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Abstract: During strategic network design, not only strategic but also operational decisions must
be made long before a production network is put into operation. These include determining the
location and size of inventories within the production network and setting operational parameters
for production lines, such as the shift model. However, the large solution space comprising a high
number of highly uncertain design parameters makes these decisions challenging without decision
support. Therefore, data farming offers a potential solution, as synthetic data can be generated via the
execution of multiple simulation experiments spanning the solution space and then analyzed using
data mining techniques to provide data-based decision support. However, data farming has not yet
been applied to strategic network design due to the lack of adequate solution space management. To
address this shortcoming, this paper presents a structured solution space management approach that
integrates production network-specific requirements and Design of Experiment (DoE) methods. The
approach enables converting the solution space in strategic network design into individual input
data sets for simulation experiments, generating a comprehensive database that can be mined for
data-based decision support. The applicability and validity of the comprehensive approach are
ensured via a case study in the automotive industry.

Keywords: data farming; design of experiments; production networks; strategic network design;
solution space management; production network simulation; value stream

1. Introduction

During the past decades, production networks have turned out to be a successful
way to secure access to markets, resources, and worldwide cost advantages, which are
all necessary for enterprises to survive in global competition. The architecture of pro-
duction networks, consisting of several geographically dispersed production sites and
interconnected material and information flows, leads to high system complexity [1]. Within
production networks, several intermediate products may be produced at different sites and
then assembled into a finished product that is shipped to the customer. This linkage of
the value stream of an intermediate product to the value stream of a finished product is
called a comprehensive value stream. In strategic network design, network planners aim to
design an efficient, comprehensive value stream [2].

However, this aim is hard to reach as production networks operate in a volatile and
uncertain environment while making complex decisions in ambiguous situations. These
influencing factors can be summarized as the so-called VUCA (volatility, uncertainty, com-
plexity, and ambiguity) world [3]. The VUCA world also negatively affects the predictability
of total and variant-specific demand volumes and design parameters.

Strategic network design for the production of technical products begins up to 12 years
before the start of production [4]. Hence, most design parameters are subject to high
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volatility and uncertainty. In addition, the production network as a planning object has
become increasingly complex in recent years due to the increasing number of associated
plants and linkages [5]. Finally, the impact of design parameters on network performance is
unknown, leading to ambiguous decision situations. To address these challenges, Kroeger
and Zaeh [2] propose a data-farming-based planning approach. Data farming refers to
a concept where a simulation model is used to “farm” synthetic data when real data are
not available in sufficient quantity [6,7]. The synthetic data can then be used to apply
data mining methods [6]. By analyzing the possible range of behavior of the simulation
model, this approach leads to a comprehensive understanding of the system [8]. Moreover,
the simulation experiments can cover existing uncertainty in design parameters and the
solution space.

The proposed planning approach consists of three parts, as shown in Figure 1. The first
part deals with solution space management and derives multiple input data sets for a value
stream simulation model based on the generic solution space and an experimental design
approach. The second part addresses the system behavior of the production network via a
value stream simulation model and a corresponding data structure. The simulation model
is required to execute all predefined simulation experiments in the experiment plan. The
value stream data structure stores the simulation experiment results in a specific format to
build a simulation database. Finally, the third part describes the analysis and evaluation
of the simulation database based on a comprehensive digital value stream analysis using
process mining [2].

Part I Part IT Part II1
Solution space management System behavior Analysis and evaluation
Generic Exszzment Value stream Value stream Comprehensive value stream
solution space g simulation data structure analysis and evaluation
approach
1. Step 2. Step 3. Step
Definition of the specific solution space Conduct a variety of simulation Analysis and evaluation of the
and generation of input data sets for the experiments and store the results in simulation database
simulation model a simulation database

Figure 1. Data-farming-based planning approach and corresponding application methodology
following [2]. This paper describes part I of the approach in detail, as the black outline indicates.

The solution space management acts as the foundation to enable the data-farming-
based planning approach proposed by Kroeger and Zaeh [2], which is why this paper
focuses on a detailed elaboration of Part I and the evaluation of its applicability and validity.

The remainder of this paper is structured as follows: Section 2 introduces the fun-
damentals needed to understand the problem statement for solution space management
within the planning approach. Section 3 provides an overview of the current publications
on solution space management within data farming approaches and mentions existing
shortcomings. Based on this, the requirements for the developed approach are derived in
Section 4. The solution space management approach is then described in Section 5, followed
by an evaluation of its applicability and validity within an industrial case study of the
automotive industry in Section 6. The paper concludes with a discussion of the application
results and industrial implications in Section 7 and a conclusion and outlook in Section 8.

2. Fundamentals

This section introduces fundamental theories to understand the planning situation
in strategic network design (Section 2.1), the data farming methodology (Section 2.2), and
the basic concepts of solution space management (Section 2.3). With these fundamentals in
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place, the problem statement for solution space management within the planning approach
by Kroeger and Zaeh [2] can be described (Section 2.4).

2.1. Strategic Production Network Design

Strategic network design addresses the two main tasks of network configuration and
network coordination [9]. According to Porter [10], network configuration refers to the
distribution of a company’s value creation process across different locations. Network coor-
dination deals with the timing and content of processes between different locations [10,11].
The two main tasks result in two planning levels integrated into the strategic network
design [12]. Firstly, strategic structural decisions (configuration), such as decisions on
plant locations and new products, are made on a strategic planning level [12]. Secondly,
operational decisions, e.g., concerning the flow of goods within the network (coordina-
tion), are subject to an operational planning level within strategic network design [12].
A common approach to strategic network design presented by [12] is shown in Figure 2.
This process can be linked to important interdependencies between planning decisions in
strategic network design [2].

(ﬁ
— > Investments
Strategic Operational L.
K .g P . v Objectives
decisions decisions B el
— - :
: variables
Generate Evaluate . Select
R ) Benchmarking i
Generate alternative alternative alternative . .
. — — of performance —» * Decision
scenarios network network T network
. R indicators .
solutions solutions solution

t I |

Figure 2. Generic strategic network design process and interdependencies between decisions
following [2,12].

The top management makes strategic structural decisions, such as whether or not to
open a new plant, to generate different manageable scenarios within the first step of the
strategic network design process. These decisions set the framing conditions for network
planners to create alternative network solutions for each scenario based on operational
decisions such as buffer sizes for internal customer-supply relationships. Next, investments
as a consequence of strategic structural decisions and other financial variables are used to
evaluate all alternative solutions. Then, industry best practices are applied to benchmark
each alternative solution regarding suitable performance indicators. Finally, the decision
for an alternative solution can be made based on the results of the previous steps and
qualitative objectives such as flexibility or customer service [12].

The data-farming-based planning approach shown in Figure 1 addresses steps two
and three of the strategic network design process and assumes a set of scenarios as input
data. Currently, alternative solutions are generated in the industry based on subjective and
mostly unsystematic decisions by network planners. Using a data-farming-based approach
opens up the solution space for alternative solutions based on operational decisions to
enable systematic, objective decisions [2].

2.2. The Data Farming Approach

The data farming methodology was introduced by Brandstein and Horne [6] as a
process to support decision-makers in answering questions when large numbers of alter-
native solutions are possible [13]. The first applications addressed warfare simulations
to support NATO. The core idea of the methodology is to “farm” synthetic data through
a simulation model and large experiment plans and then apply data mining methods to
this data to provide decision support in problem settings when real data are unavailable.
The data farming methodology is structured by a simulation-based, holistic, and iterative
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approach, which can be visualized by the “loop of loops” [14]. The first loop, referred to as
the experiment definition loop, consists of model development and rapid scenario proto-
typing. The second loop, referred to as the multi-run execution loop, comprises the design
of experiments, high-performance computing, as well as analysis and visualization [13].
The planning approach shown in Figure 1 is fundamentally based on the data farming
methodology. Therefore, Part I, the solution space management, comprises mainly the
“design of experiments”, which is, according to Genath et al. [15], the most important part
of the data farming methodology. Sanchez et al. [16] present different established methods
for experiment design in data farming.

2.3. Solution Space Management

In product development, the solution space can be defined as the sum of all theoreti-
cally conceivable solution possibilities for a task [17]. Furthermore, the solution space can
be described based on a set of degrees of freedom and their properties [18]. If the exemplary
degree of freedom is the material choice for a part, then the associated properties could
be alloy, steel, or magnesium. The set of properties of the degrees of freedom describes an
alternative solution in the solution space [18]. Degrees of freedom differentiate between
fixed and variable degrees of freedom. Fixed degrees of freedom are considered unchange-
able, while variable degrees of freedom allow properties to vary within a certain range. For
example, the inventory level can vary from 100 to 300 storage places [18]. To control the
solution space, solution space management is necessary.

Lenders [19] developed a process model for solution space management consisting of
three steps. First, solution space structuring aims at defining sub-solution spaces for each
sub-problem of the main solution space [18]. In product development, the solution space is
constructed based on the functions of a product. Second, solution space planning involves
developing a strategy for narrowing down the solution space [18]. Third, solution space
control is used to iteratively control and steer the systematic reduction of the degrees of
freedom by comparing the actual state with the target state [18].

Solution space management originates from product development, but the concept
has already been transferred to other domains, such as factory planning [20]. In the
context of strategic network design and the planning approach shown in Figure 1, the
solution space for a scenario encompasses all possible alternative network solutions. This
means that fixed degrees of freedom are design parameters that are defined within a
strategic structural scenario (e.g., plant locations), and variable degrees of freedom are
design parameters influenced by operational decisions (e.g., inventory levels) concerning
all possible combinations of design parameters.

2.4. Problem Statement

In conclusion, solution space management is an important part of the data farming
methodology and equally important to the planning approach of Kroeger and Zaeh [2].
However, there are different challenges (CH) that can be found in the literature. First, the
addressed planning subject (production network) and the planning situation (operational
decisions in strategic network design) pose challenges for solution space management. Due
to the complex structure of a production network, the solution space is huge (CH1), which
is considered one of the major challenges in strategic network design [12]. Moreover, the
large planning horizon in strategic network design requires dealing with the high uncer-
tainty (CH1) in the available planning data while generating and evaluating alternative
network solutions [4]. Another challenge arises from the need to cover the solution space
as completely as possible (CH2) by identifying all necessary alternative network solutions
within the structure and parameter variations. An equally important challenge is the need
for a structured solution management process and a transparent solution path to enable a
user-friendly application (CH3).



Appl. Sci. 2023, 13, 8604

50f19

3. Related Work

The following sections explain related work in solution space management in the
context of data farming. For that reason, Section 3.1 presents existing strategic network
design approaches. Afterwards, Section 3.2 elaborates on relevant data farming applications.
Then, the shortcomings of the existing approaches are derived in Section 3.3.

3.1. Strategic Network Design Approaches

There are many approaches in the scientific literature dealing with strategic network
design. The approaches can be grouped into four main clusters [21-23]. First, process mod-
els such as [24,25] focus on describing the chronological sequence and purpose of decision
process steps rather than identifying or evaluating alternative network solutions [22]. Sec-
ond, mathematical optimization approaches such as by [26] compute an optimal network
design while neglecting all process-related requirements and creating multiple alternative
network solutions [21]. Third, evaluation approaches such as [27-29] focus on evaluating
alternative network solutions to act as decision support [21]. Fourth, combined approaches
such as [21,22,30] use process and mathematical optimization models. Therefore, these
approaches generate multiple alternative network solutions within the predefined solution
space [21]. As a preliminary conclusion, only evaluation and combined approaches address
generating and evaluating alternative network solutions, which is necessary for solution
space management. Hence, this paper describes evaluation and combined approaches in
more detail.

Ude [27] presents an evaluation approach based on simulating a limited number of
network configurations and evaluating the simulation results to provide a multi-criteria
decision-making aid. Thereby, Ude [27] also considers uncertainty in strategic network
design. Auberger et al. [29] propose a simulation-based evaluation approach with a process
model. The approach evaluates a limited number of network configurations and analyzes
different optimization measures to support decision-making. Merchiers [28] provides a
detailed evaluation approach to various costs within production networks, separated into
module, site, and network levels.

Sager [21] develops a combined approach based on the decision process and integrates
a multi-criteria optimization model to generate alternative network solutions. Hochdorf-
fer [30] suggests a five-step approach that addresses production networks’ strategic, tactical,
and operational planning levels. The approach provides tools for each level that are applied
to an alternative network solution.

3.2. Relevant Data Farming Applications

Although the data farming methodology originates from warfare simulations [14], a
recent publication by Lechler et al. [7] proves its applicability to manufacturing system
simulations. The application is particularly useful in the planning phase when real data are
not available. Moreover, in manufacturing, data farming leads to a comprehensive, data-
based system understanding instead of focusing on predefined, specific “what-if” analyses
as carried out in the past [8]. There are already several publications on the application of
data farming in manufacturing.

Feldkamp et al. [31] apply data farming to a demonstrator production line. The experi-
ment design considers quantitative factors such as buffer capacities, categorical factors such
as clearance strategies, and different product mixes, resulting in approx. 102.400 simulation
runs. Hunker et al. [32] apply data farming in the context of supply chains. An exem-
plary supply chain is analyzed using an experiment plan with 257 different experiments.
Schulze et al. [33] analyze a data farming case study from vehicle assembly. For this pur-
pose, a simulation model of a 30-station and 14-buffer assembly line was used. Moreover,
the simulation model covers 50 workers and 720 different vehicle variants. The factors
were separated into decision factors and disturbance factors. First, Schulze et al. [33] varied
the decision factors based on a Nearly Orthogonal Latin Hypercubes (NOLH) experiment
design [34], and then the disturbance factors were also varied. Schuh et al. [35] apply
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clustering algorithms to a simulation database that was created using the data farming
methodology. Thereby, the goal is to optimize the operation status of a production system.
To do so, Schuh et al. [35] compare different order control approaches in combination
with a set of order prioritization rules and production volume variation. This results in
1470 simulation experiments, leading to a large simulation database for clustering analysis.

Many authors use dedicated methods (e.g., NOLH designs) to design data farming
experiments. In general, the goal of these methods differs from the traditional goals of
physical experimentation. For data farming, large experiment designs with good space-
filling behavior are preferred over small designs [36]. Experiment design methods for
data farming are not further discussed in this paper, as they are the subject of several
publications, such as [16,37,38].

3.3. Shortcomings of Existing Approaches

Based on the challenges from Section 2.4, the related work can be evaluated to derive
apparent shortcomings (SH); see Table 1. Existing strategic network design approaches
mainly focus on strategic structural decisions rather than tactical and operational decisions.
With respect to structural decisions, the approaches partially consider the uncertainty and
the large number of design parameters, but relevant data farming applications only present
use cases within production lines. Only one approach addresses a closely related application
in the supply chain context. Therefore, there is a lack of solution space management for
operational decisions in strategic network design (SH1).

Table 1. Evaluation of the related work based on the challenges (CHI-CH3).

Criteria

CH1 CH2 CH3
Publications
Ude [27] . © © ©
Auberger et al. [29] Strategic ( © ©
. network
Merchiers [28] desion 0 O O
Sager [21] . roihes © © (D)
Hochdaorffer [30] PP © o o
Feldkamp et al. [31] O o 0
Hunker et al. [32] Relevant data farming © ® ()
Schulze et al. [33] applications O ° ©
Schuh et al. [35] O © 0

@ Predominantly fulfilled, © Partially fulfilled, O Not fulfilled.

Moreover, strategic network design approaches either do not cover the entire solution
space or reduce the solution space to a very limited number of alternative solutions. Only
one strategic network design approach [21] uses a simplified solution space management
process. Most relevant data farming applications use established data farming experi-
ment design methods that properly cover the solution space. However, all data farming
applications deal with a limited number and interdependencies of input planning param-
eters. Thus, another shortcoming arises from the need for an approach that covers the
solution space of complex systems with a large number of highly interdependent design
parameters (SH2).

Furthermore, most strategic network design approaches apply mathematical optimiza-
tion models to generate an optimal alternative solution with limited transparency of the
solution path. A user of an optimization algorithm cannot understand how the algorithm
finds its optimal solution and thus cannot understand the interdependencies of planning
parameters and resulting network performance. Moreover, relevant data farming appli-
cations only show a transparent solution path due to the limited number of input design
parameters and interdependencies. In contrast, a transparent solution path and a struc-
tured process are critical to an industrial application of solution space management. This
leads to another shortcoming in providing a user-friendly, industrial application-focused,
well-structured, highly transparent solution space management approach (SH3).
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4. Requirements for the Solution Space Management Approach

Based on the derived shortcomings (SHI-SH3) and the intended goal of providing
input data sets for production network simulation as part of the planning approach by
Kroeger and Zaeh [2], different requirements need to be addressed. Table 2 provides an
overview of all relevant requirements.

Table 2. Summary of the requirements for the solution space management approach.

Requirements

General requirements

G-RQ1 Focus on operational decisions within the strategic network design
G-RQ2 Focus on value-stream-relevant parameters

Methodology-based requirements

M-RQ1 Comprehensive representation of the solution space
M-RQ2 Identification of alternative solutions

Application-based requirements

A-RQ1 Possibility to customize the approach to a problem-specific solution space

A-RQ2 Structured approach and understandable, transparent solution path
Production-network-operations-based requirements

O-RQ1 Material flow maintenance across customer-supplier relationships

O-RQ2 Fixed demand volume for capacity planning

O-RQ3 Complete demand fulfillment of customers on a weekly basis

The requirements in Table 2 are categorized into four groups. First, general require-
ments (G-RQ) originate from the higher-level planning approach by Kroeger and Zaeh [2]
by describing the addressed planning situation of operational decisions during strategic
network design and the intended focus on the comprehensive value stream in production
networks. Second, methodology-based requirements (M-RQ) emerge from the main goal
of solution space management, which is to cover the entire solution space by identify-
ing and describing alternative solutions. Third, application-based requirements (A-RQ)
arise from the goal of industrial applicability of the solution space management approach.
Therefore, the possibility of customizing the approach for different problem-specific solu-
tion spaces is necessary. Moreover, a structured approach secures industrial applicability,
and an understandable, transparent solution path supports the user’s acceptance of the
approach’s results. Fourth, production-network-operations-based requirements (O-RQ)
emerge from the necessity to identify alternative network solutions that can be operated
and simulated [21]. For each customer-supplier relationship, the inbound and outbound
material flows must match. In addition, the annual demand volume of products is fixed
as a restriction on the capacity dimensioning of the production network. Furthermore,
another capacity-dimensioning-related restriction is set for customer demand fulfillment
on a weekly basis.

5. Solution Space Management for Data Farming in Strategic Network Design

The following section builds on the requirements and describes the methodological
foundation of the solution space management approach. First, an overview of the approach
is presented, followed by detailed information and illustrative examples for the first step
(Section 5.1) and the second step (Section 5.2) of the approach. The application of the
methodology to an industrial use case is presented in Section 6.

The proposed solution management approach, shown in Figure 3, encompasses two
main steps corresponding to the process model proposed by Lenders [19]; see Section 2.3.
The first step (1), solution space structuring, consists of three substeps to decompose the
available solution space into a solution space structure. The solution space structure can
be described as a set of independent sub-solution spaces comprising multiple variable
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degrees of freedom. The second step (2), solution space planning, uses the solution space
structure to derive alternatives for each sub-solution space based on design of experiment
(DoE) approaches. Finally, the alternatives for each sub-solution space form an experiment
design of alternative network solutions, which is post-processed into input data sets for
simulation.

Solution space structuring .
o . . . Solution space
. Decomposition of the solution space into sub-solution spaces to cover the structure
different areas of the production network

Identification of fixed degrees of freedom

=

Identification of variable degrees of freedom and input data groups

Composition of the solution space structure

CLEKE]

Solution space planning and control
Transformation of the solution space structure into an experiment design ~~<—"-—
and subsequently into input data sets for simulation

=

Figure 3. Overview of the solution space management approach.

5.1. Solution Space Structuring

A detailed overview of the solution space structure is shown in Figure 4. The first sub-
step (1.1), identification of fixed degrees of freedom, classifies the literature-based solution
space into fixed degrees of freedom, already defined by strategic network scenarios (e.g.,
plant locations, customer sites, and product structure), and variable degrees of freedom
(e.g., number of production lines, number of warehouses, and inventory levels), defined
by operational decisions. The fixed degrees of freedom set boundaries for the solution
management approach, while the variable degrees of freedom can be changed by planning
decisions. Several authors provide detailed descriptions of production network design
parameters for the literature-based solution space [21,39-42].

1. Solution space structuring / So?;:fg;f e'm /

Identification of fixed degrees of freedom

(2]

Literature based | ___oooeeree Fixed degrees of freedom }--- - 2,

solution space

Variable degrees of freedom )—D@

Clustering of variable degrees of freedom to input data’groups

[ Variable degrees of freedom ]

Input data groups (VDI 3633-1)

System load data Organizational data Technical data
Bill of materials Shift models Line output
Orders, quantities Topology

Eﬁ Composition of the solution space structure

space_ 1
space_1 Sub solution

space_. 2
Sub-solution
space_n

Sub solution
s-ace n

Figure 4. Detailed overview of step 1: Solution space structuring.
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The second substep (1.2), clustering of variable degrees of freedom to input data
groups, deals with the clustering of all variable degrees of freedom to input data groups
based on VDI3633-1:2014-12 [43]. The VDI3633-1:2014-12 [43] describes organizational data
(e.g., shift models), technical data (e.g., production line output, production line failures),
and system load data (e.g., production orders, bills of materials) that is required to simulate
any technical system, such as production networks. The solution space management
approach aims to enable data farming in production networks by providing input data
sets for production network simulation. Therefore, the input data sets must contain the
required data according to VDI3633-1:2014-12 [43].

The third substep (1.3), composition of the solution space structure, analyzes the
interdependencies between different variable degrees of freedom. The final goal is to
derive a set of sub-solution spaces (solution space structure) that can be either modified
independently or have clear interfaces to each other. As a simplified example, the sub-
solution space to describe the production capacity is composed of the two variable degrees
of freedom shift model and line output (c.f. substep 1.3 in Figure 4). This sub-solution
space results from their interdependency and from the fact that the working hours (shift
plan) are multiplied by the line output to calculate the production capacity.

5.2. Solution Space Planning and Control

A detailed overview of the solution space planning and control is presented in Figure 5.
The main goal of this step is to transform the solution space structure into an experiment
design, which is necessary to derive input data sets for simulation. Therefore, the initial so-
lution space must be defined based on the maximum (max.) possible parameter range of all
degrees of freedom, taking into account all interdependencies between degrees of freedom
for each sub-solution space. In addition, the network-operations-based requirements from
Table 2 are also considered at this point. Within the max. possible parameter range, DoE
methods, and specific experiment design methods for data farming are applied for each
sub-solution space to generate alternatives, c.f. [16]. All sub-solution space alternatives and
the fixed degrees of freedom from substep 1.1 are then combined into one comprehensive
experiment design, which is post-processed into input data sets for simulation. Referring
to the simplified production capacity sub-solution space, the max. line output and the max.
working hours are defined and divided into different levels, which act as input parameters
for DoE-based parameter variation to build an experiment design.

Input data for o o Solution space
dilation 2. Solution space planning and control structure

A DoE |‘ Sub-solution
‘ |‘ space_1
| . Sub-solution
</ >~—HH~e | o [/
Post- Experiment
processing design | DoE | |= Sub-solution

space_n

Fixed degrees of freedom }: 1.1

Figure 5. Detailed overview of step 2: Solution space planning and control.

Within the process model for solution space management developed by Lenders [19],
solution space control is necessary for the systematic limitation of the solution space. Within
the data-farming-based setting of the solution management approach, there is no need to
further constrain the solution space, as no resources other than computational power are
needed to simulate many experiments. Hence, the solution space control post-processes
the experiment design to derive input data sets for production network simulation.
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In conclusion, the developed solution space approach applies and extends the con-
ceptual ideas of [19] to the context of operational decisions in strategic network design.
Thereby, a set of input data sets for simulation can be derived that covers relevant design
parameter combinations. This lays the groundwork to generate a simulation database for
the data-farming-based planning approach by Kroeger and Zaeh [2].

6. Industrial Application of the Developed Approach

The following section presents the industrial application of the described solution
space management approach from Section 5. First, Section 6.1 introduces the details of
the application case. Then Sections 6.2 and 6.3 show the application of the two solution
management approach steps according to Sections 5.1 and 5.2.

A use case was conducted at a German automotive company to evaluate the devel-
oped solution space management approach in an industrial environment. The findings
are used to assess the fulfillment of the requirements presented in Section 4. All data and
information presented in the following section are taken from a real use case but presented
in an alienated form due to confidentiality restrictions. In particular, this applies to the
characteristics of the production network, such as the number and type of products, market
demand, number of sites, production line capacities, etc. Due to the alienated data base,
the results presented in the following sections do not represent generally valid recom-
mendations for action in real-life decision situations but are intended to demonstrate the
applicability and validity of the developed approach.

6.1. Description of the Industrial Environment

For the presented industrial application, only one network scenario is analyzed to
keep the results within the scope of this publication. A summary of the input data for the
considered strategic network scenario is shown in Figure 6.

[ (a) Network footprint ] [ (b) Customer-supplier relationships and product data ]
Legend 5. wo—FER
. S8
. Assembly site %f:{; stator > % electric @ customer
. Machining site § § motor sites
. S housing —»
¥ Customer site gt EH
5 considered 110t considered
# Number Level_1 Level_1
l;is)iuct;: Fotur ‘ * Sub] ect to - Product Components
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Figure 6. Summary of input data to the solution space management approach; (a) footprint of the
production network; (b) customer-supplier relationships and product data.

The European network footprint with the existing machining, assembly, and customer
sites, including the supply relationships, is presented in Figure 6a. Customer-supplier
relationships, product data such as the bill of materials (BOM), and the take rates (share of
the total demand volume) for specific product variants are shown in Figure 6b. The produc-
tion network footprint can be decomposed hierarchically into a set of customer-supplier
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relationships on different factory levels [44,45]. The highest level of customer-supplier
relationships is derived from the product structure, meaning that a rotor, a stator, and a hous-
ing are supplied to an assembly line to assemble an electric motor, which is subsequently
supplied to a customer (Level_1). The next level of customer-supplier relationships exists
between production lines (Level_2).

Moreover, the analyzed strategic scenario is also subject to a set of system constraints
(SC) originating from the industrial environment. They are differentiated into organiza-
tional, production line, and miscellaneous constraints.

The following organizational constraints need to be obeyed:

e  SCO01: All sites operate in the same standard shift model, either 15 shifts/week or
10 shifts/week.

e  5C02: Standard net working hours per shift vary by technology. Machining sites
operate 8.0 h/shift, and assembly sites operate 7.2 h/shift.

Furthermore, the following production line constraints need to be obeyed:

e  5C03: The number of production lines for each component (rotor, stator, housing) and
the product (electrical engine) is limited to two lines.

e  5C04: The production line behavior only considers a worst case and a realistic case for
the rotor lines. The production line behavior for the electrical engine, the stator, and the
housing lines is fixed.

e  5C05: The number of production lines for the electric motor (two lines) and for the
housing (two lines) is fixed.

e  5CO06: The variant flexibility of production lines is set to full flexibility (all variants)
if there is only one line. If there are two lines, variant flexibility is set to one full
flexibility line and one high-runner line (defined for this application as variants with a
take rate > 25%).

In addition to these constraints, the following miscellaneous constraints must be obeyed:

e  S5CO07: Supplier and customer production lines (Level_2) can be linked in either a 1:n
or a 1:1 relationship. There is a decoupling buffer (warehouse) between each Level_1
customer-supplier relationship, but only the customer-supplier relationship between
rotor, stator, housing, and electric motor assembly lines is considered.

S5C08: The warehouses’ inventory is only varied at two levels (low and high).
SC09: Only two different product mix scenarios are considered (Pmix; and Pmixy).

6.2. Application of Step 1: Solution Space Structuring

A summary of the results from applying step 1 is shown in Figure 7. First, substep 1.1
derives fixed degrees of freedom from the input strategic network scenario data shown
in Figure 6 and the system constraints (SC01 to SC09). Next, substep 1.2 deals with the
clustering of the remaining variable degrees of freedom by simulation input data types
according to VDI3633-1:2014-12 [43].

All necessary input data types (organizational, technical, and system load data) are
addressed. Subsequently, substep 1.3 derives a set of sub-solution spaces from grouping
variable degrees of freedom into sub-decision problems. Based on the application results,
the following five sub-solution spaces were derived.

e  Capacity framework: This sub-solution space sets capacity-related degrees of freedom,
such as the number of production lines, the production line shift model, the max. output of
the production line, and the production line flexibility. For this sub-solution space, SC01
and SCO02 are applied in terms of standard shift models and standard working hours.

e  Production line behavior: This sub-solution space deals with the production line failures
degree of freedom and is subject to SC04 and SC05 because only the worst and most
realistic cases are considered for the production line behavior.

e  Logistics information: This sub-solution space deals with the number of warehouses, the
warehouse inventory, and the number of customer-supplier-relations degrees of freedom
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VDI3633-1:2014-12 data
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2. Solution space planning

and is subject to SCO8 and SC07, as the inventory is only varied between two categories
(low and high).

e  Network structure: This sub-solution space addresses the number of production lines,
the number of warehouses, and the customer-supplier-relations degrees of freedom and is
subject to SC03, SCO5, and SCO7.

e  Product Mix: This sub-solution space addresses the number of component and product
variants, the demand for each variant, and the BOM degrees of freedom and is subject to
5C09, as only two different product mixes are considered.

5C01 - SC09
Number and location of Assignment of Number and location Product data regarding structure,
production sites products/components to sites of customer sites BOM and variant take rates
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Figure 7. Application results of step 1: Solution space structuring.

In summary, the sub-solution spaces specifically address operational decisions within
the strategic network design, such as inventory dimensioning, the number of production
lines, and shift models.

6.3. Application of Step 2: Solution Space Planning and Control

The solution space planning and control is based on a multiplication procedure of sub-
solution space alternatives to generate a comprehensive experiment design. This procedure
is depicted in Figure 8.

Experiment
design

Q- Multiplication

Figure 8. Multiplication procedure of sub-solution space alternatives to generate the experiment
design. All solution space alternatives are constructed based on the network structure alternatives.
The product mix alternatives are implicitly part of the capacity framework alternatives.

A separate DoE is required to vary the design parameters for each sub-solution space.
Then, all experiment designs are crossed to generate a comprehensive experiment design.
Within this procedure, some sub-solution spaces logically build on each other, as described
in Figure 8. The procedure combines structural and parameter variations. Hence, a single
simulation model is necessary for each network structure alternative.

The introduced levels of customer-supplier relationships can be used to derive different
network structure alternatives on an operational level, as shown in Figure 9. First, the
number of production lines is varied for each Level_1 customer-supplier relationship.
Then, the Level 2 customer-supplier relationships are used to build alternative network
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solutions based on the decision of whether a supplier production line is linked to a customer
production line in a 1:n or 1:1 manner. For this industrial application, only the number
of the rotor and stator lines is varied for either one or two lines (SC03). The number of all
other components/products production lines is preset (SC05, SC01). Moreover, there is
a warehouse between the customer and the supplier for each Level _1 customer-supplier
relationship (SC07). In addition, all Level_2 customer-supplier relationships are preset
to be 1:n (SCO7). This leads to four network structure alternatives being considered for
industrial applications.

Number of In
g 4 Lecelb production lines for Ll 2 \
= 8 o Customer-supplier ~—» —> DoE —»  Customer-supplier DoE
] z & . . each component/ N r
= £ 3 relationships d relationships
Q :

g 2.,; g product 1:1
3 Q Decision: number of Decision: internal customer-
{,":') production lines supplier relationships

Figure 9. Procedure to derive network structure alternatives.

Next, capacity framework alternatives are generated based on the procedure depicted
in Figure 10. Different planning decisions must be made for each Level_2 (between pro-
duction lines) customer-supplier relationship. The variant strategy deals with the variant
flexibility of a production line, i.e., which variant can technically be produced by the pro-
duction line. For the industrial application, only two options are considered: First, if only
one line for a component/product exists, the variant strategy is full flexibility. Second, if
there are only two lines for a component/product, the variant strategy is full flexibility for
one line and high runner for the other line (5C06). As a result, the variant strategy does not
create alternatives in this industrial application.

Level 2 High runner > Take rate for
Customer-supplier =~ —»  Variant strategy N DoE 4 each product
= relationships L g o]
= R he] Multi-variant —» g 3
ie) S O < el
g 53 S S x
£ &8 E 4 BOM ~E
L : 4
Y S & Synchronous —» 2 ]
5 Q Level _1 %
g Customer-supplier =~ — Operating model —> DoE
= relationships
o~ Asynchronous —»

[ Decision: variant strategy and operating model ]

Figure 10. Procedure to derive capacity framework alternatives based on the product-mix-sub-
solution space.

For each Level_1 customer-supplier relationship, the operating model describes how a
customer-supplier relationship is operated based on the degrees of freedom of max. output
production line and shift model. For industrial applications, the following two operating
models are considered. First, the synchronous operation of the customer and supplier
production lines means that the output/demand of the lines is synchronized for a certain
period of time. In this industrial application, synchronous means that both lines operate
the same number of shifts per week, and the max. output of each line is potentially reduced
to balance the customer line demand and the supplier line supply on a weekly basis. In
contrast, asynchronous in this industrial application means that both lines operate at the
max. output. On a weekly basis, this means that both lines could potentially be operated
for different numbers of shifts per week. For the industrial application, only the operating
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DoE: Production
line behavior

model of the Level_1 customer-supplier relationship between the rotor, the stator, the housing,
and the electric motor assembly lines is considered (SC07). This results in two alternative
operating models being considered for the industrial application.

To meet the network-operations-based requirements (O-RQ1-O-RQ3) from Table 2, the
network capacity must be equal to the fixed demand volume on a weekly basis. Therefore,
product mix alternatives must be included to derive capacity framework alternatives. Thus,
the take rate for each product and the BOM of the product are used to generate product
mix alternatives.

Capacity framework alternatives are now generated by combining the variant strategy
decision alternatives, the operating model decision alternatives, and the product mix
alternatives. This results in four capacity framework alternatives being considered for the
industrial application. The statistical production line characteristics can be varied based
on the production line failures, as shown in Figure 11a. In strategic network design, many
production line characteristics are uncertain. Therefore, production line failures can be
estimated based on similar existing production lines using aggregated line models, as
presented in [46,47]. For this industrial application, only the production line behavior of
the rotor lines is varied between a worst-case and a realistic case (SC04). Considering the
different numbers of rofor lines for each network structure alternative, this leads to a total
of eight production line behavior alternatives for this industrial application.
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e . —> DoE DoE — warehouse S g
each component/ failures . = g
4 inventory level et
product 5 =

1
1
1
i
i
I
1
1
1
1
1
1
1
1
1
1
line characteristics :
1

Decision: statistical production » )
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Figure 11. (a) Procedure to derive production line behavior alternatives; (b) procedure to derive
logistics information alternatives.

Logistics information alternatives are generated based on the applied initial and
maximum inventory levels for each warehouse; see Figure 11b. According to SC07, there
is a warehouse in between each Level_1 customer-supplier relationship. To create the
alternatives, sampling experiment design methods such as the NOLH design [34] could
also be applied. For this industrial application, three warehouses are considered within the
production network (rotor, stator, and housing). For each warehouse, two different inventory
levels are applied (SC08). This leads to a total of eight logistics information alternatives for
this industrial application.

A summary of the number of alternative solutions for each sub-solution space is
presented in Table 3. All alternative solutions are multiplied to create the final experiment
design. For this industrial application, the procedure leads to 1024 alternative solutions.
The final experiment design is then used to generate simulation software-specific input
data sets by a post-processing Python script.

The final step of solution space control is completely different from the corresponding
step in the product development context, c. f. Section 2.3. This is because there is no strict
shortage of necessary resources to develop all alternative solutions. Each simulation run of
the experiment design is executed, and the alternative solution is developed in a way that
the simulation results can be used to evaluate the alternative solution. Thereby, the only
consumed resource is computing power and data storage capacity.
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Table 3. Summary of alternatives for each sub-solution space; # indicates the number of different
alternatives for each sub-solution space.

Sub-Solution 4 Description
Space (Applied System Constraints)
Network Only the number of rotor and stator lines can either be one or two (SC03); all other numbers of
4 production lines are set (SC05 and SC01). All customer-supplier relationships are linked in a 1:n
structure
manner (SCO07).
Capacit The capacity frameworks’ alternatives are built based on two different product mixes (SC09) and two
franfewoi‘lk 4 different operating models for the relevant Level_1 customer-supplier relationship (SC07). The variant
flexibility is predefined for one or two lines (SC06).
Product mix * 2% Only two different product mixes are considered (SC09).
Production The production line behavior varies only for rotor lines (SC04). Each rotor production line has a worst
. . 8 _— .
line behavior and realistic case alternative (SC04).
Logistics 8 There are three warehouses considered within the production network. For each warehouse,
information two different inventory levels are applied (SC08).

* Implicitly considered within the capacity framework alternatives.

7. Discussion

Based on the industrial application of the solution space management approach, this
section discusses the results and their practical implications for strategic network design.
In addition, the fulfillment of the predefined requirements from Section 4 is evaluated
and discussed.

7.1. Industrial Implications of the Findings

The results of the industrial application of the solution space management are struc-
tured according to the two steps of the approach, as presented in Section 5. Thus, the results
and the industrial implications for step 1 are followed by the results and implications
for step 2.

The industrial application of step 1, solution space structuring, has shown that all
necessary input data types for simulation, according to VDI3633-1:2014-12 [43], can already
be addressed during strategic network design. Furthermore, a set of sub-solution spaces
can be derived for operational decisions during strategic network design, representing
independent planning problems. These results suggest that simulation can be applied
during strategic network design and that the large solution space can be structured into in-
dependent planning problems. Based on this, planning experts can develop alternatives for
each sub-solution space, which can be combined, leading to alternative network solutions.

The industrial application of step 2, solution space planning, led to the discovery that
the alternatives of each sub-solution space can be multiplied to derive an experiment design
that covers the solution space. Furthermore, generating alternatives for each sub-solution
space builds on different operational decisions and can be structured for each sub-solution
space. The results of step 2 suggest that creating alternative solutions for strategic network
design can be improved by generating alternatives for each sub-solution space, which are
then multiplied for a final experiment design.

In summary, the results of the successful industrial application of solution space
management in strategic network design suggest that this approach significantly supports
the objective construction of alternative network solutions.

7.2. Fulfillment of the Requirements

A summary of the fulfillment of the requirements is presented in Table 4. The footer of
Table 4 indicates the different levels of fulfillment (predominantly fulfilled, partly fulfilled,
and predominantly not fulfilled).
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Table 4. Summary of the fulfillment of requirements.

Requirements Fulfillment

General requirements

G-RQ1 Focus on operational decisions within the strategic network design ()

G-RQ2 Focus on value-stream-relevant parameters ©
Methodology-based requirements

M-RQ1 Comprehensive representation of the solution space [ )

M-RQ2 Identification of alternative solutions [
Application-based requirements

A-RQ1 Possibility to customize the approach to a problem-specific solution space ©

A-RQ2 Structured approach and understandable, transparent solution path ®

Production-network-operations-based requirements

O-RQ1 Material flow maintenance across customer-supplier-relationships ()

O-RQ2 Fixed demand volume for capacity planning o

O-RQ3 Complete demand fulfillment of customers on a weekly basis ()

@ Predominantly fulfilled, © Partially fulfilled.

For the first set of general requirements, the first requirement (G-RQ1) is completely
fulfilled. The solution space management approach inputs strategic decision design pa-
rameters and focuses on operational decision design parameters. In addition, the second
requirement (G-RQ?2) is partially fulfilled, as the addressed solution space mainly addresses
the material flow side of a value stream while the information flow side is missing. The
methodology-based requirements (M-RQ1, M-RQ?2) are also entirely fulfilled since the
set of sub-solution space comprehensively represents the solution space and alternative
solutions are derived from the combination of all sub-solution spaces alternatives. The first
application-based requirement (A-RQ1) is partially met, as only one industrial application
has been carried out so far. The other requirement (A-RQ?2) is entirely fulfilled. The solution
space management is highly structured to enable the industrial application, and by multi-
plying the alternatives for each sub-solution space, there is a transparent, understandable
solution path. The last set of requirements, the production-network-operations-based re-
quirements (O-RQI1-O-RQ4), are all completely fulfilled. This set of requirements is mainly
addressed in the derivation of alternatives for the sub-solution space capacity framework.

8. Conclusions and Outlook

Strategic network design poses several challenges, such as a large solution space com-
prising many highly uncertain design parameters, making the related decisions challenging
without decision support. Data farming offers a potential solution, as synthetic data can be
generated by running multiple simulation experiments spanning the solution space and
then analyzed using data mining techniques. However, the foundation of data farming is
an experiment design that spans the solution space. Therefore, solution space management
is necessary to support the generation of alternative network solutions to be simulated and
to create the experiment design.

This paper presents a structured solution management approach to support data-
farming-based strategic network design. The presented approach transfers concepts from
product development to the context of strategic network design. Therefore, two main steps
are required. First, the solution space structuring step identifies fixed and variable degrees
of freedom and builds sub-solution spaces that are individually addressed in the second
step. The second step of solution space planning and control builds alternatives for each
sub-solution space and combines all sub-solution space alternatives into a comprehensive
experiment design that is processed into input data sets for simulation models. A case
from the automotive industry demonstrates the industrial applicability and validity of
the solution space approach and leads to several implications. It has been shown that by
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applying the proposed approach, it is possible to generate a set of alternative network
solutions spanning the solution space. Moreover, this leads to alternative network solutions
that can be processed into input data sets for simulation models.

In addition to the application results, the solution space management approach
also needs to be validated as a part of the data-farming-based planning approach by
Kroeger et al. [46], which will be the subject of future publications.

Several points have to be addressed in future research activities. First, applying
solution space management to either a tactical or operational planning horizon could
provide beneficial insights into the solution space structure of these planning problems.
Second, the solution space structure could be used as an action space for a reinforcement
learning algorithm to find an optimal alternative network solution with respect to the
reward function. A pre-structured action space could influence the optimization time
of the reinforcement algorithm. Third, until now, the application steps and the entire
solution space management approach have been carried out manually. To integrate the
approach into an industrial-standard network planning process, continuous digital support
is required.
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