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Abstract: Dissolved gas analysis is an important method for diagnosing the operating condition of
power transformers. Traditional methods such as IEC Ratios and Duval Triangles and Pentagon methods
are not applicable in the case of abnormal or missing values of DGA data. A novel transformer fault
diagnosis method based on an extreme gradient boosting algorithm is proposed in this paper. First, the
traditional statistical method is replaced by the random forest regression algorithm for filling in missing
values of dissolved gas data. Normalization and feature derivation of the outlier data is adopted based
on the gas content. Then, hyperparameter optimization of the transformer fault diagnosis model based
on an extreme gradient boosting algorithm is carried out using the tree-structured probability density
estimator algorithm. Finally, the influence of missing data and optimization algorithms on transformer
fault diagnosis models is analyzed. The effects of different algorithms based on incomplete datasets are
also discussed. The results show that the performance of the random forest regression algorithm on
missing data filling is better than classification and regression trees and traditional statistical methods.
The average accuracy of the fault diagnosis method proposed in the paper is 89.5%, even when the
missing data rate reaches 20%. The accuracy and robustness of the TPE-XGBoost model are superior
to other machine learning algorithms described in this paper, such as k-nearest neighbor, deep neural
networks, random forest, etc.

Keywords: power transformer; fault diagnosis; dissolved gas analysis; data filling; random forest
regression; TPE-XGBoost algorithm

1. Introduction

Transformers are one of the key equipment in the power system, and their operating
status will directly affect the safety and stability of the system. The number of transformers
in a power system is related to the size of the system, and the service life of different
transformers varies widely. With the extension of service life, problems such as insulation
aging or internal defects will inevitably appear. Therefore, real-time monitoring of trans-
former operation status and fault warning is extremely important to enhance the safety
and stability of the power system [1].

Dissolved gas analysis (DGA) is one of the most important methods for understanding
the health of transformers. Without affecting the normal operation of the transformer,
internal defects of the transformer can be identified according to changes in components
and the content of dissolved gas in transformer oil [2]. At the same time, the current
transformer condition management based on digital methods has enriched application
scenarios of monitoring data such as DGA. It is an advantage for data- and experience-
based transformer fault diagnosis. However, it also introduces a new set of problems [3].
Based on operational experience, poor data quality due to missing data is one of the main
problems currently faced. Due to the operating environment, reliability of monitoring
equipment, or other accidental factors, data transmission interruptions or errors may
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occur, resulting in abnormal or missing data that can affect the accuracy and credibility
of monitoring results [4]. For missing data problems, methods such as discarding data,
single value filling method and linear filling method are widely used [5]. However, the
generation and variation in dissolved gas in oil are directly determined by the fault energy.
Traditional methods ignore the correlation between these gases when dealing with missing
data, resulting in insufficient information on the recovered data. Bayesian probability
matrix decomposition is used to fill in the missing DGA data to improve the quality of
monitoring data. However, this method requires a complex sampling process, which will
result in a long convergence time when dealing with high-dimensional data [6]. The rough
set method in [7] achieves the subordinate approximation of transformer fault types and
characteristics, which can solve the processing of incomplete transformer data to a certain
extent, while the information on dissolved gas in transformer oil is not discussed. Therefore,
efficient and accurate processing of the missing data of dissolved gas in oil is essential for
predicting the transformer’s condition.

In addition, traditional methods such as the IEC Ratios, Rogers, Dornenburg, and
Duval triangle and pentagon methods based on dissolved gas in oil are widely used in
the diagnosis of transformer faults [8–12]. The accuracy of the diagnostic results of these
methods depends on the experience of the operations and maintenance personnel, and
the accuracy of diagnostic results still needs to be improved [13]. In recent years, artificial
intelligence algorithms have been widely used for the condition assessment and fault
diagnosis of electric equipment due to their self-organization and self-adaptability. These
algorithms include association rules [14], support vector machines (SVM) [15], neural
networks [16], random forest (RF) [17] and extreme gradient boosting (XGBoost) [18].
The multi-layer SVM is implemented for the faults diagnosis of transformers in [15],
and the application results show that the accuracy of SVM is higher than fuzzy logic,
multi-layer perceptron and radial basis function methods. The density-based clustering
algorithm (DBSCAN) is used to eliminate the rigid fault boundaries of the conventional
Duval pentagon method in [17], and investigations show that the accuracy of random
forest is higher than k-nearest neighbor (kNN), Gaussian naive Bayes (GNB) and SVM
methods. The synthetic minority oversampling technique (SMOTE) and recursive feature
elimination (RFE) are used to deal with the data unbalancing problem of the DGA dataset
in [18], and the performance of transformer fault diagnosis model based on kNN, SVM
or XGBoost methods will improve significantly. All of these methods can achieve the
purpose of assessing the transformer’s operating condition. However, there are still many
problems to be solved in practical applications. First, the interconnection between different
components of dissolved gas in oil is not usually considered. Second, diagnostic models
based on a single algorithm have low accuracy and weak model generalization performance.
Integrated algorithms have a large parameter space, and the effectiveness of fault diagnosis
depends on the appropriate combination of parameters.

This paper proposes a TPE-XGBoost-based transformer fault diagnosis algorithm for
incomplete datasets, which can handle transformer fault diagnosis in the presence of miss-
ing data. Firstly, the random forest regression method is adopted to fill in missing values
of DGA data, and the correlation between different gases is used for feature derivation
processing to obtain more feature information. Then, a tree-structured probability density
estimator (TPE) is introduced to obtain the optimal parameter space of XGBoost. Finally, the
effects of different data-filling and fault diagnosis algorithms are analyzed and discussed.

This paper consists of five sections: Section 2 illustrates the principles of random forest
regression and TPE-XGBoost methods. Section 3 describes the structure and application
process of the fault diagnosis model. Section 4 presents the application effect of power
transformers fault diagnosis and discusses the experimental results. Finally, Section 5
provides some conclusions that we have drawn from this study.
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2. Theory
2.1. Random Forest Regression Method

The random forest regression (RFR) method is an integrated regression algorithm
based on the classification and regression tree (CART) model [19]. It is well suited to
problems of numerical prediction. The process of constructing an RFR model is shown in
Figure 1. The CART is an algorithm that recursively constructs a binary tree, dividing the
current sample set into two subsets at each node except the leaf [20]. Suppose D is a subset
of samples, and X and Y are the input samples and output variables, respectively, then
D = {(x1, y1), . . . ,(xi, yi), . . . , (xN, yN)}. The application steps of the CART algorithm are
as follows.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 15 
 

Sample subset 1 Sample subset t Sample subset q

CART 1

xi(j)≤ s
R1

R2

xi(j)>s
root node

CART t

leaf node
CART q

··· ···

The original sample set

Booststrap Sampling

Random Forest

Results averaging

··· ···
sub-node

 
Figure 1. The structure diagram of RFR model. 

2.2. TPE-XGBoost Method 
The extreme gradient boosting (XGBoost) algorithm uses CART as the base classifier 

and integrates it with gradient boosting [22]. The gradient boosting framework of the 
XGBoost model makes it more efficient and flexible [23]. Compared with the Gradient 
Boosting Decision Tree algorithm, the generalization capability of XGBoost is improved 
by using advanced regularization. The basic principle is that each time a new CART is 
added as a base evaluator, the prediction residuals of the previous CART are fitted. The 
prediction results of all CARTs are accumulated to obtain the final results of the model. At 
the same time, the XGBoost algorithm adds a regularization term to the loss function, 
which greatly reduces the model complexity and can achieve a balance between model 
accuracy and complexity. Suppose the feature dimension of the sample data is m, and the 
training dataset S = {(x1,y1), …, (xn,yn)} includes n samples, where xi = (xi1, …, xim). If the 
XGBoost model contains t weak evaluators, then the classification result of sample xi is 

1
( ),

t
t
i k i k

k
y f x f F

=
= ∈   

where yi denotes the diagnostic result of sample xi, fk denotes the k-th weak evaluator, and 
F denotes the function space containing every potential regression tree. The objective func-
tion L of the XGBoost model is 

( ) ( 1)

1
( , ( )) ( )

n
t t

i i t i t
i

L l y y f x f−

=
= + + Ω   

where l is the loss function, which represents the difference between the classification re-
sult and the real value; Ω is the regularization term, which is used to reduce the risk of 
overfitting in the classification process, and the expression is 

2

1

1( )
2

T

k j
j

f Tγ λ ω
=

Ω = +    

where γ and λ are the parameters used to prevent overfitting, T is the number of nodes, 
and ω denotes the weight of each node. 

The objective function after the second-order Taylor series expansion is 

Figure 1. The structure diagram of RFR model.

1. Construct a root node containing a subset of all samples.
2. Iterate over all features and, for feature j, divide the sample set by the intersection

point s. First, the values of all features j in the sample subset are ranked from smallest
to largest, and s is the average of the two adjacent values after feature ranking. Optimal
sample segmentation is the minimization of the objective squared error. By solving
for the minimum of Equation (1), the optimal feature and optimal cut-off point of the
segmented sample set is obtained.

min︸︷︷︸
j,s

min︸︷︷︸
c1

∑
xi∈R1(j,s)

(yi − ci)
2 + min︸︷︷︸

c2

∑
xi∈R2(j,s)

(yi − ci)
2

 (1)

where R1 and R2 are the two subspace units divided according to the cut-off point s.

R1(j, s) =
{

xi

∣∣∣x(j)
i ≤ s

}
R2(j, s) =

{
xi

∣∣∣x(j)
i > s

}
where i = 1, 2, . . . , N, and j = 1, 2, . . . , f, c1, c2 are the mean values of the output variable Y
on subspace cells R1 and R2, respectively.
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3. Continue to repeat step 1 and step 2 for the 2 subunits until the entire decision tree is
grown and all samples in the subset are assigned to the leaf nodes. The prediction
result corresponds to yi is [21]

ŷi =
1
K

K

∑
k=1

T̂k(xi)

where K is the number of decision tree, and T̂k(xi) denotes the estimation results produced
by the k-th tree.

The RFR model uses bagging sampling to randomly select samples in a put-back
fashion. Then q variables (q < m, m is the number of features) are randomly selected at
each node and used as candidates for splitting the node to construct a single decision
tree. The above steps are repeated to generate a large number of regression decision trees.
The final prediction result of the model is the average of the prediction results of several
CART models.

2.2. TPE-XGBoost Method

The extreme gradient boosting (XGBoost) algorithm uses CART as the base classifier
and integrates it with gradient boosting [22]. The gradient boosting framework of the
XGBoost model makes it more efficient and flexible [23]. Compared with the Gradient
Boosting Decision Tree algorithm, the generalization capability of XGBoost is improved
by using advanced regularization. The basic principle is that each time a new CART is
added as a base evaluator, the prediction residuals of the previous CART are fitted. The
prediction results of all CARTs are accumulated to obtain the final results of the model.
At the same time, the XGBoost algorithm adds a regularization term to the loss function,
which greatly reduces the model complexity and can achieve a balance between model
accuracy and complexity. Suppose the feature dimension of the sample data is m, and the
training dataset S = {(x1,y1), . . . , (xn,yn)} includes n samples, where xi = (xi1, . . . , xim). If
the XGBoost model contains t weak evaluators, then the classification result of sample xi is

yt
i =

t

∑
k=1

fk(xi), fk ∈ F

where yi denotes the diagnostic result of sample xi, fk denotes the k-th weak evaluator,
and F denotes the function space containing every potential regression tree. The objective
function L of the XGBoost model is

L(t) =
n

∑
i=1

l(yi, y(t−1)
i + ft(xi)) + Ω( ft)

where l is the loss function, which represents the difference between the classification
result and the real value; Ω is the regularization term, which is used to reduce the risk of
overfitting in the classification process, and the expression is

Ω( fk) = γT +
1
2

λ
T

∑
j=1

ω2
j

where γ and λ are the parameters used to prevent overfitting, T is the number of nodes,
and ω denotes the weight of each node.

The objective function after the second-order Taylor series expansion is

L(t) ≈
n

∑
i=1

[
l(yt−1

i , yi) + gi ft(xi) +
1
2

hi f 2
t (xi)

]
+ Ω( ft)
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where gi and hi are the first- and second-order derivatives, respectively, and the expres-
sions are

gi = ∂
y(t−1)

i
l(y(t−1)

i , yi)

hi = ∂2
y(t−1)

i
l(y(t−1)

i , yi)

Further, by removing the constant term of the objective function, then

L(t) ≈
n

∑
i=1

[
gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω( ft) (2)

If the dataset of sample numbers in leaf node j is defined as

Ij = {i|q(xi) = j}

where q(xi) is the value of the leaf label corresponding to xi. Then, the solution of
Equation (2) is

w∗j = −
∑

i∈Ij

gj

∑
i∈hj

hj + λ

fobj = −
1
2

T

∑
j=1

 ∑
i∈Ij

gj

∑
i∈hj

hj + λ

+ γT

2.3. TPE Optimization Method

The Bayesian optimization algorithm uses a probabilistic proxy model to fit the objec-
tive function. It selects the next evaluation point based on the results of the prior sampling,
thus quickly finding the optional value [24].

p( f |Hi) =
p(Hi| f )p( f )

p(Hi)
(3)

Hi = {(x1, f (x1)), . . . , (xi, f (xi))}

where p(f ) and p(Hi|f ) are the prior and likelihood distributions of f, respectively, and
p(f |Hi) is the posterior probability distribution.

In order to solve the problems of the large parameter space and the complexity of pa-
rameter tuning of the XGBoost model, the tree-structured Parzen estimator (TPE) algorithm
is adopted as the probability estimation for sampling points of parameter intervals [25].
The probability distribution p(Hi|f ) in Equation (3) is defined as

p(x|y) =
{

l(x), y < y∗

g(x), y ≥ y∗

where y* = min{(x1,f (x1)), . . . , (xi,f (xi))}, denotes the optimal sampling threshold; l(x) and
g(x) are the probability estimates of p(x|y) in the loss function of observation x. The
expected value of the sampling function is

Ey∗(x) =
∫ y∗

−∞
(y∗ − y)

p(x|y)p(y)
p(x)

dy

If γ = p(y < y*), and p(x) is equal to

p(x) = g(x)γl(x)− (1− γ)
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∫ y∗

−∞
(y∗ − y)p(x|y)p(y)dy = γy∗l(x)− l(x)

∫ y∗

−∞
p(y)dy

then the expected value is converted to

Ey∗(x) =
γy∗l(x)− l(x)

∫ y∗
−∞ p(y)dy

γl(x)− (1− γ)g(x)

When the conditions that l(x) is the maximum and g(x) is the minimum are satisfied at
the same time, the expected value is maximum, and the corresponding sampling point x
is obtained.

3. Transformer Fault Diagnosis Method

The transformer fault diagnosis method proposed in the article includes the following
three processes: a missing data-filling model based on the RFR method, hyperparameter
optimization based on TPE, and a fault diagnosis model based on the TPE-XGBoost method.

3.1. DGA Sample Dataset

When a discharge or overheating fault occurs inside the power transformer, the trans-
former oil pyrolyzes, producing hydrogen (H2), methane (CH4) and other hydrocarbon
gases [26]. According to IEC 60599 [11], transformer fault diagnosis results based on DGA
are mainly classified into normal status (N), thermal faults and electrical faults. Distin-
guished by the severity of the fault, overheating faults can be divided into T1 (t < 300 ◦C),
T2 (300 ◦C < t < 700 ◦C) and T3 (t > 700 ◦C), and electrical faults include PD (corona partial
discharges), D1 (discharges of low energy) and D2 (discharges of high energy). Three
hundred and seventy-nine transformer failure cases were collected from a DGA sample
dataset, of which the sample distribution is shown in Figure 2.
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Figure 2. Distribution of transformer fault samples.

The abnormal values in the DGA samples have a great impact on the fault diagnosis
results. The statistical analysis of the DGA sample data is shown in Table 1.

Table 1. Statistics Analysis of DGA Samples.

Value H2 CH4 C2H6 C2H4 C2H2

mean 222.38 122.25 73.14 164.26 29.00
standard 453.83 298.97 281.79 359.65 76.18
minimum 0 0 0 0 0

1st quartile 18.50 10.90 2.48 2.60 0
2nd quartile 72.20 43.00 17.80 30.00 0.30
3rd quartile 191.46 136.60 54.00 147.05 13.75
maximum 3433.00 4992.00 4836.00 3671.00 765.20
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The differences in the mean, standard and even maximum values of the different
gas contents in the samples are significant. In order to reduce the influence of numerical
differences on the diagnosis results, the paper normalized the gas content by (4).

x∗ij =
xij

5
∑

k=1
xik

(4)

where xij is the j-th gas content in the i-th DGA sample.
In order to improve the accuracy of transformer diagnostic results, this paper performs

feature derivation of DGA gases. The five gas contents of H2, CH4, C2H6, C2H4 and C2H2
are expanded to 16 features, as shown in Table 2. The features derived in this paper mainly
include three categories: gas content, three basic gas ratios and other gas ratios [11]. Among
them, TH represents total hydrocarbon, M(·) represents gas content, C(·) represents three
gas ratios, and K(·) represents other gas ratios adopted.

Table 2. Derivation results of DGA features.

No. Features No. Features

1 M(H2) 9 C(C2H4/C2H6)
2 M(CH4) 10 K(H2/(H2 + TH))
3 M(C2H6) 11 K(C2H4/TH)
4 M(C2H4) 12 K(C2H6/TH)
5 M(C2H2) 13 K(C2H2/TH)
6 M(TH) 14 K((CH4 + C2H4)/TH)
7 C(C2H2/C2H4) 15 K((C2H4 + C2H6)/TH)
8 C(CH4/H2) 16 K((C2H2 + CH4)/TH)

3.2. Missing Data Filling Method

In order to verify the filling effect of the RFR algorithm on incomplete data, the sample
values are artificially and randomly removed. The distribution of 20% missing values in
the sample data is shown in Figure 3. The black part represents that the feature value is
available, while the white part represents missing data. The larger the white areas in the
graph, the less complete the feature. The C represents the integrity of the data.
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For continuous features, zero or mean value is often used to replace missing values in
the sample data. However, given the intrinsic relationship between dissolved gases in oil,
the regression algorithm is able to learn from the sample data to achieve prediction and
filling of missing values.
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The main process of numerical filling using the RFR model is as follows:

1. Analyze missing sample data and construct a sample set based on missing values and
treat-filled features as labels.

2. Select the sample data with the least number of missing values for filling-in priority.
The missing values of features other than the feature to be filled are temporarily
replaced by their mean.

3. Predict the values of the missing data using RFR and insert the predicted results into
the original sample set.

4. Repeat steps 1–3 until the last feature with the highest number of missing values is
predicted by a final regression on it using the original sample after filling.

3.3. Transformer Fault Diagnosis Model

The TPE method is introduced into the transformer fault diagnosis model to overcome
the shortcomings of cross-validation and grid search methods. The model accuracy is
improved by simultaneous optimization of multiple hyperparameters of XGBoost.

The main parameters of the XGBoost method include Booster, General and Learning
parameters [22]. The values of the different parameters directly affect the diagnostic effect
of the model. Traditional parameter searching methods rely on experience or parameter
traversal, while the Gaussian mixture-based TPE method has a sparser parameter space
and is more efficient in parameter search. The parameters that have a greater impact on the
XGBoost model are selected for searching, as shown in Table 3.

Table 3. XGBoost Parameters.

Parameter Range Step Size Parameter Range Step Size

num_boost_round [20, 300] 1 eta [0.1, 1] 0.05
colsamble_by_tree [0.3, 1] 0.05 booster [‘gbtree’, ‘dart’] /
colsample_by_node [0.1, 1] 0.05 gamma [0.5, 2] 0.1
min_child_weight [0, 5] 0.05 lambda [0, 3] 0.1

max_depth [2, 30] 1 subsamples [0.1, 1] 0.05

The process of the TPE-XGBoost transformer fault diagnosis model proposed in this
paper is shown in Figure 4. The application steps are as follows:

1. Input dissolved gas data in oil to construct an XGBoost model and set XGBoost
parameter ranges.

2. Train the XGBoost model and perform TPE probability density estimation. The
expected value is calculated by the sampling function, and the next combination of
parameters to be evaluated is selected based on the prior expected value.

3. Use the combination of parameters with the maximum expected value in the XGBoost
model for training to output the prediction results of the model with the current hy-
perparameters.

4. If the error of the newly selected parameter combination meets the requirements, the
algorithm will be terminated, and the corresponding parameter combination and
model prediction error will be output. If not, the sampling function will be corrected
and go back to step (2) until the set requirement is met.

5. According to the optimal parameters of XGBoost, the final fault diagnosis model
based on TPE-XGBoost is obtained, and the fault diagnosis results are output.



Appl. Sci. 2023, 13, 7539 9 of 15

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 15 
 

model prediction error will be output. If not, the sampling function will be corrected 
and go back to step (2) until the set requirement is met. 

5. According to the optimal parameters of XGBoost, the final fault diagnosis model 
based on TPE-XGBoost is obtained, and the fault diagnosis results are output. 

Input dissolved gas data 
in oil

XGBoost model

TPE-XGBoost diagnostic 
model

Output fault diagnosis 
results

TPE probability density 
estimation

Calculate EI value with 
sampling function

Compare pre-sampling 
results

Evalution

Start

End

Hyperparameter 
combination with the 
lagest expected value

XGBoost training

Set parameter space

Y

N

 
Figure 4. Flowchart fault diagnosis model based on TPE-XGBoost. 

4. Application Results and Analysis 
The 379 DGA data shown in Figure 2 constitute the sample database of this paper 

and are divided into training and test samples in the ratio of 7:3. After the process of miss-
ing data filling, TPE parameter optimization and model training, the effects of fault diag-
nosis methods on the diagnosis results are analyzed and discussed. 

4.1. Analysis of Data Filling Methods 
The effectiveness of the method for filling in missing data in DGA samples should be 

based on the accuracy of the diagnostic results. Therefore, this paper combines statistical 
methods, kNN [27], ridge regression (Ridge) [28], CART and RFR to analyze the diagnos-
tic results, as shown in Figure 5. 

The diagnostic accuracy of the XGBoost model with complete data is 82.3%. The re-
sults show that RFR and CART methods are better than kNN, Ridge and statistical meth-
ods at filling in the missing values of DGA data, which indicates that the relationship be-
tween DGA characteristic gases is non-linear. In addition, the accuracy of the diagnostic 
results is 74.5% when the missing data are not treated in any way. The accuracy is slightly 
reduced when missing values are filled in using zero or mean values. Compared to the 
missing data, the diagnostic effect of the data filled by the RFR method is improved by 
5.5%, and its accuracy rate reaches 80%, indicating that the RFR method can effectively 
restore the information of missing data in DGA samples. 

Figure 4. Flowchart fault diagnosis model based on TPE-XGBoost.

4. Application Results and Analysis

The 379 DGA data shown in Figure 2 constitute the sample database of this paper and
are divided into training and test samples in the ratio of 7:3. After the process of missing
data filling, TPE parameter optimization and model training, the effects of fault diagnosis
methods on the diagnosis results are analyzed and discussed.

4.1. Analysis of Data Filling Methods

The effectiveness of the method for filling in missing data in DGA samples should be
based on the accuracy of the diagnostic results. Therefore, this paper combines statistical
methods, kNN [27], ridge regression (Ridge) [28], CART and RFR to analyze the diagnostic
results, as shown in Figure 5.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 15 
 

 
Figure 5. Comparison of the effect of filling methods on diagnostic results. 

4.2. Parameter Optimization of XGBoost Model 
As the TPE optimization algorithm only supports searching for the minimum of the 

objective function, the evaluation metric error is chosen as the objective function for pa-
rameter searching. The formula for error is as follows. 

1

1( ; ) ( )
n

i i
i

E f f y y
n =

′= ≠S   

where n is the number of samples, S is the training samples, yi denotes the true category 
of sample xi, and f(xi) denotes the prediction category. 

The iterative process of TPE optimization is shown in Figure 6. The TPE algorithm 
finds valid sampling points by randomly sampling the XGBoost parameter space and per-
forming a cross-validation calculation under the training set. When the number of itera-
tions is 44, the minimum error value of 10.43% is obtained. There is no decline for 30 iter-
ations; thus, the TPE algorithm optimization iteration is terminated. 

 
Figure 6. TPE optimization iteration process. 

Compared to the diagnostic results of XGBoost in Figure 5, the accuracy of the TPE-
XGBoost diagnostic model after parameter tuning is close to 90%. The optimal combina-
tion of parameters for the TPE-XGBoost diagnostic model is shown in Table 4. 

Table 4. Optimal parameters by TPE algorithm. 

Parameter Value Parameter Value 
num_boost_round 239 eta 0.15 
colsamble_by_tree 0.80 booster ‘gbtree’ 

72.3

74.1

74.5

76.2

76.5

77.5

80

82.3

Mean

Zero

Missing data

Ridge

kNN

CART

RFR

Complete data

70 72 74 76 78 80 82 84

Accuracy(%)

0 15 30 45 60 75
10

12

14

16

18

20

22

24

Er
ro
r(

%
)

Iterations

 Cross-validation results
 Valid cross-validation results

Figure 5. Comparison of the effect of filling methods on diagnostic results.

The diagnostic accuracy of the XGBoost model with complete data is 82.3%. The results
show that RFR and CART methods are better than kNN, Ridge and statistical methods at
filling in the missing values of DGA data, which indicates that the relationship between
DGA characteristic gases is non-linear. In addition, the accuracy of the diagnostic results is
74.5% when the missing data are not treated in any way. The accuracy is slightly reduced
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when missing values are filled in using zero or mean values. Compared to the missing
data, the diagnostic effect of the data filled by the RFR method is improved by 5.5%, and
its accuracy rate reaches 80%, indicating that the RFR method can effectively restore the
information of missing data in DGA samples.

4.2. Parameter Optimization of XGBoost Model

As the TPE optimization algorithm only supports searching for the minimum of
the objective function, the evaluation metric error is chosen as the objective function for
parameter searching. The formula for error is as follows.

E( f ; S) =
1
n

n

∑
i=1

f (yi 6= y′ i)

where n is the number of samples, S is the training samples, yi denotes the true category of
sample xi, and f (xi) denotes the prediction category.

The iterative process of TPE optimization is shown in Figure 6. The TPE algorithm
finds valid sampling points by randomly sampling the XGBoost parameter space and
performing a cross-validation calculation under the training set. When the number of
iterations is 44, the minimum error value of 10.43% is obtained. There is no decline for
30 iterations; thus, the TPE algorithm optimization iteration is terminated.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 15 
 

 
Figure 5. Comparison of the effect of filling methods on diagnostic results. 

4.2. Parameter Optimization of XGBoost Model 
As the TPE optimization algorithm only supports searching for the minimum of the 

objective function, the evaluation metric error is chosen as the objective function for pa-
rameter searching. The formula for error is as follows. 

1

1( ; ) ( )
n

i i
i

E f f y y
n =

′= ≠S   

where n is the number of samples, S is the training samples, yi denotes the true category 
of sample xi, and f(xi) denotes the prediction category. 

The iterative process of TPE optimization is shown in Figure 6. The TPE algorithm 
finds valid sampling points by randomly sampling the XGBoost parameter space and per-
forming a cross-validation calculation under the training set. When the number of itera-
tions is 44, the minimum error value of 10.43% is obtained. There is no decline for 30 iter-
ations; thus, the TPE algorithm optimization iteration is terminated. 

 
Figure 6. TPE optimization iteration process. 

Compared to the diagnostic results of XGBoost in Figure 5, the accuracy of the TPE-
XGBoost diagnostic model after parameter tuning is close to 90%. The optimal combina-
tion of parameters for the TPE-XGBoost diagnostic model is shown in Table 4. 

Table 4. Optimal parameters by TPE algorithm. 

Parameter Value Parameter Value 
num_boost_round 239 eta 0.15 
colsamble_by_tree 0.80 booster ‘gbtree’ 

72.3

74.1

74.5

76.2

76.5

77.5

80

82.3

Mean

Zero

Missing data

Ridge

kNN

CART

RFR

Complete data

70 72 74 76 78 80 82 84

Accuracy(%)

0 15 30 45 60 75
10

12

14

16

18

20

22

24

Er
ro
r(

%
)

Iterations

 Cross-validation results
 Valid cross-validation results

Figure 6. TPE optimization iteration process.

Compared to the diagnostic results of XGBoost in Figure 5, the accuracy of the TPE-
XGBoost diagnostic model after parameter tuning is close to 90%. The optimal combination
of parameters for the TPE-XGBoost diagnostic model is shown in Table 4.

Table 4. Optimal parameters by TPE algorithm.

Parameter Value Parameter Value

num_boost_round 239 eta 0.15
colsamble_by_tree 0.80 booster ‘gbtree’

colsample_by_node 0.20 gamma 1.20
min_child_weight 1.20 lambda 3.10

max_depth 4 subsamples 1

4.3. Analysis of Fault Diagnosis Methods

The confusion matrix can be used to visualize the results of the diagnostic model for
different fault types. Based on the 114 test set samples after the RFR model fills in the
missing data, the diagnostic results of the XGBoost model and TPE-XGBoost model are
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shown in Figures 7 and 8. The results show that the diagnostic accuracy of the XGBoost
model and the TPE-XGBoost model is 84.2% and 89.5%, respectively. The accuracy of the
fault diagnosis model increased significantly with TPE optimization.
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The TPE-XGBoost diagnostic model is noticeably improved in terms of T2 and varying
degrees of discharge faults. Discharges of high energy are particularly diagnosed with
an accuracy of 95%. Each fault type is diagonally distributed along the confusion matrix,
indicating that the TPE-XGBoost model has excellent diagnostic effects on the test set.

Three evaluation metrics, F1-score, precision and recall, are used to further evaluate
the merits of the model for different fault types in this paper, as shown in Figure 9. Precision
is the percentage of positive tuples predicted to be identified by the model; recall indicates
the percentage of positive tuples correctly identified by the model; F1-score is the harmonic
mean of precision and recall. The closer the three evaluation indicators above are to 1, the
better the diagnostic performance of the model.

The results show that all merits of the TPE-XGBoost model are higher than 0.7, and
most of them are higher than 0.82. Of these, the three evaluation indicators corresponding
to normal and discharges of high energy are over 0.90. Combining the seven diagnostic
results, the average value of the F1 score is 0.87, which verifies the excellent stability and
robustness of TPE-XGBoost in transformer fault diagnosis.
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Figure 9. Evaluation metrics for TPE-XGBoost diagnostic model.

4.4. Discussion

Based on the DGA dataset with a missing data rate of 20%, the TPE-XGBoost method
is compared with other methods, including kNN, RF, CART, Natural Gradient Boosting
(NGBoost) and 100-layer deep neural networks (DNN) [29]. The accuracy of each model is
evaluated by the five-fold cross-validation method, as shown in Figure 10. The yellow line
in the box diagram indicates the median of diagnostic result.
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Figure 10. Comparison of the accuracy of different diagnostic models.

The performance of the TPE-XGBoost method is better than other algorithms, with an
average accuracy of 89.5%. The diagnostic accuracy of the linear classification algorithm is
lower than that of the other non-linear models. The kNN method is prone to misjudgment
between different fault types corresponding to the same fault properties, especially for
partial discharge and low energy discharge faults. This may be caused by the non-linear
relationship between the DGA data and the energy of the transformer fault. In addition,
the performance of integrated algorithms, such as RF and XGBoost, is much better than
single models, such as CART and DNN. The accuracy of the NGBoost algorithm is higher
than the XGBoost algorithm but slightly lower than the TPE-XGBoost algorithm. However,
according to the results of multiple cross-validations, the robustness of the XGBoost and
NGBoost models is worse than that of the TPE-XGBoost models, indicating that the TPE
algorithm improves the accuracy and robustness of the fault diagnosis models effectively.

Subsequently, the statistical differences in the diagnosis accuracy of the above methods
are analyzed by a one-sample t-test [30]. Considering that the IEC Three Ratio method has
a diagnostic accuracy of 86.0% in the case of complete data, the null hypothesis is that the
accuracy of the diagnostic model is equal to 86.0%. The results are shown in Table 5.
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Table 5. Statistical test results of different methods.

Method Sample Size Minimum Maximum Mean Standard Deviation t Value p Value

kNN 10 0.661 0.857 0.772 0.062 −4.495 0.001
CART 10 0.694 0.861 0.779 0.057 −4.46 0.002
DNN 10 0.639 0.917 0.792 0.097 −2.231 0.053

RF 10 0.75 0.895 0.834 0.049 −1.68 0.127
XGBoost 10 0.767 0.943 0.861 0.056 0.048 0.963
NGBoost 10 0.768 0.956 0.877 0.063 0.852 0.417

TPE-XGBoost 10 0.837 0.955 0.9 0.037 3.374 0.008

The results show that for kNN, CART and TPE-XGBoost methods, the null hypoth-
esis is clearly rejected based on the test with a 95% confidence level. According to the
t and p values of the above three methods, the accuracy of the TPE-XGBoost algorithm is
significantly higher than 86%, while the other two are lower than 86%. This also shows
that the method proposed in this paper has a significant improvement in dealing with the
fault diagnosis problem of incomplete DGA data.

Lastly, the diagnostic accuracy of the TPE-XGBoost model with different data missing
rates were analyzed and discussed, as shown in Figure 11. The results show that the data
missing rate has a significant impact on the diagnostic accuracy of the model. However,
when the data missing rate is greater than 20%, the decreased rate of accuracy is significantly
accelerated. When the data missing rate is below 30%, the diagnostic accuracy of the model
is below 80%. This indicates that the method proposed in the paper still has limitations in
dealing with cases of a high missing rate, such as more than 30%, and its diagnostic result
still needs to be improved.
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5. Conclusions

A transformer fault diagnosis model based on RFR and TPE-XGBoost algorithms
which is able to handle incomplete datasets, is proposed in this paper. First, the RFR
algorithm was used to fill in the missing values in the sample data and compare them with
statistical methods and other data-filling methods. Then, the TPE method was used to
optimize the XGBoost model and improve the accuracy of the fault diagnosis model. Finally,
the accuracy of TPE-XGBoost was compared with other artificial intelligence algorithms to
verify its effectiveness. The conclusions of this paper are as follows.

1. The RFR algorithm outperformed traditional statistical methods and CART, kNN,
and Ridge for the missing data problem of dissolved gas in transformer oil. The
accuracy of the RFR model reached 80% when the missing rate of DGA data was 20%,
indicating that the RFR-filled values could restore the information of the dissolved
gas in the transformer oil to a greater extent.
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2. Based on the DGA sample database, after the RFR model fills in the missing data,
the accuracy of the XGBoost model was improved from 80% to 89.5% after feature
derivation and hyper-parameter optimization of the TPE algorithm. The evaluation
metric F1-score of the TPE-XGBoost model was 87%, indicating the effectiveness of
the TPE-XGBoost diagnostic model.

3. The TPE-XGBoost algorithm was compared with kNN, CART, RF and DNN. Based
on the DGA sample dataset with 20% missing values, the average accuracy of the
TPE-XGBoost model was 89.5% and was much higher than the other algorithms. The
superiority of the TPE-XGBoost algorithm in dealing with transformer fault diagnosis
problems was demonstrated. The diagnosis results obtained in the case of partially
missing data were still credible.
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