later part of the twentieth century that Edward Lorenz
discovered the sensitivity of chaotic systems to initial conditions, where even a small change
can lead to a significantly different outcome. The advent of digital computers played a
crucial role in advancing the field. The computational complexity of manually calculating
repeated iterations for chaos theory was simplified by electronic computers. As a result,
the field of chaos theory experienced significant growth, leading to the development of
numerous chaotic systems with strange attractors and hidden attractors. The inherent
randomness of chaotic systems makes them well-suited for image encryption processes.
When it comes to encrypting images using chaotic maps, the selection of the system used
to construct the algorithm becomes a critical task. During the initial phase of the study,
logistic map [6] and tent map [7] are used for encryption. The limitations in implementing
the system are that the key space is so small that a breach of security is possible. Later,
to increase the level of security, higher-dimensional systems, such as the Henon map [8],
Tinkerbell map [9], 5D hyperchaotic map [10], are introduced for better key space. An
image encryption scheme with a combined 1D map was discussed in [11] and a coupled
sine–logistic map was illustrated in [12].

The generalisation of integer-order chaotic systems with arbitrary real or complex
orders provides enhanced complexity and non-linearity that highly suit the process of
image encryption. Fractional-order derivatives, which are non-local, have the ability to
bring the factor of memory into effect. The fractional Lorenz system was considered for
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the encryption scheme by Radwan et al. in [13]. Application of the fractional-order neural
network model was presented in [13] and the authors analysed the characteristics of the
complex chaotic system with fractional-order in the image encryption process in [14]. A
chaotic system with improper fractional-order is considered for image encryption in [15]
and the investigation with improper fractional laser systems was carried out by Yang et al.
in [16]. Encryption based on the coexisting attractors of the memristive fractional system
was discussed in [17] and the fractional system together with the Fisher–Yates algorithm
was employed in [18]. Consequently, during the last decade, discrete time fractional-order
systems have gained importance due to their diverse applications. The development of the
theory for the field of discrete fractional calculus was due to the pioneering works of Atici
and Eloe in [19], Igor Podlubny in [20], and Anastassiou in [21]. Application of discrete
fractional calculus to tumour immune systems was discussed in [22], and heat transfer fins
and pantograph equations were investigated in [23,24]. Dynamic analysis of the fractional
difference chemical reaction model was performed in [25]. The implementation of fractional
order in the discrete maps enhances the chaotic nature of the maps. Some recent research
contributions based on fractional difference chaotic systems include image encryption
with compression based on Bayesian sensing and the 2D fractional discrete time chaotic
map in [26]. The application of discrete fractional neural networks to encryption was
presented in [27]. The elliptic curve cryptosystem and the 2D fractional-order discrete
map are employed for the process of encryption in [28]. Wu et al. presented the technique
of encryption of images with chaotic fractional discrete time series in [29] and a novel
technique was introduced in [30]. Tempered-type fractional derivatives in discrete time
were proposed, and the encryption was discussed in [31]. Motivated by the investigations
performed in the recent literature towards the field of image encryption [32–38], this article
aims to contribute the following.

1. Construction of a novel fractional difference sine chaotic map with long-term chaotic response
illustrated with bifurcation diagrams, Lyapunov exponents, and approximate entropy.

2. The application of the proposed discrete fractional sine chaotic map to image encryp-
tion of greyscale images is presented by generating a chaotic matrix.

3. The watermarking of the secret images at different levels is performed using transform methods.
4. For secure transmission of information stored in images, a genesis block is generated

to diffuse the pixels of the images that can only be recovered by the recipient with the
same genesis block (blockchain concept).

The manuscriptis planned with mathematical prerequisites in Section 2, and novel dis-
crete fractional sine chaotic map construction and comparison are illustrated in
Section 3. The scheme of encryption is presented in Section 4, and the analysis of results
with supporting figures is provided in Section 5, with a conclusion in Section 6.

2. Prerequisites

This section presents definitions and theorems used in this article. Let Nρ = {ρ, ρ + 1,
ρ + 2, · · · } such that ρ ∈ R.

Definition 1 ([39]). Consider a real-valued function Φ : Nρ → R. The fractional sum of order
β is

∆−β
ρ Φ(ω) =

1
Γ(β)

ω−β

∑
κ=ρ

(ω− κ − 1)(β−1)Φ(κ), (1)

for ω ∈ Nρ+β, β > 0.



Appl. Sci. 2023, 13, 6556 4 of 22

Definition 2 ([39]). For the real-valued Φ : Nρ → R, the Caputo difference of arbitrary order β is

C∆β
ρ Φ(ω) =∆−(v−β)

ρ ∆vΦ(ω)

=
1

Γ(v− β)

ω−(v−β)

∑
κ=ρ

(ω− κ − 1)(v−β−1)

∆vΦ(κ),

(2)

where v = [β] + 1, β > 0, ω ∈ Nρ+v−β.

Theorem 1 ([40]). Consider a β-th-order discrete time system given by

C∆β
ρ Φ(ω) =G(ω + β− 1, Φ(ω + β− 1)),

∆vΦ(ρ) =Φv, r = dβe+ 1, v = 0, 1, 2, . . . , r− 1,
(3)

then we obtain the numerical form as follows

Φ(ω) = Φ0(ω) +
1

Γ(β)

ω−β

∑
κ=ρ+σ−β

(ω− κ + 1)(β−1)G(κ + β− 1, Φ(κ + β− 1)), ω ∈ Nβ+σ, (4)

with

Φ0(ω) =
σ−1

∑
v=0

(ω− ρ)(v)

Γ(v + 1)
∆vΦ(ρ). (5)

Remark 1. Choosing the discrete kernel function

ω−β

∑
κ=ρ+σ−β

(ω− κ + 1)(β−1)

as
Γ(ω− κ)

Γ(β)Γ(ω− κ − β + 1)
with assumption ρ = 0 and κ + β = ρ, the numerical formula when

β ∈ (0, 1) is obtained as

Φ(ω) = Φ(0) +
1

Γ(β)

ω

∑
ρ=1

Γ(ω− ρ + β)

Γ(ω− ρ + 1)
G(ρ− 1, Φ(ρ− 1)). (6)

3. Discrete Time Fractional-Order Sine Chaotic Map (DFSCM)

Many existing discrete fractional maps and their modified versions do not exhibit long-
term chaotic behaviour, which is a desirable characteristic for implementing chaotic maps
in cryptographic applications. Chaotic maps used in cryptosystems should possess features
such as maximum randomness, high non-linearity, and long-range chaotic behaviour.
However, several discrete fractional-order maps employed in cryptographic applications
have limitations such as limited chaotic range, a small key space, and weak complexity.
To address these issues, researchers have developed modified versions of chaotic maps
specifically designed for encryption applications. One drawback of maps with short-term
chaos is that the probability of selecting secret keys beyond this region that will result
in a chaotic regime becomes very low. This limitation compromises the security of the
cryptosystem. To overcome these challenges associated with short-term chaotic behaviour
and minimal non-linearity, this article presents the construction of a new discrete time
fractional map capable of exhibiting long-term chaotic responses.

x(n + 1) = sin(y(n)(1 + b x(n))) + xn,

y(n + 1) = sin
(

x(n) + cy2(n)
)
+ yn.

(7)
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The block diagram for the proposed discrete (7) is given in Figure 1, where D represents
one delay in discrete time, ⊗ and ⊕ represents the multiplier and addition, respectively. A
discrete time fractional-order sine chaotic map (DFSCM) obtained from (7) is

∆v
κ x(n) = sin(y(v + n− 1)(1 + b x(v + n− 1))),

∆v
κ y(n) = sin

(
x(v + n− 1) + cy2(v + n− 1)

)
,

(8)

where ∆v is the Caputo fractional difference operator with 0 < v ≤ 1, n ∈ Nκ+1−v , b, c are
real parameters. The system is now converted to a numerically feasible form employing
Theorem 1 with κ = 0 as follows

x(n) =x(0) +
1

Γ(v)

n

∑
θ=1

Γ(n− θ + v)

Γ(n− θ + 1)

(
sin(y(θ − 1)(1 + b x(θ − 1)))

)
,

y(n) =y(0) +
1

Γ(v)

n

∑
θ=1

Γ(n− θ + v)

Γ(n− θ + 1)

(
sin
(

x(θ − 1) + cy2(θ − 1)
))

.
(9)

The behaviour analysis is performed with DFSCM (8) by fixing v = 0.5, b = 12 and
initial condition (0.01, 0.01) for various c ∈ (0, 75).

Figure 1. Block diagram for 2D discrete sine map (7).

Some discrete fractional chaotic maps in the literature are considered for comparing
their complexity with newly constructed discrete time fractional map by simulation of
bifurcation diagrams and maximum Lyapunov exponents based on the Jacobian matrix
method proposed in [41].

Fractional Tinkerbell map: Let us consider the fractional discrete time Tinkerbell map [42]
of the form

∆v
κ x(n) =x2(v + n− 1)− y2(v + n− 1) + (ζ1 − 1)x(v + n− 1) + ζ2x(v + n− 1),

∆v
κ y(n) =2x(v + n− 1)y(v + n− 1) + ζ3x(v + n− 1) + (ζ4 − 1)y(v + n− 1),

(10)

2D Lorentz map: The chaotic behaviour of the 2D Lorentz map [43] of the form
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∆v
κ x(n) =(1 + ζ1ζ2)x(v + n− 1)− ζ2x(v + n− 1)− x(v + n− 1)[ζ2y(v + n− 1) + 1],

∆v
κ y(n) =(1− ζ2)y(v + n− 1) + ζ2x2(v + n− 1)− y(v + n− 1),

(11)

2D fractional discrete time chaotic map: The discrete time fractional-order chaotic map
investigated in [44] is given by

∆v
κ x(n) =ζ1sin(y(v + n− 1))− x(v + n− 1),

∆v
κ y(n) =ζ2sin(x(v + n− 1))− y(v + n− 1),

(12)

3.1. Discussion

Based on the observations from the three different fractional chaotic maps obtained
from the literature, this section depicts the chaotic response of the novel discrete fractional
map proposed in (8). The proposed DFSCM exhibits highly non-linear behaviour, and
the chaotic response of the map (8) is visualised in the comparison with the three other
discrete fractional maps from the literature in Figure 2. The long-term behaviour of the
system ensures the suitability of the system to be employed for cryptosystems, and the
randomness of the state variables is exhibited in the form of the phase portrait plane in
Figure 3. The phase portrait plane also visualises the trajectories distributed at a highly
random level. The main advantages of the proposed DFSCM are the long-term chaotic
behaviour, which ensures complexity, and the improved chances of generating a highly
secure secret key based on the DFSCM (8).

3.1.1. Sensitivity Analysis

An important aspect of the chaos theory is the sensitiveness to the change in initial
conditions of the map. This section investigates the sensitivity of the chaotic map (8) with
initial conditions X0 = (0.01, 0.01) and X1 = (0.0101, 0.0101) for the parameters b = 12,
c = 50 and v = 0.5, respectively. Numerical simulation is presented in Figure 4.

3.1.2. Complexity of the Proposed DFSCM

The complexity of the proposed DFSCM is determined based on the results of approx-
imate entropy. The approximate entropy method employed here is adapted from the work
of Pincus in [45]. The approximate entropy is a valuable tool to measure the persistence,
correlation, and regularity of the time series obtained for chaotic dynamic systems. The
evolution of the complexity of the proposed DFSCM (8) is investigated under different
circumstances, such as varying the fractional order and the value of parameter b. The
approximate entropy is estimated using the following

ApEn(d, r, M)(ν) = Φd(r)−Φd+1(r), d ≥ 1,

where Φd(r) =
1

M− d + 1

M−d+1
∑

i=1
log Wd

i (r), r is the tolerance factor or filtering noise, d

represents the length of data comparison, and the value Wd
i (r) calculated from

|ξ(i)− ξ(j)|
M− d + 1

,

ξ(i) is the i-th block of a sequence of numbers. Here, the analysis of the randomness of
the data series obtained from the DFSCM (8) for b = 12, 16 c = 50 and v = 0.5, 0.65, 0.8 is
performed for different tolerance values r between (0, 1) for a fixed value of d = 2. The
calculated values of approximate entropy are plotted as 2D plots in Figure 5 with values
tabulated in Table 1. The observations from the simulations imply that the higher the value
of entropy, the greater the randomness of the data series, and lower values explain the
predictive nature of the time series considered for study. In order to gain a detailed insight
into the approximate entropy results, we presented the results for different lengths of data,
such as M = 1500, 4500. The variation in the values explains the choice of the tolerance
factor for a better illustration of the complexity of the proposed DFSCM.
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(a) Tinkerbell map (b) 2D Lorentz map (c) Sine chaotic map (d) Proposed DFSCM

(e) Tinkerbell map (f) 2D Lorentz map (g) Sine chaotic map (h) Proposed DFSCM
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(i) Tinkerbell map
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(j) 2D Lorentz map
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(k) Sine chaotic map
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(l) Proposed DFSCM

Figure 2. Comparison of the chaotic behaviour of different maps in (10)–(12) and (8) with bifurcation
diagrams for state variable x(n) in (a–d); for state variable y(n) in (e–h); and corresponding largest
Lyapunov exponents in (i–l).
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Figure 3. Phase portrait of (8) with v = 0.5, b = 12, c = 50 illustrating the chaotic nature of the
state variables.
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Figure 4. Sensitivity of (8) with v = 0.5, b = 12, c = 50 with initial states (0.01, 0.01) (red) and
(0.01001, 0.01001) (blue).

Table 1. Approximate entropy of (8).

b Tolerance (r)
v = 0.5 v = 0.65 v = 0.8

M = 1500 M = 4500 M = 1500 M = 4500 M = 1500 M = 4500

12

r = 0.2 0.3720 0.3303 0.7683 0.6081 1.2507 0.9844
r = 0.3 0.7107 0.6485 1.1946 1.0224 1.4293 1.3437
r = 0.5 1.2702 1.2302 1.5761 1.5362 1.2964 1.4599
r = 0.7 1.6311 1.6054 1.5980 1.6885 1.0919 1.3150
r = 0.9 1.8136 1.8045 1.5009 1.6473 0.9106 1.1575

16

r = 0.2 0.3492 0.3529 0.6176 0.5384 0.9864 0.8880
r = 0.3 0.6694 0.6804 1.0379 0.9209 1.3353 1.2855
r = 0.5 1.2414 1.2545 1.5230 1.4719 1.4534 1.5390
r = 0.7 1.6152 1.6117 1.6474 1.6830 1.3228 1.4595
r = 0.9 1.8104 1.8104 1.6017 1.7159 1.1599 1.3328
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Figure 5. 2D plot of approximate entropy calculated for varying tolerance and fractional order with fixed
c = 50; (a) b = 12, M = 1500; (b) b = 12, M = 4500; (c) b = 16, M = 1500; (d) b = 16, M = 4500.

4. Image Encryption and Decryption

Based on the above results on the chaotic responses and non-linearity exhibited by
the discrete fractional map, we employ the DFSCM (8) to generate a chaotic sequence to
perform image encryption. This section presents the application of the proposed encryption
of images with a discrete time fractional sine map. To ensure the high level of security of
the information transmission through images, the concept behind blockchain technology
is adapted to ensure the decryption of the image by the authentic receiver. A schematic
representation of the image encryption algorithm is presented in Figure 6.
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Figure 6. Image encryption scheme based on the discrete fractional sine chaotic map (DFSCM).

4.1. Scheme of Encryption

The entire process of image encryption is discussed in this section. Our encryption
process can be split into three parts

1. Embedding secret images: Watermarking using discrete wavelet transforms.
2. Partial encryption and diffusion: Generating a chaotic matrix from the discrete frac-

tional sine chaotic map for diffusion of pixels.
3. Encryption: Image is integrated into 256 bits and is bit-XORed with genesis block

using SHA-256.

A step-by-step procedure of the encryption process is as follows.
Embedding secret images:

1. The objective image (P) of size K× L is selected and subjected to level 2 or 3 decom-
position employing discrete wavelet transformation after converting the image to
greyscale [46]. In case of an image of size 256× 256, level 1 contains four sub-bands
of size 128× 128 containing approximation (LL), horizontal (HL), vertical (LH) and
diagonal (HH) as shown in Figure 7.

Figure 7. Different levels of decomposition by discrete wavelet transforms.

2. Consider the LL sub-band for level 2 decomposition and similarly, the procedure can
be followed for level 3 decomposition. The size of the sub-bands is halved at each
decomposition.

3. In our algorithm, we are interested in embedding watermarked images in different
levels.
Case (i): Level 2 decomposition with secret images embedded in the LH sub-band of
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level 1 and the HL sub-band in level 2.
Case (ii): Level 3 decomposition with secret images embedded in the LH sub-band of
level 2 and the HL sub-band in level 3.
Case (ii): Level 3 decomposition with secret images embedded in the LH sub-band of
level 3 and the HL sub-band in level 3.

4. Size of the level in which the secret images to be watermarked are selected and the
secret images are processed to this size. Singular vector decomposition (SVD) and
inverse discrete wavelet transform are employed to obtain watermarked image.

Partial encryption and diffusion:

1. After the watermarked image is obtained, it is subjected to encryption of the selected
portion of the image using the sum of the edge intensity values and respective inverse
of the value for recovering the image.

2. After partial encryption, we employ Fourier transform for inter-block shifting in the
image. Let us denote the shifted image by J2.

3. The discrete fractional chaotic map (8) with parameters b = 12, c = 40 and fractional
order v = 0.55 with initial states (0.01, 0.01) is considered to obtain the chaotic matrix.
Chaotic sequences are generated from the map (8) and the chaotic matrix is obtained
by
for m = 1:K
for n = 1:L
W(m, n) = f loor(mod((x(m) + y(n))× 230, 256));
end
end

4. The chaotic matrix W(m, n) thus obtained from the previous step is employed for the
process of diffusion with the shifted image (J2) obtained in Step 2. Let the diffused
image be denoted by J3.

Encryption:
The encryption process is based on the following concept: In a blockchain, the genesis

block serves as the initial block upon which subsequent blocks are built. Each block in
the blockchain depends on the hash values of the previous block, with the genesis block
having a hash value of 0. A notable feature of the blockchain is that every block contains the
complete transaction history from the previous block. Therefore, any slight modification in
the transactions would lead to corruption of the entire data.

Applying this concept, the partially encrypted and block-shuffled image obtained in
the previous step is divided into 256 blocks. A unique base block, known as the genesis
block, is introduced. This genesis block is XORed with the image disintegrated into bits,
resulting in blocks shuffled across different regions of the image. The procedure can be
summarized as follows:

1. The image J3 is divided into 256 small blocks and a genesis block required for con-
struction of blockchain is considered.

2. The image blocks are then converted to strings by
c = 1
while p ≤ K
while q ≤ L
J4(p,q:q + 31)= B(c,:) ⊕J3(p,q:q + 31);
B(c + 1, :) = uint8(sha256hasher.ComputeHash (J4(p, q : q + 31)));
c = c + 1;
end
end

3. The encrypted image J4 to be sent to the recipient is obtained.
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4.2. Decryption Scheme

The procedure of obtaining the plain image from the encrypted image is a simple
reverse process, starting with the extraction of the image with the same genesis block and
then diffusion with the chaotic matrix W(m, n). An inverse Fourier transform is applied
to reshuffle the blocks, and the inverse value of the edge intensity can be used to retain
our watermarked image. Once the watermarked image is obtained by applying a discrete
wavelet transform to the sub-bands with secret images, the secret image can be obtained.

4.3. Significance of the Proposed Algorithm

Our proposed algorithm presents a two-layer defence mechanism against non-recipient
decryption. The first layer of defence is the genesis block, a unique set of SHA-256 code
accessible only to the receiver and sender. The diffusion of the encrypted image with a
different genesis block than the original one results in a corrupted image, which, on further
processing, will not yield any information about the image. The second layer of defence is
the chaotic key of the DFSCM which is sensitive to high precision of 10−16, thus making
it difficult to break into the algorithm. Thus, our algorithm developed with DFSCM and
the concept of blockchain for encryption of images provides a high level of security for the
transmission of information. The experimental evaluation of the results also supports our
claim in comparison with some recent literature based on chaotic systems.

5. Analysis of Image Encryption and Decryption

The analysis of the proposed encryption algorithm is carried out with the help of
several important indicators that ensures the sensitivity of the key, image quality, random-
ness of the encrypted image and similarity of the decrypted image with that of the input
plain image.

There are several test images that are commonly employed; this article, for the analysis
of the algorithm, considers a standard peppers image with a size of 256× 256× 3 as an
objective image. The main focus of our study involves understanding the influence of
watermarking on secret images at different levels after decomposition. The results based
on the algorithm for different levels of watermarking are presented in this section in the
form of simulations of the numerical values. The numerical values are then compared with
different algorithms proposed in the literature. An investigation is then performed with
statistical analysis comprising histogram analysis, pixel correlation, χ2 test and robustness
analysis supported by noise attacks. Finally, key sensitivity analysis under different key
variations is performed. The embedded secret images, results of image encryption and
decryption and and recovered secrete images in binary form are presented in Figures 8, 9
and 10, respectively.

(a) Secret image 1 (b) Secret image 2

Figure 8. Secret images embedded in the sub-band of level 2 ((a) Lena) and the sub-band of level 1
((b) Fingerprint) in an objective image of size 256× 256 with level 2 decomposition.
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(a) (b)

(c) (d) (e)

Figure 9. Simulations for peppers image of size 256× 256: (a) Watermarked image; (b) partially
encrypted image; (c) inter-block shuffled image; (d) encrypted image; (e) decrypted image.

(a) Recovered secret image 1 (b) Recovered secret image 2

Figure 10. Binary form of the recovered secret images embedded in the sub-band of level 2 ((a) Lena)
and sub-band of level 1 ((b) Fingerprint) in an objective image of size 256× 256.

5.1. Statistical Analysis

The statistical analysis of the algorithm is presented in this section to understand
the random distribution of the pixels in the encrypted image and the correlation between
the pixels.

5.1.1. χ2 Test

The uniformity of the histogram obtained for the encrypted images is justified with a
χ2 test. If ν` denotes the frequency of the observed occurrence and the expected frequency
of occurrence is ω` then the χ2 value can be obtained from

χ2 =
256

∑
`=1

ν` −ω`

ω`
, (13)
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where ` is the count of grey levels (256). For a significant level of 0.05, the value of χ2 is 293.
From Tables 2 and 3, the χ2 value for all the images is clearly less than 293 and ensures the
uniform distribution of the histogram.

Table 2. χ2 test of encrypted peppers image with level 2 decomposition.

Image Watermarking Level χ2 Test

Peppers Level 1—Lena 269.1328256× 256 Level 2—Fingerprint

Table 3. χ2 test of encrypted peppers image with level 3 decomposition.

Image Watermarking Level χ2 Test

Peppers Level 2—Lena 245.4453256× 256 Level 3—Fingerprint
Peppers Level 3—Lena 206.2031256× 256 Level 3—Fingerprint

Analysis of χ2 test results illustrates the impact of watermarking images at different
levels. From Tables 2 and 3, it is clear that the higher the image watermarking level (Level-3)
the smaller the χ2 value, while watermarking images at a smaller level (Level-2) results
in a χ2 value close to the ideal value. Histogram uniformity is supported with images
watermarked deep into the objective image.

5.1.2. Histogram Analysis

Investigating the image histograms provides information about pixel distribution, and
in the cryptosystem, this provides insight into understanding the system’s security against
statistical attacks. Images with uniformly distributed pixels are known to withstand such
attacks. A comparison is carried out between the input and encrypted image histograms.
From Figure 11, it can be observed that the input plain image histogram contains a random
distribution, while the pixels in the encrypted image are uniformly distributed between
[0, 255]. Thus, our scheme is clearly secure against statistical attacks.

0

200

400

600

Watermarked Image Histogram

0 50 100 150 200 250

(a)

0

100

200

300

400

500

600

Encrypted Image Histogram

0 50 100 150 200 250

(b)

0

200

400

600

Decrypted Image Histogram

0 50 100 150 200 250

(c)

Figure 11. Histogram analysis of the peppers image with watermarking in the level 1 and 2 sub-bands.
(a) Input image, (b) encrypted image, and (c) decrypted image.

5.1.3. Correlation Coefficients

Correlation in general is used to study the strength of relationships between any two
variables. The higher the correlation, the greater their change in the same direction. The
correlation lies between [−1,1] with negative values representing changes in the variables
occurring in opposite directions. In the case of image encryption, if the correlation between
any two pixels is high, it is simple to track them down with simple probability. Therefore,
for safe and secure information transmission it is necessary to have as little correlation
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between pixels as possible. The correlation coefficients are calculated for both the plain and
encrypted image using

ρuw =
Covariance of u and w√

P(u)
√

P(w)
, (14)

where the covariance of the pixels u and w is obtained from 1
K

K
∑

δ=1
(uδ− E(u))− (wδ− E(w)),

P(u) represents the variance of u given by 1
K

K
∑

δ=1
(uδ − E(u))2, E(u) = 1

K

K
∑

δ=1
uδ is the

expectation of u and K is the number of pixels. The correlation coefficients calculated
along the diagonal, vertical, and horizontal directions are presented in Tables 4 and 5.
The concentration of pixels for the input and encrypted images is presented in Figure 12.
For the plain input image, the concentrations of pixels are very high at certain regions,
whereas the pixels are randomly spread for the encrypted image. With visual and numerical
support from the tabulated values, it is evident that our algorithm ensures an increase in
the confusion of the encrypted images.

Table 4. Correlation Coefficient of peppers image with 2-Level decomposition.

Image Watermarking Level
Input Image Encrypted Image

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Peppers Level 1—Lena 0.8516 0.9492 0.8208 0.0264 0.0016 0.0073256× 256 Level 2—Fingerprint

Table 5. Correlation coefficient of the peppers image with level 3 decomposition.

Image Watermarking Level
Input Image Encrypted Image

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Peppers Level 2—Lena 0.9298 0.9517 0.9017 −0.0101 −0.0098 −0.0130
256× 256 Level 3—Fingerprint

Peppers Level 3—Lena 0.9447 0.9561 0.9208 0.0043 −0.0103 −0.0004
256× 256 Level 3—Fingerprint

Figure 12. Correlation analysis for the input and encrypted images along the horizontal, vertical and
diagonal of the peppers image with level 1 and level 2 watermarking.
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5.1.4. Information Entropy

The uncertainty of an image or information transmission is described with information
entropy. The entropy of an image is calculated using the distribution of pixels in the
histogram. The value can be evaluated by

Entropy = −∑
µ

Fµ log2(Fµ), (15)

where the number of pixels is denoted by µ and the probability of a pixel is Fmu. An ideal
image entropy value is 8 and images with entropy values close to 8 are considered to be
random and better encrypted. The values in Tables 6 and 7 illustrate the entropy of the
different input images and their respective encrypted image. Entropy values of different
encrypted images are very close to 8. Our results of the encrypted image entropy reveal
higher levels of ambiguity and an uncertain pixel distribution.

Table 6. Entropy analysis of the peppers image with level 2 decomposition.

Image Watermarking Level
Entropy

Encrypted Image

Peppers Level 1—Lena 7.997024
256 × 256 Level 2—Fingerprint

Table 7. Entropy Analysis of peppers image with 3-Level decomposition.

Image Watermarking Level
Entropy

Encrypted Image

Peppers Level 2—Lena 7.997292
256× 256 Level 3—Fingerprint

Peppers Level 3—Lena 7.997724
256× 256 Level 3—Fingerprint

5.2. Security Attacks
5.2.1. Differential Attacks

Common indicators for the analysis of these types of attacks are employed by calculat-
ing the changing pixel rate (NPCR) between the original input image and the encrypted
image and the unified averaged changed intensity (UACI). The calculations for these val-
ues are performed in the following way. Let Φ1 and Φ2 represent two encrypted images
obtained before and after changing one pixel of the input image. Let the bipolar array be
denoted G(`1, `2) and defined by

G(`1, `2) =

{
0, i f Φ1(`1, `2) = Φ2(`1, `2)

1, i f Φ1(`1, `2) 6= Φ2(`1, `2)
(16)

where Φ1(`1, `2) and Φ2(`1, `2) are the value of pixels at grid(`1, `2) for Φ1 and Φ2. Then

NPCR = ∑
`1,`2

D(`1, `2)

K
× 100%, (17)

where K is the pixel number.

UACI = ∑
`1,`2

|Φ1(`1, `2), Φ2(`1, `2)|
M · K × 100%, (18)
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where M is the largest pixel value based on the encrypted image. For a highly secure image
the maximum NPCR is 100%, the closer the NPCR is to 100 the higher the security level of
the encrypted images. Numerical values of the calculated NPCR and UACI for encrypted
images of different input images are listed in Table 8. The resistance of the algorithm
towards differential attacks is evident from the NPCR values close to 100.

Table 8. NPCR and UACI of the peppers image (256 × 256) with level 3 watermarking.

Pixel Change Position NPCR (%) UACI (%)

(210, 136) 99.601746 33.495807
(245, 114) 99.626160 33.402231
(118, 245) 99.690247 33.592948
(243, 134) 99.633789 33.450850

5.2.2. Cryptanalysis

The primary objective of cryptanalysis is to obtain partial or complete keys for an
encryption algorithm to gain unauthorized access to transmitted information. According
to the Kerckhoff principle [47], the security of a cryptographic system relies on the secrecy
of the keys, even if all other details are known to the public. In the proposed algorithm,
the security primarily depends on two keys: Key 1, which determines the scrambling of
the original image using the proposed DFSCM; and Key 2, the genesis block used in the
final encryption stage to convert the image into a string of characters. Now, let us consider
different attack scenarios on the system. In an attack focused on secret images, suppose
the attacker has a collection of watermarked images and performs statistical analyses on
the watermarked positions. However, determining the exact region of the secret image
becomes challenging due to the images being embedded in different layers using wavelet
transforms and the random distribution of pixels resulting from chaotic matrix scrambling.
Moreover, Key 2, used to decrypt the image into bits, further reduces the accessibility to the
secret image. The probability of the attacker discovering Key 1 is extremely low, estimated

at approximately
1

1070 . In the case of a chosen plaintext attack, the attacker has access to the

encryption algorithm and can obtain encrypted images for any input image. By encrypting
a certain number of related watermarked images, the attackers may attempt to discern
the pattern between the input and encrypted images. However, our algorithm provides
an effective defence against this type of attack due to two main reasons: (1) The complex
non-linear behaviour of the proposed DFSCM, which generates a chaotic matrix with high
randomness; and (2) the final encryption step that employs the SHA256 hash function,
producing vastly different outputs for even minor changes in the input. Based on the above
analysis, our encryption algorithm demonstrates a high level of security and proves to be
resilient against differential attacks.

5.2.3. Salt-and-Pepper Noise (Spn) Attacks

A secure image encryption algorithm must be able to resist the attack of distortion on
the encrypted image. The quality of the image that is able to be restored after noise attacks
are studied with the peak signal to noise ratio (PSNR) estimated in decibels (dBs) by

PSNR = 10 log
(

2552

MSE(Θ(u, w), Ψ(u, w))

)
, (19)

where Θ and Ψ represent the original and decrypted image, respectively. MSE denotes the
mean squared error. The similarity of the images restored after the attack with the input
image is presented with the MSSIM (multi-scale structural similarity index method). The
MSSIM actually provides information on the deformity of the decrypted image due to
the attack. Noise affects the quality of the image, reducing the quality of the decrypted
image obtained after the Spn attack under different intensities on the encrypted image for
different images, and is calculated in the form of PSNR and MSSIM, as shown in Table 9.
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Spn at intensities 0.0005, 0.001 and 0.01 are employed, and the changes in the decrypted
images are visualised in Figure 13. Typical PSNR values for an image with good quality are
around 30–50 dB. The tabulated PSNR values for the different images clearly lie within the
range, and thus, it is evident that our algorithm is capable of withstanding the Spn noise
attack and recovering the image with good quality.

Figure 13. Spn attack for the peppers image at 0.0005, 0.001 and 0.01 with corresponding noisy
decrypted images.

Table 9. PSNR and MSSIM of peppers image at different noise levels.

Images
0.0005 0.001 0.01

PSNR (dB) MSSIM PSNR (dB) MSSIM PSNR (dB) MSSIM

Peppers 47.611569 0.949297 43.122702 0.882821 32.571786 0.280779

The impact of the Spn attack is validated for secret images watermarked at the noise
levels 0.005, 0.001 and 0.01, and the simulations are presented in Figure 14. The PSNR and
similarity of the extracted watermarked images with and without noise are tabulated in
Table 10. It can be observed that the Spn attack has a considerably greater effect on the
objective image than the watermarked secret images. This change can be observed from the
PSNR values of the objective image at a noise level of 0.01, where the similarity between
the original and decrypted images is 0.28(28%). In the case of secret images, the similarity
between the noiseless extracted image and the noisy image is around 87% for a noise level
of 0.01, meaning the information loss is very low and a higher level of information can
be recovered.

Table 10. The PSNR and MSSIM of secret images at different noise levels.

Images
0.0005 0.001 0.01

PSNR (dB) MSSIM PSNR (dB) MSSIM PSNR (dB) MSSIM

Lena 36.267275 0.994674 31.577759 0.984377 29.896230 0.873192
Fingerprint 37.017159 0.996788 32.713040 0.986345 29.571403 0.875736
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5.3. Key Security Analysis
5.3.1. Key Space

Our encryption scheme comprises seven keys x0, y0, b, c, v for the chaotic maps and so
for the keys with precision 10−14, the key space is obtained as 1070. For any safe encryption
system a key space of 2100 is sufficient [48]. Therefore, it is evident that our algorithm has a
large enough key space to withstand any attacks.

Figure 14. Extracted secret images of Lena and the Fingerprint at different Spn densities at 0.005,
0.001 and 0.01.

5.3.2. Sensitivity of the Key

The level of security provided by the encryption algorithm can be understood from the
sensitivity of the key. A change in a single bit of the key can result in significant changes to
the encrypted image. In order to investigate the sensitivity of the secret keys, we calculate
the UACI and NPCR for the encrypted images obtained for the original chaotic keys x0 and
y0, and the modified keys obtained by adding 1× 10−16 to the original chaotic keys. For
our analysis, we consider the modification of key x0 to x0 + 10−16 and y0 to y0 + 10−16. The
tabulated values are presented in Table 11. In order to visualize the impact of a very small
change in a key on the decryption process, we present images encrypted with different
keys in Figure 15. In the encryption phase, the change in one bit of key NPCR (%) of the
two encrypted images is high, indicating the dissimilarity of the encrypted image, and
similarly, in the decryption process, the change of the key results in a completely different
image rather than obtaining the input image. Thus, it is clear that the algorithm proposed
for encryption is highly sensitive to slight changes in the key.

Table 11. NPCR, UACI, PSNR, SSIM values for the sensitivity of the keys with precision x0 + 10−16

and y0 + 10−16.

x0 + 10−16 y0 + 10−16

NPCR (%) 99.620056 99.632263
UACI 33.482385 33.582177

PSNR (dB) 27.074867 27.085761
SSIM 0.009156 0.011158
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(a)

Decrypted image

(b)

Decrypted image

(c)

Decrypted image

(d)

Figure 15. Key sensitivity for peppers image. (a) Input image, (b) decrypted images with original
key x0, y0, (c) decrypted images with key x0 + 10−16, (d) decrypted images with key y0 + 10−16.

5.4. Comparison of the Cryptographic Analysis of the Proposed Algorithms with Results from
Recent Literature

The analysis of the algorithm is compared to recent literature, and the results are
tabulated in Table 12. The encrypted image generated by our algorithm exhibits a high
level of randomness, as evidenced by its information entropy value of 7.9977. Furthermore,
the NPCR achieves a value of 99.6902, indicating a significant change between the input and
encrypted images. Additionally, the UACI value of 33.5929 surpasses the values reported
in the compared articles, highlighting the effectiveness of our algorithm. The random
distribution of pixels in both the input and encrypted images is demonstrated in the latter
part of the image. The correlation coefficients obtained are close to zero, further indicating
the lack of correlation between the pixel values. These results provide clear evidence that
our proposed algorithm possesses the ability to encrypt images effectively and withstand
various attacks.

Table 12. Comparisonresults based on the peppers image.

Encrypted Image
Correlation Coefficient

Entropy NPCR (%) UACI (%) Horizontal Vertical Diagonal

Proposed 7.9977 99.6902 33.5929 −0.0043 −0.0103 −0.0004
[49] 7.9972 99.6050 33.5062 0.0025 0.0040 −0.0015
[48] 7.9970 99.6048 33.4539 −0.0011 0.0014 −0.004
[50] 7.9969 99.6196 33.4150 −0.0103 −0.0127 0.0084
[51] 7.9976 99.6024 33.4975 0.0045 0.0028 0.0010

6. Conclusions

A novel discrete fractional sine chaotic map was developed and compared with
existing chaotic maps, such as the Tent map, Tinkerbell map, and other fractional chaotic
maps proposed in the literature. The comparison of dynamic characteristics confirms that
the proposed map exhibits high non-linearity and complex behaviour, making it suitable for
image encryption applications. The bifurcation diagrams demonstrate chaotic behaviour
over a wide range of parameters, while the positive Lyapunov exponents further support
the chaotic nature of the proposed algorithm. To assess the randomness of the chaotic time
series generated by the map, approximate entropy results were calculated and tabulated
for different tolerance values. These results highlight the randomness and unpredictability
of the chaotic sequences. An image encryption algorithm based on the principles of
blockchain logic was proposed to enhance the security of information transmission. This
scheme ensures a higher level of security for authorized communication between senders
and receivers. The incorporation of the transform methods for embedding secret images as
watermarks at various levels enhances the transmission of secret messages.
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For objective images of size 256× 256, the proposed encryption scheme significantly
increases the randomness of pixel distribution, as evidenced by the entropy results pre-
sented in Tables 6 and 7. The impact of the chaotic sequences generated by the fractional
chaotic map is evident from the high entropy values and the NPCR exceeding 99.69% for a
single bit change in the input image. This demonstrates the effectiveness of the proposed
encryption scheme for secure information communication through images. Additionally,
the incorporation of watermarking techniques extends its applicability to areas such as
copyright protection, e-voting, and securing medical and military data. In future research,
the concept of genesis block-based encryption can be extended to RGB images, and the
inclusion of multi-block image storage can be explored to further enhance the encryption
scheme’s capabilities.
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