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Abstract: Guangzhou and Shenzhen are two core cities in the Guangdong-Hong Kong-Macao Greater
Bay Area (GBA). It is increasingly important to regulate water quality in urban development. The
Forel–Ule Index (FUI) can be obtained by optical data and is an important indicator. Therefore, we
used Sentinel-2 to calculate the FUI of 41 lakes and reservoirs in Guangzhou and Shenzhen from
January to December in 2016–2021, and analyzed their spatio-temporal variations, including spatial
distributions, seasonal variations, and inter-annual variations. We also performed a correlation
analysis of driving factors. In Guangzhou, the FUI was low in the north and west, and high in the
south and east. In Shenzhen, the FUI was high in the west and low in the east. Moreover, 68% of
the lakes and reservoirs in Guangzhou exhibited seasonal variations, with a low FUI in summer and
autumn, and high levels in spring and winter. Shenzhen had the lowest FUI in autumn. Furthermore,
36% of the lakes and reservoirs in Guangzhou exhibited increasing inter-annual variations, whereas
Shenzhen exhibited stable and decreasing inter-annual variations. Among the 41 lakes and reservoirs
analyzed herein, the FUI of 10 water areas were positively correlated with precipitation, while the
FUI of 31 water areas were negatively correlated with precipitation. Increased precipitation leads
to an increase in external pollutants and sediment, as well as the resuspension of substances in the
water, resulting in more turbid water. Therefore, an increase in precipitation is positively correlated
with the FUI, whereas a decrease in precipitation is negatively correlated with the FUI. These findings
can be used to design suitable management policies to maintain and control the local water quality.

Keywords: Forel–Ule Index; Sentinel-2; spatial-temporal variation; lakes and reservoirs; water quality

1. Introduction

The Pearl River Delta has been developed into the GBA, which is one of the four
largest bays in the world, and is the economic center of not only Guangdong province, but
also the entire country. Although it is located in the second largest estuary in China, this
region faces huge water problems. The GBA is densely populated. Owing to its large-scale
industrial and agricultural development and densely distributed cities and towns, water
pollution is extremely prominent in the region, which seriously hinders its sustainable
development. Surface water environmental quality reports from Guangdong province in
the first half of 2018 showed that the surface water quality was poor (accessed on 17 July
2018; http://www.gdep.gov.cn/hjjce/hjxt/201807/t20180717_240642). Guangzhou and
Shenzhen are becoming increasingly important in the GBA. Therefore, it is imperative to
analyze the surface water quality in Guangzhou and Shenzhen.

Traditional water-quality-monitoring methods collect a set number of sampling points
in a specific water area, after which, on-site sampling is conducted. Such methods are
not only time-consuming and energy intensive, but also provide limited information with
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respect to spatio-temporal variations, particularly in inaccessible water areas. Remote
sensing technology is advantageous in terms of both a wide monitoring range and a short
monitoring cycle [1,2]. In addition, remote sensing can retrieve some traditional parameters,
such as water clarity (SDD) [3–5], chlorophyll a (Chla) [6–8], suspended particulate matter
(SPM) concentration [9,10], colored dissolved organic matter (CDOM) [11], etc. However,
owing to the complex optical properties of inland water, many algorithms for parameters
are limited to different regions and seasons [12,13].

To apply remote sensing to analyze the variations in water quality, it is necessary
to select parameters that are invariant by optical properties, such as water color. Water
color can provide regional and global water quality characteristics, and is used to monitor
lakes and reservoirs. Water color results from the interactions between sunlight and the
substances (Chla, SPM, and CDOM), and is related to the absorption and scattering of the
substances [14].

Previous studies have applied water color parameter analyses for water quality re-
search. Alfoldi and Munday (1978) used Landsat data for chromaticity analysis and found
that it was a rapid and simple water quality monitoring method [15]. Related studies have
also shown that differences in the water components produced considerable differences in
the main wavelength range of the water color. Related studies have indicated that, owing to
the uncertainty of the substances in the water, extensive retrieval methods for water quality
parameters using water color analysis and the band ratio method have certain limitations
and instabilities [16].

Li et al. (2016) analyzed water quality variations of ten lakes in China by extracting the
Forel–Ule Index (FUI) from the Moderate Resolution Imaging Spectrometer (MODIS) [17].
Furthermore, Wang et al. (2018) used MODIS to retrieve the trophic status of water using
the FUI, and analyzed the variations in global inland water [18]. The FUI dataset for global
lakes and reservoirs from 2000 to 2018 based on MODIS was then released, which provided
information on spatio-temporal variations in water color of global lakes and reservoirs
during the period [19].

Zhao et al. (2021) [20] applied the SDD model proposed by Wang et al. (2020) [21] to
Sentinel-2 to calculate the SDD of the Yangtze River mainstream and analyze its spatio-
temporal variations from 2017 to 2020 [20]. Sentinel-2 has been used to analyze the water
color variations of Baiyangdian Lake [22]. Furthermore, Sentinel-2 has been used to
calculate the water hue angle α and determine the threshold for screening water color
anomalies, which achieved good results in Heilongjiang and Hebei province [23].

The Development Plan for the GBA was issued on 18 February 2019, and officially
announced the construction of the GBA, in which Guangzhou and Shenzhen are two impor-
tant cities. Therefore, we analyzed water color variations of 41 inland lakes and reservoirs
(larger than 0.5 km2) in Guangzhou and Shenzhen after the construction of the GBA. We
used Sentinel-2 to produce monthly, quarterly and annual FUI products, and analyzed their
spatial distributions, seasonal and inter-annual variations, and driving factors.

2. Materials and Methods
2.1. Study Area

Guangzhou and Shenzhen, they are located in Guangdong Province (Figure 1). They
are increasingly important core cities in the GBA as well. They have no freezing periods
throughout the year and are abundant in rainfall, and the rainy season extends from April
to September.

There are 41 lakes and reservoirs larger than 0.5 km2 in Guangzhou and Shenzhen:
22 in Guangzhou, in the Conghua, Huadu, Luogang, and Zengcheng areas, and 19 in
Shenzhen, in the Bao’an, Futian, Longgang, Yantian, and Luohu areas.
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Figure 1. Study area. 

  

Figure 1. Study area.

2.2. Research Data

(1) Sentinel-2

Sentinel-2, at an orbital height of 786 km, is equipped with a multi-spectral imager
(MSI) with 13 spectral bands, an image width of 290 km, and spatial resolutions of 10, 20,
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and 60 m. The revisit time of each satellite is 10 d. Sentinel-2A and 2B are complementary;
thus, the revisit time is shortened to 5 d. In addition, the revisit time of Sentinel-2 in the mid-
latitudes can be shortened to 2–3 d. Sentinel-2 has high temporal and spatial resolutions, a
relatively rich spectral band, and a wide imaging width. During 2016–2018, Sentinel-2 only
included Level-1C, which must be processed using Sen2Cor to obtain Level-2A surface
reflectance (SR). Since 2019, SR can be obtained directly from the official ESA through
Sen2Cor. Their spectral response functions are very similar; thus, the two satellites can be
regarded as the same (Figure 2).
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Figure 2. Spectral Response Function: Sentinel-2A/2B.

(2) Auxiliary data

To better analyze spatio-temporal variations in external factors affecting long-term wa-
ter quality, we performed this study in Guangzhou (http://swj.gz.gov.cn/) and Shenzhen
(http://swj.sz.gov.cn/). Precipitation data for each administrative region from January
to December of 2016–2021 were obtained from the Water Affairs Bureau website. Table 1
presents the precipitation stations in Guangzhou and Shenzhen used in this study. Wind
speeds were obtained from the National Centers for Environmental Information (NCEI)
of the National Oceanic and Atmospheric Administration (NOAA) (https://www.ncei.
noaa.gov/data/global-summary-of-the-day/archive/). Statistics on the residents, tourism,
and Gross Domestic Product (GDP) of Guangzhou and Shenzhen were obtained from the
official website of the GBA (https://www.dsec.gov.mo/BayArea/zh-MO/#s5).

Table 1. Precipitation stations in Guangzhou City and Shenzhen.

Guangzhou City Shenzhen City
Area Station Area Station

Conghua Area Taipingpu Station
Baoan Area

Shiyan Station
Huanglongdai Station Luotian Station

Huadu Area Jiuwantan Station
Tiegang Station

Futian Area Xili Station

Huangpu Area Huangpu Station Longgang Area Qinglinjing Station
Dapeng New Area Nanao Station

Zengcheng Area Paitan Station
Yantian Area Sanzhoutian Station
Luohu Area Shenzhen Station

2.3. Image Pre-Processing

Although Sentinel-2 has been widely used, there is no precise atmospheric correction
for water. Wang et al. (2016) proposed a secondary simple correction method for SR data,

http://swj.gz.gov.cn/
http://swj.sz.gov.cn/
https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/
https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/
https://www.dsec.gov.mo/BayArea/zh-MO/#s5
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which can remove sun glint and residual noise effects from SR data [24]. The correction
formula is:

Rrs(λ) =
Rrs(λ)−min(Rrs(NIR) : Rrs(SWIR))

π
(1)

where min (Rrs(NIR): Rrs(SWIR)) represents the minimum value of both NIR and SWIR
bands, and Rrs(λ) represents the raw Rrs of the visible bands Rrs(443), Rrs(490), Rrs(560), and
Rrs(705) of Sentinel-2 data.

2.4. Waterbody Extraction Method

This is the most commonly used method to identify water by water index. It is efficient,
and easy to apply; however, it cannot effectively restrain interference factors around the
water, such as trees, shadows, and asphalt roads. Support Vector Machine (SVM), Decision
Tree (DT), and other classification methods are required to manually draw high-precision
samples with rich water types in advance; however, the sample selection is very complex
and time-consuming, and the sample precision will also affect the water extraction results.

To accurately identify water, we selected a global surface coverage product released by
Gong Peng [25] in 2019 as the reference area. Because a waterbody is affected by external
factors, the range of the product was expanded by 2 pixels and then used as the buffer for
water, while the gray image of the Multi-Band Water Index (MBWI) [26] was used as enter
data (MBWI gray image). K-Means was used to identify the waterbody within the buffer.
The flowchart is Figure 3.

MBWI = 2 Rrs(Green) − Rrs(Red) − Rrs(NIR) − Rrs(SWIR1) − Rrs(SWIR2) (2)
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The central wavelengths of Rrs(Green), Rrs(Red), Rrs(NIR), Rrs(SWIR1), and Rrs(SWIR2)
in Equation (2) are 560 nm, 665 nm, 842 nm, 1610 nm, and 2190 nm.

Determining the optimal threshold using the conventional threshold method is repeti-
tive and tedious, and human error may be introduced into the classification results. The
unsupervised classification method has the advantage of low human involvement and
efficiency. K-means clustering is an effective unsupervised classification. The water and
non-water classification results were obtained by K-means clustering of water body index
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results. For the K-means clustering parameters, the classification number, change threshold,
and maximum iteration numbers were 10, 0.01, and 10,000, respectively. After clustering,
we obtained water and non-water classification results [26]. The result of water extraction
is Figure 4.
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2.5. Calcualtion

The FUI was calculated based on the CIE-XYZ standard color system proposed by the
International Commission on Illumination (CIE), in which the X, Y, Z tristimulus values
were first proposed. Sentinel-2 has five visible light bands, and the formula for calculating
the X, Y, Z tristimulus values is Equation (3) [27]:

X = 11.756R(443) + 6.423R(490) + 53.696R(560)
+ 32.028R(665) + 0.529R(705)

Y = 1.744R(443) + 22.289R(490) + 65.702R(560)
+ 16.808R(665) + 0.192R(705)

Z = 62.696R(443) + 31.101R(490) + 1.778R(560)
+ 0.015R(665) + 0.000R(705)

(3)

The Landsat 8 Operational Land Imager (OLI) has four visible light bands, and the
formula is Equation (4):

X = 11.053R(443) + 6.950R(483) + 51.135R(561) + 34.457R(661)
Y = 1.320R(443) + 21.053R(483) + 66.023R(561) + 18.034R(661)
Z = 58.038R(443) + 34.931R(483) + 2.606R(561) + 0.016R(661)

(4)

The relevant information is in Table 2.

Table 2. Spectral bands for the Sentinel-2 and Landsat 8 OLI.

Sentinel-2 Landsat 8 OLI
Central Wavelength (nm) Bands Central Wavelength (nm) Bands

443 Coastal Blue 443 Coastal Blue
490 Blue 483 Blue
560 Green 561 Green
665 Red 661 Red
705 Vegetation Red Edge

The chromaticity coordinates in the CIE were calculated based on tristimulus values,
and the results of the chromaticity coordinates were normalized to 0–1 (Figure 5 and Table 3).
Therefore, a new coordinate system was obtained [18] that is described by Equation (5):{

x = X
X+Y+Z

y = Y
X+Y+Z

(5)
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Table 3. Chromaticity coordinates and hue angles (α) of the FUI [18].

FUI x y α (◦)

1 0.191363 0.166919 40.467
2 0.198954 0.199871 45.19626
3 0.210015 0.2399 52.85273
4 0.226522 0.288347 67.16945
5 0.245871 0.335281 91.29804
6 0.266229 0.37617 122.5852
7 0.290789 0.411528 151.4792
8 0.315369 0.440027 170.4629
9 0.336658 0.461684 181.4983
10 0.363277 0.476353 191.8352
11 0.386188 0.486566 199.0383
12 0.402416 0.4811 205.0622
13 0.416243 0.47368 210.5766
14 0.431336 0.465513 216.5569
15 0.445679 0.457605 222.1153
16 0.460605 0.449426 227.6293
17 0.475326 0.440985 232.8302
18 0.488676 0.43285 237.3523
19 0.503316 0.424618 241.7592
20 0.515498 0.416136 245.5513
21 0.528252 0.408319 248.9529

Finally, the hue angle α was obtained [18] by Equation (6):

α = arctan
(

y− yw

x− xw

)
× 180

π
+ 180 (6)

where yw and xw are
(

1
3 , 1

3

)
.
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To eliminate hue angle α deviations caused by band dispersion and band setting ∆,
we established an error polynomial fitting formula based on the water surface reflectance
database and added the system deviation simulated by the polynomial to the hue angle
α calculated from the multi-spectral images. The method had the effect of eliminating
bias [29].

The optimal linear relationship between the hue angle α calculated from the hyper-
spectral data and that calculated by the satellite sensor was obtained by finely correcting
the hue angle α. Specifically, the hue angle α was corrected by compensating for the linear
interpolation between the natural water spectrum and the sensor band. Owing to sensor
band limitations, a large offset was not generated randomly. The calibration formula of the
hue angle α based on the Sentinel-2 data is as follows [20]:

∆ = 46.2094a5 − 412.256a4 + 1385.5708a3 − 2128.364a2 + 1443.7115a− 341.6433 (7)

The calibration formula of hue angle α based on the Landsat 8 OLI is as follows [30]:

∆ = −52.819a5 + 334.88a4 − 758.26a3 + 746.324a2 − 315.18a + 39.761 (8)

where a is the hue angle α divided by 100. By correcting the hue angle α, its value is closer
to the actual water color. In this study, the definition of the hue angle α was based on the
point of equal-energy white light, and increased with the main wavelength of color. Note
that the definition of the hue angle α in this study is different from that of van der Woerd
and Wernand in theirs [29]. Each FUI represents the hue angle α range, with a smaller FUI
indicating clearer water, whereas a larger FUI indicates more turbid water.

2.6. Temporal and Spatial Aggregation

Since Guangzhou and Shenzhen do not have a freezing period, FUI was calculated
from January to December of 2016–2021. Based on Sentinel-2, the FUI of 41 lakes and
reservoirs in Guangzhou and Shenzhen were obtained, as well as their spatial distributions,
their seasonal and interannual variations, and the driving factors affecting the variations
in the FUI. Because the water is dynamic, calculating the FUI from a single-day image
resulted in greater randomness; therefore, we performed our statistical analysis using the
monthly average effective FUI to reflect the variations in lake and reservoir water quality
more faithfully. The season division is Table 4.

Table 4. Season division.

Month Season

March, April, May Spring
June, July, August Summer

September, October, November Autumn
December, January, February Winter

We used remote sensing images with cloud cover≤30% and no significant cloud cover
above the water body as valid data. If multiple effective data were obtained every month,
the average of the multi-scene effective data were calculated as the monthly average of
the monthly FUI. If only single-scene effective data were available in a given month, the
scene image of the FUI represented the average results for the month. Using the statistical
monthly average FUI reduced the random error generated by single-scene data. The
statistic result of valid Setinel-2 data is Figure 6.
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2.7. Evaluation Index

Trend changes analyzed by the Mann–Kendall (M–K) significance test [31,32] in
Guangzhou and Shenzhen from 2016 to 2021. The M–K test uses a standardized Z-statistic
to determine the monotonic trend of the data, where Z > 0 indicates that the data has an
increasing trend and Z < 0 indicates that the data has a decreasing trend (Table 5).

Table 5. Mann–Kendall significance test.

Z α Significance

≥2.58 ≤0.01 Extremely significant
≥1.96 ≤0.05 Significant
<1.96 >0.05 Not significant

Note: α represents the significance level; Z represents the standard confidence value.

The coefficient of variation (CV), mean relative error (MRE), and root mean square
error (RMSE) were used to calculate the evaluation index. The CV compares the dispersion
degrees of different groups of data. Smaller CV values indicate smaller degrees of variation
of the data; larger CV values indicate greater degrees of variation. These parameters were
calculated as follows:

MRE =
1
n
|A− A′|

A
(9)

RMSE =

√
∑n

1 (A− A′)2

n
(10)

CV =
Standard deviation

Mean value
(11)

Standard deviation =

√
∑n

i−1
(

Ai − A
)2

n
(12)

Mean value =
A1 + · · ·+ An

n
=

∑n
i=1 Ai

n
(13)
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where A is the result of Landsat 8 OLI, A′ is the result of Sentinel-2, and n is the number of
verification points.

The correlation coefficient is used to explain the correlation between two parameters.
Positive correlations indicate that when one variable increases/decreases, the other also
increases/decreases. The Pearson correlation coefficient (PCC) represented the correlation
between two variables, as follows:

rho =
cov(X, Y)

σXσY
=

∑ XY− ∑ X ∑ Y
N√(

∑ X2 − (∑ X)2

N

)(
∑ Y2 − (∑ Y)2

N

) (14)

3. Results
3.1. Accuracy Evaluation of the FUI

Owing to a lack of in situ data from inland water in Guangzhou and Shenzhen, the
accuracy evaluation was mainly divided into two parts to show the universality and
stability of the FUI in a large-scale study area.

First, the FUI was calculated using Sentinel-2 (23 May 2019) from Baiyangdian Lake,
which has complex optical characteristics. Second, the in situ Rrs(λ) acquired from Baiyang-
dian Lake on 21 and 22 May 2019 was obtained and the results were compared. The
accuracy evaluation indices were MRE and RMSE. The MRE and RMSE were 3.54% and
0.57, respectively. Figure 7 shows a scatterplot of the accuracy evaluation of the FUI in
Baiyangdian Lake.
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Xu et al. [33] applied the FUI to Landsat 8 OLI data and found that the FUI has
good accuracy and universality, and can be applied to large-scale water quality variations.
Therefore, the FUI calculated using the Landsat 8 OLI data were used as the actual values
to evaluate Sentinel-2 data. Seventy verification points were selected for lakes and reser-
voirs in Guangzhou and Shenzhen, and Sentinel-2 and Landsat 8 transited this region on
5 December 2021.

If a corresponding number of verification points are selected off the shore, the shore
may be affected by optical shallow water or pollutants; However, the spatial resolution is
different. If a verification point is located on the edge, it may also be distributed by land
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proximity effects. Thus, the distance between the verification points and the edge was set
as larger than 5 pixels, allowing the selected points to reduce influence factors. Figure 8
shows selected verification points in the study area.
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Figure 8. Verification points.

Figure 5 shows that there are 21 FUI levels, each of which represents a discrete hue
angle α range. To compare the results of the two sensors more accurately, we utilized the
hue angle α instead of the FUI for accuracy evaluation. With each verification point as the
center, Sentinel-2 selects a 9 × 9 pixels area and the Landsat 8 OLI selects a 3 × 3 pixels
area. The spatial resolutions of the two sensors differ, which can ensure that the selected
area of each verification point is consistent. The influence of single-pixel randomness was
reduced. The mean value of the CV of 70 verification points in Sentinel-2 and Landsat 8
OLI were 1.1% and 5.8%, respectively. These CV results were similar to those obtained
previously, indicating that the results are stable and reliable. The PCC was calculated as
0.77. Therefore, the method was shown to be reliable. Previous studies have cross-verified
the water color parameters retrieved by MODIS, Landsat 8 OLI, and Sentinel-2, and have
good application potential [20,34,35].

3.2. Spatial Distribution

Figure 9a shows the spatial distribution of 22 lakes and reservoirs in Guangzhou,
located in the Conghua, Huadu, Luogang, and Zengcheng areas. Their overall spatial
distributions were low in the north and west, and high in the south and east. The FUI
ranged from 6.3 to 9.5 in the Conghua area in the north, and ranged from 7.3–9.5 in the
Luogang area in the south. Moreover, the FUI ranges of the Huadu area in the west and
the Zengcheng area in the east were 7.7–11.2 and 8.0–12.3, respectively. Figure 9b shows
the spatial distribution of the FUI of 19 water areas in Shenzhen, located in the Bao’an,
Longgang, Futian, Luohu, and Yantian areas. The overall spatial distribution was high in
the west and low in the east. The FUI ranges in Bao’an, Longgang, Futian, Luohu, and
Yantian areas were 8.2–9.9, 7.3–9.1, 8.4, 8.3, and 6.3, respectively.
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lake/reservoir.

3.3. Seasonal Variations

The 41 lakes and reservoirs were numbered, (i.e., GZ1-GZ22 in Guangzhou and SZ1-
SZ19 in Shenzhen). According to the statistics of the evaluation standards and trends of
41 lakes and reservoirs in Guangzhou and Shenzhen (Figures 10–12), only a few lakes
and reservoirs exhibited significant seasonal FUI variations, while most of the lakes and
reservoirs exhibited no significant variations. Figure 10 shows the seasonal variations of
22 water areas in Guangzhou, 68% of which had lower FUIs in summer/autumn and higher
FUIs in winter/spring, while 32% of the lakes and reservoirs exhibited slightly different
variation trends. Among them, the FUI of GZ4 was lower in autumn/winter, and higher
in spring/summer, whereas GZ11 exhibited the opposite trend. Furthermore, the FUI of
GZ12 was lower in spring/autumn, and higher in summer/winter. The FUIs of GZ14 and
GZ18 were the lowest in summer and the highest in winter. The seasonal variations in all
lakes and reservoirs were extremely similar, and the FUI was the lowest in autumn.
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3.4. Inter-Annual Variations

Among the 19 reservoirs in Shenzhen, the FUI of 9 decreased, while the rest remained
relatively stable. As for inland water quality, that of Shenzhen was better than that of
Guangzhou. As shown in Figures 13–15, in 2016–2021, the annual variations in the FUI of
the 41 lakes and reservoirs were not significant, indicating that the water quality did not
change significantly and remained at a good level. Figures 14 and 15 show the results of
the annual variations in the FUI of 41 lakes and reservoirs in Guangzhou and Shenzhen
from 2016 to 2021, respectively. Among the 41 lakes and reservoirs, 36% had increased
FUI trends, 30% had decreased FUI trends, and 34% were relatively stable. For 22 lakes in
Guangzhou, their FUI trends were relatively stable.
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Figure 15. Inter-annual FUI variations in Shenzhen.

4. Discussion

The water quality variations of inland, coastal, and ocean water are somewhat similar,
and all have exhibited decreasing trends [36]. In different regions, the factors leading to
variations in water quality differ [18,37–39]. The FUI variations of lakes and reservoirs in
Guangzhou and Shenzhen were found to be mainly caused by natural and human factors.

4.1. Meteorological Factors

The natural factors that affected the variations in water quality were mainly precip-
itation and wind speed. Figure 16. shows the PCC results of 41 lakes and reservoirs
in Guangzhou and Shenzhen. Two lakes and reservoirs in Guangzhou were positively
correlated with precipitation, while the rest were negatively correlated. Furthermore, eight
lakes and reservoirs in Shenzhen were positively correlated with precipitation, while the
rest were negatively correlated. Precipitation increases water volume: when the water
volume increases, the concentrations of SPM, chlorophyll, and other substances are diluted,
thereby making the water clearer and reducing its FUI. However, precipitation also affects
the runoff volume, which affects the concentrations of organic and non-polar suspended
solids in the water, as well as the aquatic vegetation transported into lakes and reservoirs,
thereby making the water turbid and increasing its FUI.
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Wind speed was the main factor affecting the water quality of the inland lakes and
reservoirs. When the wind speed increases, it causes substances in the water to become
resuspended, thereby making the water turbid. Strong winds also transport some pollutants
from the shore into the water, thereby producing increased turbidity.

As both Guangzhou and Shenzhen have a subtropical climate, the temperature remains
high all year, and many typhoons occur annually. Affected by the temperature, nutrients
accumulate in lakes and reservoirs, and the amount of floating algae in the water increases,
leading to increased turbidity of the water body, which increases the FUI. Figure 16 shows
the numbers of typhoon landing days in the study area. Whenever a typhoon makes
landfall, the wind speed and power increase. Under these conditions, strong winds disturb
sediments in lake and reservoirs, causing the sediment to re-suspend, leading to higher
turbidity and an increase in the FUI.

4.2. Human Factors

Figure 17 shows the GDP, tourist population, and resident population of Guangzhou
and Shenzhen; however, the data obtained from website did not include the tourist and
resident populations of Shenzhen in 2021. During 2016–2021, the GDP and resident popula-
tions of Guangzhou and Shenzhen both increased annually. During 2016–2019, the tourist
and resident populations in both cities increased, but then decreased significantly in 2020
owing to the COVID-19 pandemic. The lakes and reservoirs assessed in this study were
shallow and therefore vulnerable to external factors and human activity. The statistical
results indicate that dense populations, a relatively developed economy, frequent human
activity, inflow of external pollutants, increased internal nutrient loads, and other related
factors increased the turbidity and FUI within the study area.

The trends show that most lakes and reservoirs have insignificant seasonal and interan-
nual variations. Through on-site investigation, we found that some lakes and reservoirs are
protected areas for local water sources and are affected by human interference factors. Only
natural factors (such as precipitation and wind speed) may have an impact on water quality,
which may be another reason for the insignificant seasonal and interannual variations.
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The statistical results of the correlations between the FUI and the GDP, tourism, and
the resident population (Figure 18) indicate that half of the water bodies were negatively
correlated with the GDP, tourism, and the resident population, whereas the other half
were positively correlated with GDP, tourism, and the resident population. Based on field
observations, some of the lakes and reservoirs were local source water protection areas,
which are less affected by external human activity. Therefore, natural factors mainly affect
their water quality. The GDP, tourism, and residential data used in this study were obtained
from the entire city and were not confined to the specific administrative region in which
each lake/reservoir was located. This may have affected the correlation statistical results.
We will collect more detailed data in the future and perform further statistical analysis.
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4.3. Model Adaptability

The optical characteristics of inland water bodies are complex and vary widely both
regionally and seasonally, leading to strong regional and seasonal limitations in the remote
sensing retrieval model for water quality parameters. This limits the advantages of using
satellite remote sensing for long-term and large-scale water environmental monitoring. The
FUI model was derived from optical remote sensing data based on the principle of optical
color theory; thus, it was not affected by water body regions and seasons.

The lakes and reservoirs in Guangzhou and Shenzhen were distributed widely through-
out the respective regions. The optical properties of inland water are relatively complex.
The uncertainty of traditional empirical and semi-empirical methods in different regions
and water is large; therefore, conducting large-scale and long-term analysis of spatio-
temporal variations in water quality is difficult [13]. The FUI is an optical parameter, which
is invariant with the optical characteristics of inland water, and does not have regional or
seasonal limitations. Although there is a relationship between the FUI and two param-
eters (i.e., water clarity and trophic status), this relationship is not clear. However, we
can approximate the overall quality of water using the FUI. In addition, the FUI has a
strong anti-interference ability regarding aerosol types and observational conditions [18].
Therefore, the FUI was selected as the index for evaluating water quality in lakes and
reservoirs larger than 0.5 km2 in Guangzhou and Shenzhen, and their spatio-temporal
variations were analyzed.

5. Conclusions

The FUI is an optical parameter that results from the interactions between solar
radiation and components in water, and is significantly related to water quality. Thus,
the FUI can be applied to evaluate water quality in the long term and at large scales. The
accuracy evaluation indicates that the FUI can be successfully applied to Sentinel-2 data.

Overall, Sentinel-2 can be used to carry out spatial distribution and seasonal and
inter-annual variations. In addition, monitoring water quality is economical, efficient,
and intuitive by remote sensing, and provides guidance for developing suitable manage-
ment policies.

Of the 41 lakes and reservoirs analyzed in Shenzhen and Guangzhou, 36% exhibited
deteriorating water quality trends. Owing to the relatively scattered distribution of these
lakes and reservoirs, relevant governance policies such as “one lake, one policy” can be
formulated based on the actual scenario in each location. For example, weeds and debris can
be removed regularly, aquatic organisms can be introduced to improve the self-purification
capacity of the water body, and the discharge of pollutants and sub-standard wastewater
can be reduced.

In the future, we plan to apply the FUI to multi-source optical data to analyze the
spatio-temporal variations on a larger scale, for a longer period, and for smaller water
bodies. We also plan to collect more satellite-ground synchronous in situ data to evaluate
the accuracy of the FUI.
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