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Featured Application: Non-destructive detection and quality grading of the internal quality of
grapes after harvest.

Abstract: The soluble solids content (SSC) is one of the important evaluation indicators for the
internal quality of fresh grapes. However, the current non-destructive detection method based on
hyperspectral imaging (HSI) relies on manual operation and is relatively cumbersome, making it
difficult to achieve automatic detection in batches. Therefore, in this study, we aimed to conduct
research on an improved non-destructive detection method for the SSC of bunch-harvested grapes.
This study took the Shine-Muscat grape as the research object. Using Mask R-CNN to establish a
grape image segmentation model based on deep learning (DL) applied to near-infrared hyperspectral
images (400~1000 nm), 35 characteristic wavelengths were selected using Monte Carlo Uninformative
Variable Elimination (MCUVE) to establish a prediction model for SSC. Based on the two above-
mentioned models, the improved non-destructive detection method for the SSC of bunch-harvested
grapes was validated. The comprehensive evaluation index F; of the image segmentation model was
95.34%. The Ry 2 and RMSEM of the SSC prediction model were 0.8705 and 0.5696 Brix%, respectively,
while the R, and RMSEP were 0.8755 and 0.9177 Brix%, respectively. The non-destructive detection
speed of the improved method was 16.6 times that of the existing method. These results prove that
the improved non-destructive detection method for the SSC of bunch-harvested grapes based on DL
and HSI is feasible and efficient.

Keywords: grape; bunch-harvested; hyperspectral imaging; deep learning; non-destructive detection

1. Introduction

The grape is one of the four major fruits in the world. It has a bright color and
delicious taste and is well-liked by consumers. It is an important high-value-added crop in
China. Moreover, China is the largest producer and consumer of table grapes [1,2]. With
the increase in the population’s consumption level, the demand for high-quality grapes
is growing rapidly. Table grapes are mainly harvested and sold in whole bunches. The
realization of the rapid, non-destructive detection of the internal quality of bunch-harvested
grapes is of great significance for guiding production, improving grape sale profits, and
improving the grape grading system [3].

The soluble solids content (SSC) is an important indicator for judging the quality and
ripeness of grapes, and it is a determinant of the overall taste and flavor of grapes [4]. Since
the SSC of grapes cannot be estimated manually by the naked eye, destructive sampling
is often used to assess the ripeness of the entire batch. This method not only requires the
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destruction of grape berries, causing waste in production, but also has a low efficiency and
cannot accurately evaluate the quality of each bunch of grapes; thus, it is difficult to achieve
the accurate grading of large quantities in production.

In recent years, HSI has gradually been applied for the non-destructive detection of
fruits [5], such as tomatoes [6], loquats [7], blueberries [8], red jujubes [9], apples [10], etc.
Hyperspectral data can be represented by a “3D image cube”, which can simultaneously
obtain image and spectral information on fruits, as shown in Figure 1. The horizontal and
vertical coordinate information of the two-dimensional image is represented by x and y,
respectively. The third dimensional spectral information is represented by A. The detection
technology based on HSI uses the reflectance characteristics of the target object in regard to
different spectra to predict the internal characteristics of the target. Related studies on the
non-destructive detection of the internal quality of grapes have been conducted.
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Figure 1. Schematic diagram of hyperspectral 3D image cube.

In current research on hyperspectral imaging, line-scan spectroscopy (pushbroom)
and point spectroscopy (whiskbroom) are mainly used. In these studies, relatively ac-
curate prediction models for SSC have been established. In research using line-scan
spectroscopy [11-14], the reflectance spectrum of multiple grapes can be obtained in one
image, but the methods require the manual selection of the Region of Interest (Rol) to
obtain the average spectral reflectance, which cannot be automatically detected in batches.
In research using point spectroscopy [15,16], the reflectance spectrum of one grape can be
obtained each time; still, this one-by-one detection method has a low efficiency. Therefore,
the applicability of current research is limited: for example, non-destructive detection of a
small amount of grape berries in the laboratory. To achieve the non-destructive detection of
every single grape berry in order to accurately grade the quality of grape bunches, a large
amount of time would be required.

Aiming to address the defects of the existing non-destructive detection technology
based on HSI, in this article we propose an improved method. By combining the existing
method with target recognition and image segmentation technology based on DL, we
extracted the texture feature information in the image to establish an accurate model to
identify and segment grapes [17]. In this way, the Rol can be extracted automatically and
efficiently so as to obtain the average spectral reflectance of each grape.

In this study, the existing non-destructive detection method for grape SSC based on
near-infrared hyperspectral (400~1000 nm) images was improved. Taking Shine-Muscat,
whose maturity is difficult to distinguish with the naked eye, as the research object, com-
bined with the image segmentation algorithm Mask R-CNN based on DL, an image seg-
mentation model and an SSC prediction model were established to improve the efficiency
of the non-destructive detection of the SSC in whole bunches of grapes.
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2. Materials and Methods

Research on the non-destructive detection method of the SSC in bunched grapes led
to the establishment of two detection models, namely the SSC prediction model based on
HSI and the grape instance segmentation model based on DL.

The non-destructive testing process for SSC in bunch-harvested grapes based on the
above two models is shown in Figure 2. The steps are as follows: obtain the hyperspectral
images of the whole bunch of grapes through the hyperspectral image acquisition platform;
obtain the pixels of each single grape through the Mask R-CNN instance segmentation
algorithm; obtain the spectral data of each grape in the image and establish the dataset of
the bunch of grapes; predict the SSC of each grape through the SSC prediction model; and
obtain the SSC of the bunch of grapes.

Samples of grape [ Samples of grape ] Measure ]
bunches berries =={__SsC
Label the Hyperspectral
grape berries 1mage

l Image input l Extract Rol

[ Obtain average J
[ Mask R-CNN J spectral reflectance

Eliminate outlier

samples
Deep [ Select characteristic ]
Learning wavelep gth
" Multivariate Linear Regression

1 |
Bunch of ( Grape . 1
: grapes to |mm=sb Seomentation —[ SSCp reéh?tlon ]-’[ S8C Obftheh ]l
1 be tested L Model mode grape bunc |

Figure 2. Flowchart of research object and methods.

2.1. Objects and Devices

The grape variety selected for this experiment was Shine-Muscat, with a total of
23 bunches of grapes and a total of 345 grape samples. On 9 July, 22 July, 12 August,
30 December 2021, and 11 January 2022, the grapes were picked in the greenhouse of
Baiyun Base of Guangdong Academy of Agricultural Sciences. The picked bunches had
varying degrees of ripeness, smooth surfaces, and defect-free grapes. Based on the expe-
rience of cultivators, 5 bunches were around 13 Brix%, 6 bunches were around 16 Brix%,
7 bunches were around 19 Brix%, and 5 bunches were around 22 Brix%. The relevant
testing equipment was as follows:

1. Portable line-scan hyperspectral imager GaiaField-V10 (Sichuan Dualix Spectral Imag-
ing Technology Co., Ltd., Chengdu, China) with built-in pushbroom (as shown in
Figure 3). Response spectrum: 400~1000 nm; maximum resolution: 1392 x 1040;
number of spectral channels: 256; spectral resolution: 3.5 nm; protocol: USB 2.0. The
dedicated light source was HSIA-LS-T-200W, consisting of four halogen lamps. The
standard whiteboard was HSIA-CT-150 mm x 150 mm, made of PTFE, with nominal
reflectance of 99%.
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Figure 3. Hyperspectral image acquisition platform. (a) Hyperspectral imager. (b) Halogen lamps.
(c) Camera obscura.

2. Digital refractometer PAL-1 (ATAGO Co., Ltd., Tokyo, Japan): measuring range:
Brix0.0~53.0%; measuring accuracy: Brix & 0.2%; measuring temperature: 10~100 °C;
working environment temperature: 10~40 °C, used to measure the soluble solid
content of grapes.

3. Tower server Dell T640 (Dell Inc., Round Rock, USA): OS: Ubuntu 18.04; CPU: Intel
Xeon(R) Gold 5218 @ 2.30 GHz; GPU: Nvidia GeForce RTX 3090 x 2; RAM 64 GB;
ROM 4 TB), used for establishing the grape segmentation model.

2.2. Method of Establishing the Grape Segmentation Model

In practical application scenarios, there are differences in the background, the distribu-
tion of grape berries is relatively dense, and there are problems such as overlapping and
shadowing, resulting in unclear edges of the grape berries, which affects the rapid identi-
fication of individual grapes in grape clusters. Traditional image processing algorithms
based on edge feature extraction are not accurate enough to meet the requirements.

The instance segmentation algorithm Mask R-CNN, proposed by Kaiming He et al. in
2017, can effectively identify the target while completing high-quality instance segmenta-
tion. Instance segmentation can be seen as a combination of target detection and semantic
segmentation. Relative to the bounding box of target detection, instance segmentation can
be accurate up to the edge of the object; relative to semantic segmentation, instance segmen-
tation can distinguish different instances on the basis of specific categories [18]. In short, it
can not only accurately segment the classification of “grape berry”, but also distinguish
different grape berries. The network not only has a high detection accuracy but also runs
at 5 frames per second under a single GPU, thus basically meeting the requirements for
real-time instance segmentation. Therefore, considering all aspects, we used the image
instance segmentation algorithm Mask R-CNN [19] based on deep learning.

2.2.1. Image Acquisition and Annotation

1. Obtain the training set and validation set. The hyperspectral imager could not directly
capture RGB images, but a total of approximately 50 images were collected in both
laboratory and greenhouse with pseudo-RGB images (R-638.8 nm, G-550.2 nm, B-
459.4 nm) synthesized from hyperspectral images of three wavelengths (as shown in
Figure 4). The split ratio of the training set and validation set was 4:1 [20].
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Figure 4. Part of the image dataset used for deep learning.

2. Annotate the image. Since it was necessary to train a model that could accurately
identify grapes with smooth surfaces and no defects, grapes with no damage on the
surface and no more than 50% occlusion of the area were selected for stroke in the
training set. In this experiment, the labeling tool LabelMe was used for labeling [21].

2.2.2. Training with Mask R-CNN

In this experiment, we used the Detectron2 algorithm library to implement the Mask
R-CNN instance segmentation algorithm. Detectron? is a second-generation CV library
launched by Facebook AI Research which integrates algorithms such as target detection, in-
stance segmentation, pose estimation, semantic segmentation, and panoramic segmentation
and has been implemented in recent years [22].

Mask R-CNN has the following main parts: image input, a Convolutional Neural
Network backbone composed of ResNet and Feature Pyramid Network (FPN), a feature
map, Region Proposal Network (RPN), RolAlign, and image output (mask, class, bounding
box) [19,23]. The network map is shown in Figure 5.
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Figure 5. Mask R-CNN network map.
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The process was as follows. First, we used the default parameters for training. Accord-
ing to the segmentation effect of the trained model, we determined whether the segmented
grapes were complete, whether the edges were accurate, etc. Then, we adjusted the param-
eters for training and repeatedly optimized them to obtain the optimal parameters.

2.2.3. Model Evaluation

After the training of the model was completed, the identification results of the grapes
needed to be evaluated. We used the F; score to evaluate the model’s performance. It is
defined as the harmonic mean of the precision rate and recall rate. The definition of F; is
shown in Equations (1)—(3):

P=TP /(TP + FP) 1)
R=TP / (TP + EN) @)
F1=2PR/ (P+R) 3)

In the equations, P is the precision rate and R is the recall rate. TP is the number of grapes
that are actually grapes and predicted by the model as grapes, that is, the actual positive
samples that are detected as positive samples. FP is the number of grapes that are actually
background but predicted by the model as grapes, that is, the actual negative samples that
are detected as positive samples. FN is the number of grapes that are actually grapes but
not identified as grapes, that is, the actual positive samples that are not detected as positive
samples. The closer F; is to 1, the better the performance of the model is [24].

2.3. Method of Establishing the SSC Prediction Model

The SSC prediction model based on hyperspectral images is key to the detection
accuracy. Its main function is to accurately estimate the SSC of a single grape based on its
spectral reflectance characteristics. The main process of the research using this model is
as follows:

1.  Establish the input set: collect images in the 400 nm-1000 nm spectral band of
grapes of different levels of maturity through the hyperspectral acquisition plat-
form; perform black and white correction on the hyperspectral images to obtain the
standard reflectance.

2. Establish the output set: detect the SSC of each grape that has completed hyperspectral
imaging; select the Rol to obtain the average spectral data of each grape; take the SSC
as the label value of the average spectral data.

3.  Establish the modeling set: based on the input set and the output set, a model-
ing set and a test set are obtained for the establishment and evaluation of the SSC
prediction model.

4.  Establish the SSC prediction model: adopt different methods to select characteristic
wavelengths and establish different models; evaluate different models using the test
set to select the best model.

2.3.1. Establishment of SSC Prediction Model Sample Set

(1) Hyperspectral image acquisition and correction

1.  The acquisition of modeling set samples was as follows. Five grapes were picked
randomly and equidistantly from top to bottom in the same vertical direction from
the same bunch of grapes (as shown in Figure 6a,b). We picked 5 grapes, working
in both vertical directions, from the same bunch of grapes for a total of 10 grapes. A
total of 100 grapes from 10 bunches (2 bunches of 20% ripeness, 3 bunches of 50%
ripeness, 3 bunches of 70% ripeness, and 2 bunches of 100% ripeness) were collected
and arranged in a 5 x 5 format in one image (Figure 6¢). We used a hyperspectral
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imager for imaging and turned on the light source, allowing it to warm up for half an
hour before imaging to stabilize the current.

(c)

Figure 6. Hyperspectral image acquisition process (1-5 represent the label number of grapes).

(a) A bunch of grapes. (b) Picked grape samples. (c) A set of samples for each hyperspectral image.

2.

The acquisition of test set samples was as follows. Five grapes were picked randomly
and equidistantly from top to bottom in the same vertical direction from the same
bunch of grapes (as shown in Figure 6a,b). We collected 5 grapes based on the same
horizontal spacing, that is, 5 x 5 = 25 grapes were collected from the same bunch of
grapes, forming one set of data. A total of 125 grapes were collected from 5 bunches,
and they were placed in the same way as shown in Figure 6¢c above. We used the
hyperspectral imager for imaging and turned on the light source, allowing it to warm
up for half an hour before imaging to stabilize the current.

The hyperspectral image correction was obtained as follows. After hyperspectral
imaging, it was necessary to eliminate the influences of factors such as camera dark
current and uneven illumination on the image and obtain a standard reflectance; thus,
black and white correction was performed. The all-black calibration image 1;,+ was
obtained by covering the lens, the all-white image I,,,;;, was obtained by scanning
the standard whiteboard (nominal reflectance is 99%), and the corrected image was
obtained according to formula (1) [25], where L is the calibrated image and I,y is
the original hyperspectral image. The calibrated image contained 256 wavelengths of
standard reflectance per pixel.

Iref = Iraw — Laark) / Lwhite — Laark) 4

(2) Obtaining the average standard reflectance
The average spectral data of the grapes should correspond to the measured soluble

solids content; hence, each grape berry must be numbered. For the sake of convenient
numbering, in this experiment, we used ENVI 5.3, developed by Research System INC.,
to process the hyperspectral images of table grapes and extract data from the collected
hyperspectral images. Four 20 x 20 square regions were selected, being equally spaced
for each sample, using the polygon tool as the Region of Interest (Rol). When selecting
regions, one should avoid overbright areas and dark-edged areas (as shown in Figure 7).
The average spectral reflectance of all pixels in the Rol was taken as the spectral data of a
single sample.
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Figure 7. Selected Rol of hyperspectral images (different colors represent different Rols).

(3) SSC measurement

After completing the collection of hyperspectral image samples, according to the
Chinese national standard NY /T 2637-2014, “Refractometric method for determination of
total soluble solids in fruits and vegetables”, we squeezed out the grape juice and allowed
the juice to drip onto the digital display refractometer mirror window. The data of the
digital display refractometer were read and recorded. The measurement was repeated
three times for each sample, and the average value was taken as the true value of a single
sample [26].

(4) Eliminating outlier samples

Before selecting characteristic wavelengths and modeling, outlier samples should
be eliminated to reduce the impact on the model’s performance [27]. The Mahalanobis
distance method is used to verify the distance between samples through spectral data and
does not require SSC data, thus avoiding errors caused by human operation to a certain
extent. Therefore, using the Mahalanobis distance method to eliminate outlier samples can
help to improve the accuracy of the model [28].

In this research, the Mahalanobis distance method was used to eliminate outlier samples.

2.3.2. The Method of Establishing the SSC Prediction Model

(1) Selecting characteristic wavelengths

Since hyperspectral images have a reflectivity of 256 wavelengths, that is, data with
256 channels, not only is the amount of data large, but the data also contain redundant
information and collinearity information. It has been proved that not all bands have
equal importance [29]. It is necessary to delete redundant wavelength variables and select
characteristic wavelengths that are highly correlated with the measured indicators so as to
simplify and optimize the model and enhance the robustness of the model. The method of
selecting the characteristic wavelength employs the Successive Projections Algorithm (SPA),
the Monte Carlo Uninformative Variable Elimination (MCUVE), and the combination of
the two methods.

e  SPA is a forward variable selection method that obtains the subset of variables with
minimal collinearity using the operation of projection in the vector space [30]. In
this experiment, the number of spectral data samples N and the number of wave-
lengths, 256, can form a spectral matrix Xyx256. SPA starts with one wavelength,
calculates its projection on unselected wavelengths in each cycle, and then introduces
the wavelength with the largest projection vector into the wavelength combination.
The number of cycles is the number of selected characteristic wavelengths. Each newly
selected wavelength has the smallest linear relationship with the previous wavelength.
The algorithm models the results of each selection for prediction and analysis. If the
predicted root mean square error (RMSE) of the modeling verification achieves the
minimum value, the number of wavelengths selected at this time is the best [31].
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e  MCUVE combines the Monte Carlo method with the Uninformative Variable Elimina-
tion (UVE) method, aiming to address the large amount of redundant information in
the spectral data while making full use of the intrinsic correlation between samples
and evaluating the contribution of the wavelength in the spectral data to the mea-
sured index. Based on the contribution of each wavelength, wavelengths with no
information are eliminated [32].

(2) Quantitative modeling and model evaluation

Partial Least Square Regression (PLSR) is a multivariate statistical data analysis
method which is mainly used for the regression modeling of multiple dependent vari-
ables with respect to multiple independent variables [33]. In the modeling process, the
PLSR method integrates the characteristics of Principal Component Analysis, Canonical
Correlation Analysis, and Linear Regression Analysis methods; thus, a more reasonable
multivariate linear regression model can be established [34].

After the regression model is established, the prediction effect of the model is measured
using the following parameters: the main evaluation indicators are the coefficient of
determination Rp2 of the test set and the root mean square error RMSEP of the test set,
while the auxiliary evaluation indicators are the Ry of the modeling set and the RMSEM
of the modeling set.

2.4. Validation of Improved Non-Destructive Detection Method for SSC

Eight bunches of grapes with different degrees of maturity were used as samples (as
shown in Figure 8) to verify the non-destructive testing method for the SSC of bunched
grapes (2 bunches of 20% ripeness, 2 bunches of 50% ripeness, 2 bunches of 70% ripeness,
and 2 bunches of 100% ripeness).

Figure 8. Validation samples of improved non-destructive detection method for SSC in bunch-
harvested grapes.

After hyperspectral images of whole bunches of grapes were obtained, a digital
refractometer was used to detect the SSC value of each grape in the image, and the value
was determined in one-to-one correspondence with the position in the image.

2.4.1. Grape Segmentation and Removal of Overbright Areas

Firstly, the Mask R-CNN instance segmentation model was used to identify and
segment the grapes in the image and obtain the pixels corresponding to the grape berries
whose occlusion area did not exceed 50% in a bunch.

Since the light source used for imaging in the platform came from four halogen lamps
and the grape surfaces were smooth, the light was specularly reflected on the grape surface,
causing some areas to be overbright visually, which greatly interfered with the prediction
results. Therefore, it was necessary to remove the overbright areas. The grayscale image
under a single wavelength was selected, binarized, and inverted as a mask for removing
the overbright area and then multiplied with the original image to obtain grape pixels
without overbright areas.
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2.4.2. Grape SSC Predicted Value Visualization

Based on the spectral data of the pixels of each grape in the hyperspectral image, the
SSC prediction model was used to obtain the SSC prediction value of each grape in the
bunch, and it was displayed in the geometric center of each grape.

Finally, we compared the actual value with the predicted value to judge the validity
and accuracy of the model.

2.4.3. Efficiency Comparison between the Existing Method and Improved Method

For the same batch of samples, the existing non-destructive detection method based
on hyperspectral imaging and the improved method, respectively, were adopted. We
recorded the time required for the two methods, respectively, and calculated the average
SSC prediction time of each grape so as to determine the increase in the efficiency of the
improved method.

3. Results and Discussions
3.1. Results and Analysis of the Grape Segmentation Test
3.1.1. Model Training

There are multiple official baseline models for Mask R-CNN on Detectron2 (https:/ /github.
com/facebookresearch/detectron2 /blob /main/MODEL_ZOO.md, accessed on 9 August 2022),
as shown in Table Al. It can be seen from the table that the benchmark model using the
ResNet + FPN backbone network has a shorter training time and inference time and maintains a
high box AP and mask AP, which means that it has the best speed/accuracy tradeoff. Since the
complexity of the Shine-Muscat segmentation model was not high, ResNet-50 was selected as
the feature extractor rather than ResNet-101. After comprehensive consideration, the benchmark
model R50-FPN-3x was selected for training.

The main training parameters that affect the model’s accuracy are the batch size and
epoch. The batch size should not be too small or too large, because when the batch size is
too small, there will not be sufficient time to converge during training. Under the common
100-epoch setting, the batch size is generally not less than 16. When the batch size is too
large, not only will the memory of the GPU overflow, but there will also be problems with
deep learning optimization and generalization [35].

After several parameter adjustments, the following training parameters were finally
determined: the batch size was 16, the learning rate was 0.02, the batch size per image was
512, and the epoch number was 100.

3.1.2. Training Results

Applying the trained model to the validation set, it can be seen from the actual
segmentation effect that the model could effectively identify the target, and the boundary
segmentation was accurate, distinguishing the grape surface from the other parts (as shown
in Figure 9).

Figure 9. Instance segmentation effect. (a) Original image. (b) Segmentation result.
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3.1.3. Model Evaluation

We randomly selected 20 grape images from the validation set and counted the
number of detected positive samples (TP), the number of falsely detected positive
samples (FP), and the number of undetected positive samples (FN). Then, we calculated
the precision rate and recall rate and finally obtained the value of F;. The results are
shown in Table 1.

Table 1. Shine-Muscat grape segmentation model evaluation.

TP FP EN F1/%
348 5 29 95.34

The results show that the grape segmentation model trained with Mask R-CNN is
effective and reliable. It can be used for the rapid extraction of the Rol in hyperspectral images.

3.2. Results and Analysis of SSC Prediction Test

After obtaining the average spectral reflectance of the Rol of 100 grapes in the modeling
set, we obtained the reflectance spectra of the modeling set. Below, each curve represents a
grape sample in Figure 10.

0.4 T T T T T

Reflectance

400 500 600 700 800 900 1000
Wavelength / nm

Figure 10. Reflectance spectra of modeling set.

3.2.1. Eliminating Outlier Samples

In this test, the Mahalanobis distance method was used to eliminate outlier samples,
and the Mahalanobis distance and critical threshold of each sample were calculated. Most of
the samples were within the critical threshold, and samples exceeding the critical threshold
were considered to be outlier samples. Through observation, we could determine that the
samples with the serial numbers 54, 64, and 78 were obviously outlier samples; hence, they
were eliminated (as shown in Figure 11).
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Figure 11. Mahalanobis distance between the samples.

3.2.2. Selecting Characteristic Wavelengths

We used different methods in MATLAB R2021b to select feature wavelengths:

SPA, MCUVE, SPA-MCUVE (based on the feature wavelengths selected by SPA and
then using MCUVE to select feature wavelengths), and MCUVE-SPA. The results are
as follows:

1.

Used SPA to select characteristic wavelengths and select 32 wavelengths, namely,
393.7,407.2,416.2,420.7, 423.0, 427.5, 429.8, 482.4, 524.3, 557.2, 573.9, 641.2, 690.2, 715.0,
795.5,798.0, 823.6, 859.6, 875.2, 911.8, 946.1, 951.4, 962.0, 972.6, 986.0, 988.7, 991.4, 999 .4,
1002.1, 1004.8, 1007.5, and 1010.2 (unit: nm).

Used MCUVE to select characteristic wavelengths and select 35 wavelengths, namely,
391.5,402.7,454.8, 468.6, 484.7, 531.3, 536.0, 543.1, 552.5, 557.2, 564.4, 573.9, 617.0, 638.8,
653.4, 680.4, 687.8,692.7,707.5, 712.5,732.4, 742.4, 760.0, 815.9, 841.5, 859.6, 864.8, 875.2,
909.2,924.9, 943.4, 954.0, 964.7, 986.0, and 1010.2 (unit: nm).

Used SPA-MCUVE to select characteristic wavelengths and select 13 wavelengths,
namely, 393.7, 423.0, 482.4, 557.2, 573.9, 715.0, 795.5, 859.6, 875.2, 911.8, 962.0, 988.7,
and 1010.2 (unit: nm).

Used MCUVE-SPA to select characteristic wavelengths and select 15 wavelengths,
namely, 391.5, 557.2, 573.9, 638.8, 680.4, 687.8, 712.5, 742.4, 760.0, 859.6, 909.2, 943.4,
964.7,986.0, and 1010.2 (unit: nm).

In addition, in order to investigate the effects of spectral pretreatment and the selection

of feature wavelengths, a control group was set up: no feature selection, and first derivative
pretreatment without feature selection.

3.2.3. Establishment and Comparison of SSC Prediction Models

We used PLSR to establish multivariate linear regression models. The measured and

predicted values of the modeling set and test set are shown in Figure 12.
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Figure 12. The prediction results of the four regression models. (a) SPA. (b) MCUVE. (c) SPA-MCUVE.
(d) MCUVE-SPA. (e) No selection. (f) 1-Der without selection.

The model performance indices are shown in Table 2. The main evaluation indicators
are Rp2 and RMSEP of the test set, and the auxiliary evaluation indicators are Rm? and
RMSEM of the modeling set. It can be concluded that in terms of accuracy, the ranking
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of the models from high to low is as follows: MCUVE, MCUVE-SPA, SPA, no selection,
SPA-MCUVE, 1-Der without selection.

Table 2. Comparison of different models.

L. Modeling Set Test Set
Characteristic
Method Wavelengths R..2 RMSEM R.2 RMSEP
m (Brix%) P (Brix%)
SPA 32 0.8163 0.6786 0.7488 1.1770
MCUVE 35 0.8705 0.5696 0.8755 0.9177
SPA-MCUVE 13 0.6874 0.8852 0.6851 1.4146
MCUVE-SPA 15 0.8086 0.6973 0.8092 1.0287
No selection 256 1.0000 0.0000 0.7327 1.5862
1-Der without selection 256 1.0000 0.0000 0.4495 1.8312

It can be seen from Table 2 that among all the models, the model established
using MCUVE to select the characteristic wavelengths had the best performance, and
the Rp? of the test set was 0.8755, which showed good versatility and stability. The
models without characteristic wavelengths selection had overfitting. The selection of
characteristic wavelengths should not be too many or too few. In addition, it can also be
seen that using pretreatment methods such as first derivative can lead to a decrease in
model performance.

After comprehensive consideration, we chose the model established using 35 wave-
lengths selected with MCUVE. The equation of the model is shown in Figure A1, where Y
is the value of the grape SSC (unit: Brix%), and X is the standard reflectance of the grape
at wavelength k.

There has been some research on the selection of characteristic wavelengths for differ-
ent grape varieties, for example, Red Globe [12,36], Wink [13], and various wine grapes
(Cabernet Sauvignon, Nebbiolo, Merlot, Shiraz, etc.) [37-39]. By comparing these studies, it
can be generally concluded that the wavelengths related to SSC are as follows: 450-460 nm,
670-680 nm, 720-730 nm, 950-980 nm.

3.3. Validation Results of Improved Non-Destructive Detection Method for SSC in
Bunch-Harvested Grapes

Two key models, as outlined above, were established: the grape segmentation model
based on DL and the SSC prediction model based on HSI. Finally, the validation of the
non-destructive detection technology for the SSC of bunch-harvested grapes was carried
out, and the sample is shown in Figure 8, including eight bunches of grapes.

When imaging within the platform, we assumed that the reflectance spectrum of the
same object at different heights (i.e., distance from the light source) was uniform. In reality,
when placing a bunch of grapes in the platform, due to the irregular shape, the distance
between different grapes and the light source was slightly different. This could lead to
slight deviations in hyperspectral data.

3.3.1. Grape Segmentation and Removal of Overbright Areas

The identification and segmentation results of a single grape, obtained using the Mask
R-CNN image instance segmentation model, are shown in Figure 13a,b.

By comparing the grayscale images at each wavelength, it was found that the over-
bright area was the most evident at the wavelength of 670 nm. Therefore, the grayscale
image at the wavelength of 670 nm was binarized and inverted as a mask to remove the
overbright area. It was multiplied with the original image to obtain the corresponding
pixels of the grapes without overbright areas (as shown in Figure 13c).
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(c)

Figure 13. Obtaining the pixels of a single grape. (a) A bunch of grapes. (b) Segmentation of single
grape by Mask R-CNN. (c) Removing the overbright area.

Through the process outlined above, we could obtain the corresponding pixels of each
grape in the bunch.

3.3.2. Prediction of SSC for Bunch-Harvested Grapes

After obtaining the corresponding pixels of each grape, the average reflectance spec-
trum for each grape was calculated. Using the SSC prediction model, the predicted value
of the SSC of each grape was obtained.

In grape production, it is necessary to obtain the average, maximum, and minimum
values of the SSC of the whole bunch of grapes, as an indicator of the maturity classification,
to determine whether it is suitable for picking [40]. The results are shown in Table 3.

Table 3. SSC prediction results for bunch-harvested grapes.

SSC
(Brix%)

1st Bunch
Avg Min Max

2nd Bunch
Avg Min Max

3rd Bunch
Avg Min Max

4th Bunch
Avg Min Max

Measured value
Predicted value
Error

16.78 15.5 18.8
1743 1621 18.76
0.65 0.72 0.04

17.18 15.4 18.4
1739 1536 1893
0.21 0.04 0.53

15.33 14.2 16.3
1579 13.84 17.64
0.46 0.36 1.34

16.47 14.6 18.2
16.38 14.89 17.88
0.09 0.29 0.22

SSC
(Brix%)

5th Bunch
Avg Min Max

6th Bunch
Avg Min Max

7th Bunch
Avg Min Max

8th Bunch
Avg Min Max

Measured value
Predicted value
Error

14.2 16.7 15.94 14.8 16.9 18.68 17.0 21.6 23.29 20.9 25.5
1551 1730 16.88 1614 1772 1942 1754 2049 23.04 21.07 24.83
1.31 0.60 0.94 1.34 0.82 0.74 0.54 1.11 0.25 0.17 0.67

It can be seen that among the eight bunches of grapes, the prediction error of the
average SSC value of the whole bunch was between 0.09 and 1.05 Brix%, the prediction
error of the minimum SSC value of the whole bunch was between 0.04 and 1.34 Brix%, and
the prediction error of the maximum SSC value of the whole bunch was between 0.04 and
1.34 Brix%. The test results prove that the SSC non-destructive detection method was also
effective and accurate for the whole bunch of grapes imaged.
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According to the average coordinates of the grape pixel points, the predicted SSC
results of each grape were displayed in the color map to obtain the visualization result
(as shown in Figure 14).

Brix%
24

23

22

1

21

120

j 19

14

Figure 14. Visualization of SSC non-destructive detection results for bunch-harvested grapes.

3.3.3. Efficiency Comparison between Existing Methods and Improved Methods

In recent years, researchers have successively carried out research on the non-destructive
testing of grape soluble solids content based on HSIL. In 2017, Xu Li et al. established a
prediction model for SSC based on near-infrared hyperspectral images (500~1000 nm) for red
grapes and achieved a good accuracy [14]. Such existing methods usually use ENVI software
(version number from 4.7 to 5.3) to manually select Rols in order to obtain the average spectral
reflectance of grapes.

Therefore, the existing method presented in article [14] and the improved method
proposed in this research were used to obtain the reflectance spectra of grapes, and the
non-destructive detection of SSC was carried out on eight bunches of grapes. Then, we
compared the speed and precision of the two methods on the same computer in a laboratory.
The existing methods use ENVI 5.3 for manual Rol selection, as indicated by the colored
rectangular blocks in Figure 15a. The improved method uses Mask R-CNN for recognition
and segmentation and uses the threshold method to remove overbright areas, as shown in
Figure 15b.
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Figure 15. Method for obtaining grape spectral data. (a) Existing method (different colors represent
different Rols). (b) Improved method.

The timing started from the moment when the spectral data were extracted based on
the hyperspectral image, and the timing stopped when the prediction of the SSC of the
eight bunches of grapes was completed. For a total of 157 grapes, the existing method
took 35 min and 15 s, and the improved method took 2 min and 8 s. The performance
comparison is shown in Table 4.

Table 4. Comparison between existing and improved methods.

Model Accuracy
Method Speed
etho (Grapes/Sec) R RMSEP
P (Brix%)
Article [14] method 0.074 0.9620 0.3720
Improved method 1.227 0.9357 0.9177

It can be seen from Table 4 that although the model accuracy of the improved method
proposed in this research was slightly lower than that of the model proposed in [14], the
average prediction speed per grape of the improved method was 16.6 times that of the
former, which proves that the improved method greatly improves the performance and
non-destructive detection efficiency.

4. Conclusions

In this research, by establishing two detection models, namely, the Shine-Muscat
image segmentation model using Mask R-CNN based on deep learning and the SSC
prediction model based on near-infrared hyperspectral images (400~1000 nm), the exist-
ing non-destructive detection method of grape SSC was improved. The high-efficiency
non-destructive detection of the SSC of bunch-harvested grapes was realized. The main
conclusions are as follows:

1.  The F; score of the Shine-Muscat segmentation model is 95.34%, and it can effectively
identify and segment single fruits from bunch-harvested grapes so as to realize
automatic and efficient Rol selection using hyperspectral images.

2. The SSC prediction model is established using 35 characteristic wavelengths, the R? of
the modeling set and the test set reach 0.8705 and 0.8755, respectively, and the RMSE
values are 0.5696 Brix% and 0.9177 Brix%, respectively. Accurate prediction of grape
SSC based on HSI is realized.

3. Using eight bunches of grapes for verification, the prediction error of the average
SSC value of the whole bunch is between 0.09 and 1.05 Brix%, the prediction error
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of the minimum SSC value of the whole bunch is between 0.04 and 1.34 Brix%, and
the prediction error of the maximum SSC value of the whole bunch is between 0.04
and 1.34 Brix%. This shows that this method can provide accurate reference data for
actual production.

4. Using eight bunches of grapes to compare the existing method and the improved
method in terms of efficiency, the average detection speed of the existing method is
0.074 grapes per second, and that of the improved method is 1.227 grapes per second,
which is 16.6 times that of the former. The results prove that the improved method
can greatly improve the efficiency of non-destructive detection based on HSI.

This method overcomes the shortcomings of the traditional SSC detection method,
which requires one to destroy the sample, and improves the existing non-destructive
detection method using HSI, saving manpower and material resources. In addition, the
visual display of SSC directly reflects the differences in the SSCs of different grape grains
within the same bunch, which helps one to grade the grape quality.

However, the study still had the following shortcomings: it is difficult to integrate all
functions in a single device; the portability is insufficient; and the degree of automation is
low. In order to be applied to production and sales, the method needs to be improved: from
an algorithm perspective, it is necessary to integrate the functions of hyperspectral imaging,
spectral correction, image segmentation, and SSC prediction into one project (currently,
the integration of image segmentation and SSC prediction has been achieved). From a
hardware perspective, a hyperspectral imager and computer can be installed on a field
inspection robot to achieve unmanned automatic data collection and analysis in the field,
and the data analysis results can be uploaded to a cloud server.
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Figure A1l. Multivariate linear regression model for SSC based on reflectance spectrum.
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Table Al. Instance segmentation baselines with Mask R-CNN.

Name Ir Train Time Inference Train Box Mask

Sched (s/iter) Time (s/im) Mem (GB) AP AP

R50-C4 1x 0.584 0.110 5.2 36.8 32.2
R50-DC5 1x 0.471 0.076 6.5 38.3 34.2
R50-FPN 1x 0.261 0.043 34 38.6 35.2
R50-C4 3x 0.575 0.111 5.2 39.8 34.4
R50-DC5 3x 0.470 0.076 6.5 40.0 35.9
R50-FPN 3x 0.261 0.043 34 41.0 37.2
R101-C4 3x 0.652 0.145 6.3 42.6 36.7
R101-DC5 3x 0.545 0.092 7.6 419 37.3
R101-FPN 3x 0.340 0.056 4.6 429 38.6
X101-FPN 3x 0.690 0.103 7.2 443 39.5
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