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Abstract: Currently, water jets are mainly used in the fields of mechanical processing and mining
collection. This paper creatively introduces them to the field of safety assurance for inland navigation.
Compared with the traditional bridge anti-striking methods such as intelligent early warning and
passive anti-striking, this method can form an “interference zone” by changing the water flow
conditions in the local bridge water areas, causing the yawing moment of the yaw ship to change,
thereby causing the ship’s course to change, and thus guiding the ship to move away from the
bridge pier to realize active anti-striking of the ship. In this paper, a combination of generalized
model testing and numerical simulation was used to study the effects of different nozzle pressures
and different ship pier distances of the water-jet generator on the trajectory and drift angle of the
stalled ship. The results showed that the numerical simulation was in good agreement with the
model test results. Within the interference zone, the distance between the ship and the pier increased
rapidly after the action of the disturbance zone to 9.1, 5.8, and 6.2 times the ship’s width, respectively,
reaching a safe distance. During the process of being affected by the interference zone, the maximum
drift angle of the yaw ship was less than 20◦, the course of the ship was generally stable, and the drift
angle comparison error was a maximum of 10.6%, a minimum of 3.5%, and an average error of 6.7%.
A negative peak and a positive peak of four times the absolute value of the negative peak occurred
in the yaw-moment ephemeral curve during the ship’s passage through the interference area. The
method had a notable effect on the anti-striking of stalled ships and two invention patents applied
for in the course of research.

Keywords: ship-bridge anti-striking; water jet; ship yaw torque; tracks line; nozzle pressure

1. Introduction

With the development of the economy, the number and tonnage of inland navigation
ships have increased over the years, and striking accidents of ships and bridges have
frequently occurred. It has been pointed out by some scholars previously that at least one
major ship-bridge striking accident with serious consequences occurred each year on aver-
age in the past [1–4]. Since the major striking accident at the Sunshine Bridge in the United
States in 1980 that attracted the attention of the world, bridge-striking prevention has de-
veloped rapidly [5]. However, there is still no striking prevention method that can actively
intervene in the case of runaway ships to achieve the purpose of reducing and avoiding
such traffic accidents. The existing bridge anti-striking measures are passive anti-striking
devices and intelligent early warning systems [6]. Passive anti-striking devices reduce the
impact force of the ship on the bridge through deformation and energy absorption. They
mainly include anti-striking piles, artificial islands, rubber fenders, and anti-striking steel
sleeves [7–10]. As research becomes more advanced, more and more scholars are proposing
the use of new materials to increase the crashworthiness of striking avoidance devices
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and improve their effectiveness. The new prefabricated ultra-high-performance-concrete
anti-striking device [11], rubberized concrete [12], fiber-reinforced polymer [13–18], and
the flexible and composite anti-striking devices [19,20] are too costly, and their durability
and application value need to be further explored. This kind of passive anti-striking device
has a long construction period, and once a strike occurs, the maintenance and replacement
cost is high, which also affects the navigation of the waterway and increases unnecessary
risks and losses. For example, on 9 June 2020, a 3000-ton cargo ship hit the No. 18 main
pier anti-striking buoy while passing through the Xijiang Bridge in Fengkai, Guangdong,
causing damage to the anti-striking buoy, damage to the ship, and large economic losses
as shown in Figure 1. By contrast, intelligent early warning systems find the ship’s yaw
through monitoring equipment and then warn dangerous ships through whistles, LEDs,
or other warning methods [21–23]. Du (2018) explored a forward-looking infrared video
surveillance system and investigated a ship safety navigation system based on GPS and
wireless networking [24]. However, such “powerless” devices can only serve as a warning,
cannot actively intervene in the case of out-of-control ships, and ultimately, they still need
passive anti-striking devices to protect the bridge. It is necessary to actively intervene in
out-of-control ships to avoid striking to fundamentally solve the problem of damage and
replacement and maintenance of anti-striking devices, realize lossless protection of ship
bridges, and improve bridge anti-striking systems.
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Figure 1. Scene of the ship striking accident at the Fengkai Bridge.

In this paper, an anti-striking method based on a water-jet interference flow field is
proposed to actively intervene in the course of out-of-control ships to achieve the purpose
of anti-striking as shown in Figure 2. This method divides the channel in the bridge area
into a “warning area”, an “early warning area”, and an “interference zone” as shown in
Figure 3 according to the water flow conditions and channel level of the bridge water areas
where the bridge pier is located. A water-jet generator is installed in the interference zone,
and a high-precision detector and water flow interference linkage system are deployed on
the bridge to monitor the movement tracks in the bridge water areas through the detector.
When a yaw ship enters the warning area, the yaw ship is warned by radio, whistle, and
other means, and if the ship fails to adjust its course in time and enters the early warning
area after the warning and still yaws, the water-jet generator is activated to change the flow
of bridge water areas to form an interference zone. A yaw ship entering the interference
zone is subject to actions that will change its course, thus achieving anti-striking, reducing
risk and loss, and improving the safety of the bridge in the navigable river section. The
working principle diagram of the water-jet generator is as follows.
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Figure 3. Regional division.

This paper adopts the method of combining generalized model testing and numerical
simulation. We conduct 1:100 generalized model tests and two-dimensional numerical
simulations of the bridge water areas to study the effects of different nozzle pressures and
different ship pier distances of the water-jet generator on the trajectory and drift angle of
the stalled ship. The effectiveness of the ship deflection and anti-striking method based on
the water-jet interference flow field is demonstrated. By analyzing the change of the ship’s
yaw moment, the motion law of the ship under the action of this method is obtained. The
research results can provide a basis for the development of safe, efficient, and sustainable
ship-bridge striking avoidance technology and equipment.

2. Generalized Model Experiments
2.1. Project Overview

The span of the bridge is 1458 m, and the No. 6 main pier is a double-walled pier,
which wades year-round and has the greatest risk of ship striking as shown in Figure 4 [25].
Therefore, for the No. 6 main pier, on the basis of the original passive anti-striking device, a
ship deflection and anti-striking method based on a water-jet interference flow field are
provided for anti-striking fortification. The bridge elevation, pier type, and anti-striking
devices and their dimensions are as follows.
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Figure 4. Elevation of the bridge.

2.2. Generalized Model Test Scale

The geometric scale of this generalized model test is 1:100, and the test-related models
are designed according to the orthogonal model, which meets the gravity similarity and
geometric similarity criteria to ensure the reliability of the test data. The scale of the physical
quantities related to the test is shown in Table 1.

Table 1. Scale of relevant physical quantities.

Item Geometric Scale Flow Rate Scale Pressure Scale

Scale 100 10 100
Calculation basis λl λA = λ1/2

l λP = λl

2.3. Model Design

In accordance with the size of the typical navigable ships in the river section [7], a
1000-ton class bulk carrier (full load displacement of about 1500 tons) was selected as the
research object. The size of the test ship model (length × width × molded depth) is shown
in Figure 5, with a counterweight of 1.5 kg as shown in Figure 6. The water flow conditions
of the test are shown in Table 2. The model of the anti-striking device and the pier are made
according to the project overview and the test scale, as shown in Figure 7.

The water-jet generator nozzle model consists of 16 nozzles with a diameter of 0.006 m
and length of 0.01 m and a main body with a diameter of 0.0075 m and length of 0.266 m.
The generator as a whole is composed of a 370-W constant pressure variable frequency
supercharger, a water pump, a PVC pipe, and a PVC tee, as shown in Figure 8. Its working
principle is that the supercharger absorbs water from the channel downstream of the pier
and sends it to the nozzle through the supercharger to spray out.
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Table 2. Model test water flow conditions.

Project Prototype Flow Test Sink Flow Prototype Water
Velocity

Test Water
Velocity

Data 7000 m3/s 70 L/s 1.93–2.73 m/s 0.23 m/s
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2.4. Test Model

The generalized model test was carried out in the rectangular section trough of
the 30 m × 2 m × 0.9 m sink bottom ratio reduced by 2% in the outdoor test hall of the
Chongqing Bridge Navigation Safety and Anti-striking Engineering Technology Research
Center. The test area was 6 m long, and the test equipment included a ship model, a pier, an
anti-striking device, a water-jet generator, an HD-4B flow velocity meter (range 0.02–6 m/s,
±1.0% ± 1 cm/s), an ultrasonic level meter (range 5 m, blind spot < 0.3 m, ±0.25% FS), a
high-pressure pump, and a high-definition camera.

In order to eliminate the impact of waves on the test, a rectifying wall and a wave
suppression plate were arranged at the water inlet section. In order to eliminate the impact
of shallow water effect on the test [26], the test water depth was controlled to be greater
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than 0.3 m. In order to eliminate the impact of the bank effects on the ship, the test piers
and passive anti-striking devices were arranged at a vertical distance of 0.5 m from the
side wall [27]. The water-jet generator was arranged parallel to the side wall of the tank
along the direction of water flow, the vertical distance from the side wall was 0.4 m, and the
horizontal distance from the bridge pier was 1.5 m. The ultrasonic liquid level gauge was
used to monitor the test water depth, the HD-4B non-constant flow rotary slurry flowmeter
was used to monitor the flow velocity, and the high-definition cameras were arranged
directly above the pier in the test area to record videos of the ship’s trajectory. The plane
layout is shown in Figure 9.
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2.5. Test Conditions

A ship pier distance of less than or equal to 1.5 D (D is the width of the pier) [28] is a
dangerous navigation condition, and it is more dangerous when the ship is launched [29].
Therefore, we chose to simulate the stalled and yawed ship in the case of launching the
ship with a ship pier distance of 0.5 D–1.5 D. The test conditions are listed in Table 3.

Table 3. Test conditions.

Ship Pier Distance
Water-Jet Generator Nozzle Pressure

0.005 MPa 0.010 MPa 0.015 MPa

0.5 D T1 T2 T3
1.0 D T4 T5 T6
1.5 D T7 T8 T9

2.6. Numerical Simulation

In using the Fluent overset grid technology, a two-dimensional numerical simulation
was carried out on the motion process of the stalled ship passing through the interference
zone after the water-jet generator was turned on, and the ship’s track line and maximum
drift angle were compared with the results of the generalized model test.

2.7. Overset Grid Technology

In computational fluid dynamics, the surrounding flow around moving objects in-
troduces significant challenges to the calculations [30]. The method to deal with such
problems is mainly the overset grid method. Overset grid technology consists of dividing
some objects into grids separately and then nesting them into a set of large grids. Each
grid area oversets in space but does not have a connected relationship and exists indepen-
dently of other grid areas. The difference value is established through pre-processing to
transfer the flow field calculation information and establish the connection relationship.
Its biggest advantage is that it is beneficial to the grid generation of the relatively moving
parts, and it can easily adjust the relative position of the grid and help carry out parametric
research [31–34].

In the calculation iteration process, the local reconstruction method is used to up-
date the unstructured overset grid to ensure the accuracy of the results and to prevent
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the displacement of the ship motion from being much larger than the grid size during
the simulation of the ship motion. The mesh is constantly deformed, resulting in mesh
degradation and even negative volume. A double-precision solver is used in the solution
process to ensure interpolation accuracy and reduce computer rounding errors.

2.8. Renormalization Group (RNG) k-ε Turbulence Model

As different turbulence models use different assumptions and derivations, they have
their own scope of application. In order to obtain more accurate simulation results, the
standard k-ε turbulence model does not reflect this flow well because of the high anisotropy
of the jet. Yakhot and Orszag [35,36] introduced the Renormalization Group approach
to turbulence studies and developed a new turbulence model, the RNG k-ε turbulence
model, which, compared to the standard k-ε turbulence model, corrects the turbulent
dynamic viscosity coefficients, takes into account the effect of eddies on turbulence as
well as rotational and rotational flows in the mean flow, which helps the model to make
better predictions of the effects of transient flows and streamline bending, and improves
the accuracy of eddies [37,38] and the accuracy of high-speed flow calculations. The flow
control equations and the RNG k-ε turbulence model are as follows:

Continuity equation
∂ρ

∂t
+

∂(ρui)

∂xi
= 0

where: t is the time in s; u is the velocity of the water in m/s; ρ is the density of the water
in kg/m3.

Momentum equation

∂(ρui)

∂t
+

∂
(
ρuiuj

)
∂xj

= − ∂p
∂xi

+
∂

∂xj

[
(µ + µi)

(
∂µi
∂xj

+
∂µj

∂xi

)]

where: p is the pressure in Pa, µ is the molecular dynamics viscosity coefficient, ui is
turbulent viscosity coefficient, µi = ρCµk2/ε, Cµ = 0.085.

The turbulence model RNG k-ε equations are shown below:

∂(ρk)
∂t

+
∂(ρµik)

∂xi
=

∂

∂xi

[(
µ +

µt

σk

)
∂k
∂xi

]
+ G − ρε

where: k is turbulent kinetic energy, σk = 0.7179

∂(ρε)

∂t
+

∂(ρµiε)

∂xi
=

∂

∂xi

[(
µ +

µt

σε

)
∂ε

∂xi

]
+ C1

ε

k
G − C2ρ

ε2

k

where: ε is the turbulent dissipation rate, σε = 0.7179, G = µt

(
∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj

C1 = 1.42 − η̃(1 − η̃/η̃0)

1 + βη̃3 , Sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
, S =

√
2SijSij, η̃ = Sk/ε

η̃0 = 4.38, β = 0.0154, C2 = 1.68

2.9. Numerical Simulation Pre-Processing

In Fluent-DM, a calculation domain 600 m × 200 m was established to simulate the
test area. The bridge pier is positioned 50 m from the side wall and 300 m from the left
boundary of the test area. The water-jet generator is positioned 40 m from the side wall
and 180 m from the left boundary. The X-axis is the direction of the main flow, and the
ship position is 80 m from the water-jet generator to start the generator. The layout is the
same as the generalized model test as shown in Figure 10, and the simulation conditions



Appl. Sci. 2023, 13, 7354 8 of 18

are shown in Table 4. The detailed parameters of the numerical model ship are shown in
Table 5.
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Table 4. Numerical simulation conditions.

Ship Pier Distance
Water-Jet Generator Nozzle Pressure

0.5 MPa 1.0 MPa 1.5 MPa

0.5 D T10 T11 T12
1.0 D T13 T14 T15
1.5 D T16 T17 T18

Table 5. Detailed parameters of the numerical simulation ship.

Parameter Value Parameter Value

Length (m) 64.5 Izz (kg·m2) 5.14 × 108

Width (m) 12 Load displacement (kg) 1500 × 103

2.10. Grid-Independence and Time-Independence Verification

The number of grids was chosen as the validation group of about 4.69 million,
5.57 million, 6.42 million, and 7.39 million. When the number of grids in the whole area
was around 4.69 million, there was a significant difference from the peak yaw moment data
for the other groups. However, when the number of grids in the whole area was more than
about 5.57 million, the peak data of drift angle made little difference. Therefore, in this
paper, a grid number of 5.57 million was chosen to verify the time independence of the
selected grid numbers according to the time steps of 0.01 s, 0.001 s and 0.0001 s. The main
objective of this study is to verify the effect of a water-jet device on a yawing ship. At this
grid number, the time step has little effect on the motion track line, and 0.01 s is chosen as
the numerical simulation time step in order to save calculation time.

2.11. Boundary Conditions and Meshing

We describe the refining of the peripheral mesh of the nozzle of the water-jet generator.
The velocity boundary condition was used at the entrance of the flume, the pressure
boundary condition was used at the water-jet nozzle, and the no-slip boundary condition
was used at the solid wall boundary. We set the area as one times the width of the ship
around the ship as the foreground grid and set the grid growth rate as 1.2 to 20 layers, with
a total of 1.28 million grids. The total number of background grids was 4.29 million, and
the number of global grids was 5.57 million. The grid division of the test area is shown in
the Figure 11.
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3. Comparative Studies
3.1. Comparison of Ship Deflection Effects

The generalized model test’s T1 condition was selected, and the numerical simulation
T10 condition was compared with the three groups of time when the ship passes through
the interference zone. The comparison interval was chosen to be the period of travel
between the deflection of the ship by the action of the interference zone and the creation of
a sufficiently safe distance between the bridge pier, as shown in Figure 12. At time 1, the
ship approaches the interference zone. At time 2, the ship as whole moves away from the
pier through the interference zone, At time 3, the ship’s course returns to normal.
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3.2. Tracks Line
3.2.1. Model Test Tracks Line

We used the background difference method to collect the ship tracks line. In each
condition, the ship conducted five tests with the same initial conditions. After processing
the video data of each working condition, the image was exported, and the pixels of the
bow and stern were read and converted into a natural coordinate system by taking the
mean value of the five experiments and drawing it into a graph. The ship tracks line
diagrams under the nine groups of conditions are shown in Figures 13–15.
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Figure 13. Pressure of 0.005 MPa test tracks line.
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Figure 14. Pressure of 0.010 MPa test tracks line.
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3.2.2. Model Experiments and Numerical Simulation of the Trace Line Comparison

After the calculation result of Fluent was post-processed, the exported image was
scaled to be similar to the pixel size of the model test model and converted into a natural
coordinate system to draw a graph. The results show that the deflection law of the ship
passing the interference zone was basically similar. Here, only the comparison of the
trajectories under the three nozzle pressures under the most dangerous working condition
with a pier distance of 0.5 D is shown (Figures 16–18).

Comparison of the ship track lines shows that the effective sideways movement of
the yaw ship by the action of the intervention zone is 9.1 times, 5.8 times, and 6.2 times
the width of the ship. The maximum error in the initial deflection position of the ship is
16.5% in the horizontal coordinates and 4.4% in the vertical coordinates; the maximum
error in the farthest deflection position is 15.8% in the horizontal coordinates and 8.3% in
the vertical coordinates.
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Figure 16. Comparison of T1 and T10 tracks line.
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Figure 17. Comparison of T2 and T11 tracks line.



Appl. Sci. 2023, 13, 7354 12 of 18

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 18 
 

coordinate system to draw a graph. The results show that the deflection law of the ship 
passing the interference zone was basically similar. Here, only the comparison of the tra-
jectories under the three nozzle pressures under the most dangerous working condition 
with a pier distance of 0.5D is shown (Figures 16–18). 

 
Figure 16. Comparison of T1 and T10 tracks line. 

 
Figure 17. Comparison of T2 and T11 tracks line. 

 
Figure 18. Comparison of T3 and T12 tracks line. 

0 100 200 300 400 500 600 700 800 900
0

50

100

150

200

Si
nk

 h
or

iz
on

ta
l (

cm
)

Sink longitudinal (cm)

 Numerical simulation 
 Model test 

0 100 200 300 400 500 600 700 800 900
0

50

100

150

200

Si
nk

 h
or

iz
on

ta
l (

cm
)

Sink longitudinal (cm)

 Numerical simulation 
 Model test 

0 100 200 300 400 500 600 700 800 900
0

50

100

150

200

Si
nk

 h
or

iz
on

ta
l (

cm
)

Sink longitudinal (cm)

 Numerical simulation 
 Model test 

Figure 18. Comparison of T3 and T12 tracks line.

3.3. Maximum Drift Angle of the Ship

The maximum drift angle of a ship can reflect the response attitude of the ship under
the action of the interference zone of different intensities. It is used to measure whether the
ship’s navigation status is safe [39]. The maximum drift angle of the ship in each group of
conditions was the average value of five tests.

3.4. Generalized Model Test

In the generalized model test, the maximum drift angle range of 6.8◦–19.6◦ under the
nine conditions of the ship was less than 20◦, and the drift angle of the ship was the largest
in the T3 working conditions, as shown in the Figure 19.
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3.5. Comparison of Maximum Drift Angle between the Model Test and Numerical Simulation

The maximum drift angle range of 5.3◦–18.9◦ in the numerical simulation of the nine
working conditions was less than 20◦, and the drift angle of the ship was the largest in the
T12 working conditions. The comparison chart is as shown in the Figure 20.
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Figure 20. Comparison of the maximum drift angles.

From the above comparison graph of the maximum drift angle of the ship from
the model test and numerical simulation, it can be observed that the working condition
comparison groups with the largest error are T4 and T14, with a maximum error of 10.6%,
the working condition comparison groups with the smallest error are T3 and T12 with a
minimum error of 3.5%, and the drift angle errors for the remaining comparison groups are
all below 10%, with an average error of 6.7%.

3.6. Yaw Moment

During the Fluent simulation process, the moment monitor was turned on to monitor
the yaw moment of the ship, and the total simulation time was 100 s. We imported the
obtained data into the Origin software and processed it with the FFT filter. The variation of
the yaw moment along the journey was compared with the same ship pier distance and
different nozzle pressure conditions, as shown in Figures 21–23 below.
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Figure 21. Comparison of T10, T11, and T12 ship yaw moment.
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4. Results and Simulation

The error caused by the pixel scale of the picture, the deflection position, and the
maximum drift angle of the ship by the interference zone in the generalized model test
and the numerical simulation were not the same, but the agreement was high. Analysis
of the ship’s yaw-moment ephemeral curve showed that the ship was deflected to the
generator nozzle by the negative pressure zone of the generator nozzle, and the yaw
moment produced a negative peak. Then, the ship was rapidly displaced away from the
bridge pier by the interference zone, and the yaw moment had a positive peak, similar to
the results of [40,41]. The movement of a yaw ship through the interference zone is divided
into four main stages, and three groups of examples are shown in Figures 24–26.

1. Stage 1: The ship is close to the interference zone and influenced by the difference
of the velocity and negative pressure zone in the boundary layer of the interfer-
ence zone, resulting in a negative yaw moment in the clockwise direction and a
small deflection of the ship toward the nozzle of the water-jet generator as shown in
Figures 24a, 25a and 26a, respectively.

2. Stage 2: The stage where the deflection force of the ship away from the pier is
generated. At this stage, the ship is subjected to the interference zone to generate a
positive yaw moment in the counterclockwise direction, the yaw moment from the
negative peak rapidly increases, and the ship deflects away from the pier as shown in
Figures 24b, 25b and 26b, respectively.
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3. Stage 3: In the supplementary stage of the deflection force of the ship away from
the pier, the ship is affected by the interference zone and the inertia of the sec-
ond stage, and the overall hull drifts away from the pier. During this process, the
ship’s yaw moment reaches a positive peak and then decreases rapidly as shown in
Figures 24c, 25c and 26c, respectively.

4. Stage 4: In this stage of the ship attitude’s adjustment, affected by the energy at-
tenuation of the interference zone, the difference in the deflection moment between
the yaw and stern makes the ship’s drift angle decrease, and its course gradually
returns to normal. At this time, the ship has moved away from the pier as shown in
Figures 24d, 25d and 26d, respectively.
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5. Conclusions

The ship track lines and the ship’s maximum drift angle in the numerical simulation
and the generalized model test were in good agreement.

The effect of the interference zone on the yaw ship produces an effective lateral shift
distance of 9.1, 5.8, and 6.2 times the ship’s width, respectively. The maximum error in
the ship’s initial offset position is 16.5% in horizontal coordinates and 4.4% in vertical
coordinates, and the maximum error in the maximum offset position is 15.8% in horizontal
coordinates and 8.3% in vertical coordinates.

During the process of being affected by the interference zone, the maximum drift
angle of the yaw ship was less than 20◦, the course of the ship was generally stable, and
the drift angle comparison error was a maximum of 10.6%, a minimum of 3.5% and an
average error of 6.7%. During the movement of the stalled ship through the interference
zone, a negative peak and a positive peak appeared in the ephemeral curve of the ship’s
yaw moment, and the absolute value of the positive peak was about four times the absolute
value of the negative peak. The ship was affected by the negative pressure area of the
generator nozzle was the main source of the negative peak. The interference zone’s effect
of displacement of the ship away from the pier was the main source of the positive peak.

The ship deflection anti-striking method based on the water-jet interference flow
field had a significant impact on the ship’s motion state, and the distance between the
stalled ship and the pier rapidly increased to a safe distance within the interference zone of
anti-striking.

We verified the results by numerical simulation and generalized model testing. The
method can substantially reduce the risk and loss of ships colliding with bridges and
improve the safety level of ship bridges in navigable river sections. The results can provide
a basis for the development of safe, efficient, and sustainable ship bridge non-destructive
anti-striking technology and equipment and improve bridge anti-striking systems.

6. Patents

A three-in-one method for preventing boat collisions on wading pier (CN114934481A).
A bridge active anti-ship collision method (CN114973771A).
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