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Abstract: Black-box web application scanning has been a popular technique to detect Cross-Site
Scripting (XSS) vulnerabilities without prior knowledge of the application. However, several limi-
tations lead to low efficiency of current black-box scanners, including (1) the scanners waste time
by repetitively visiting similar states, such as similar HTML forms of two different products, and
(2) using a First-In-First-Out (FIFO) fuzzing order for the collected forms has led to low efficiency
in detecting XSS vulnerabilities, as different forms have different potential possibilities of XSS vul-
nerability. In this paper, we present a state-sensitive black-box web application scanning method,
including a filtering method for excluding similar states and a heuristic ranking method for optimiz-
ing the fuzzing order of forms. The filtering method excludes similar states by comparing readily
available characteristic information that does not require visiting the states. The ranking method
sorts forms based on the number of injection points since it is commonly observed that forms with a
greater number of injection points have a higher probability of containing XSS vulnerabilities. To
demonstrate the effectiveness of our scanning method, we implement it in our black-box web scanner
and conduct experimental evaluations on eight real-world web applications within a limited scanning
time. Experimental results demonstrate that the filtering method improves the code coverage about
17% on average and the ranking method helps detect 53 more XSS vulnerabilities. The combination
of the filtering and ranking methods helps detect 81 more XSS vulnerabilities.

Keywords: black-box scanner; fuzzing; state-sensitive; cross-site scripting (XSS); HTML forms

1. Introduction

Web applications have became increasingly popular due to their convenience in use.
However, various web vulnerabilities [1-3] also threaten the security of web applications
and user information. Cross-Site Scripting (XSS) vulnerability manifests as an injection flaw
in web applications, caused by untrusted input propagating to sensitive locations in the web
application. It has consistently maintained its position among the top ten vulnerabilities
documented by the Open Web Application Security Project (OWASP) since 2003, as also
evidenced in their latest report released in 2021 [4]. XSS vulnerabilities have been a
longstanding and significant threat to the security of web applications.

Web application scanners play a crucial role in detecting web vulnerabilities. Different
from white- [5] and grey-box [6] scanners, black-box scanners do not require prior knowl-
edge of the application, such as source code. They acquire the information for detecting
vulnerabilities by interacting with web applications through crawlers. Black-box scanners
explore attack surfaces by visiting web pages to discover URLs, HTML forms, and other
input fields. Researchers are committed to designing black-box scanners that can cover as
many attack surfaces as possible.

In 2012, Doupé et al. [7] proposed modeling the state of applications to achieve better
coverage and cover as many attack surfaces as possible. However, modern web applications
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have rich dynamic characteristics due to the presence of the JavaScript program, client-side
events, and server-side statefulness. These dynamic characteristics allow network requests
to change the state of the server. For example, clicking a button can change the DOM to
generate a new link or field. Modeling the interaction between server and client code with
scanners is very challenging. In 2021, Eriksson et al. [8] proposed an effective navigation
model (introduced in Section 3.2.1) construction method to model the client- and server-side
state to a certain extent in Black Widow, a state-of-the-art black-box web scanner. The model
covers multiple methods of application interaction, including GET requests, JavaScript
events, HTML forms, and iframes, and can construct dependencies between various states.
For example, users may have to hover over the menu before clicking the button, or submit
a series of forms in order before purchasing the product.

Similar states often exist in web applications. Especially for XSS, there are often
multiple similar HTML forms in an application. For example, in most web applications with
product information management functionality, each product will have a corresponding
form for modifying information. A common method for restricting repetitive visits to
similar states in current black box scanners is to limit the number of visits to URLs with
the same path. On the other hand, the fuzzing order of the form in current black-box
scanners refers to the sequence in which the scanners discover the forms. However, these
straightforward methods suffer from several limitations: (1) there are numerous repetitive
visits to similar states in the scanning process, especially for the state of HTML forms; and
(2) they lack an appropriate method for judging the importance of HTML forms to guide the
fuzzing order of them. Both of these limitations result in low efficiency of black-box scanners,
which further leads to the missing of some XSS vulnerabilities within a limited scanning time.

To overcome these limitations, we propose a state-sensitive black-box web application
scanning method, including a filtering method for excluding similar states and a heuristic
ranking method for optimizing the the fuzzing order of forms. In our filtering method,
we mainly focus on the similarity of HTML forms and judge them based on the feature
information of the form and the page on which it is located. It reduces the time spent by
the scanner in visiting and fuzzing similar states. In our ranking method, we propose that
a higher priority should be assigned to forms with more injection points in the context of
fuzzing. To evaluate the effectiveness of our methods, we present our black-box scanner
SSBW by incrementally implementing the filtering method and ranking method on Black
Widow. Experimental evaluation illustrates that the code coverage on eight applications
of the scanner with our filtering method increased by 17% on average, with the highest
increase being 57%. The scanner with the ranking method can detect 53 more vulnerabilities
in three out of eight applications compared to the scanner without the ranking method.
The combination of the filtering and ranking methods helps to get an average increase of
about 19% in code coverage and detect 81 more XSS vulnerabilities.

In summary, our contributions are the following:

*  We have designed a stricter filtering approach that excludes similar states without
the need to actually visit these states. This enhancement makes the scanner more
attuned to different states, resulting in fewer repetitive visits to similar states. This
improvement, in turn, boosts the code coverage of the black-box web scanner within a
limited scanning time.

e Inorder to fuzz a greater number of injection points within a specific time frame, we
have devised a heuristic ranking technique for HTML forms. This approach prioritizes
the forms with a higher count of injection points, thereby enhancing the efficiency of
the black-box web scanner in identifying XSS vulnerabilities.

¢ Weimplement a filtering method and a ranking method in our black-box web scanner
SSBW. These methods were experimentally evaluated on eight real-world applications.
Our evaluation results show that SSBW can attain an average increase of about 19%
in code coverage and detect 81 more XSS vulnerabilities compared to Black Widow
within a limited scanning time.
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2. Background

This section is comprised of three main parts. Firstly, it introduces the principle and
three primary classifications of XSS vulnerabilities. Secondly, it discusses three different
detection methods. Finally, it presents the challenge addressed in this paper.

2.1. XSS Vulnerability

Cross-Site Scripting (XSS) vulnerabilities arise from flaws in how web applications
handle user-generated content. The core principle behind XSS vulnerabilities revolves
around the ability for malicious actors to inject unauthorized code or scripts into trusted
websites [9]. Utilizing XSS vulnerabilities can obtain user privacy information, spread
webworms and cause denial of service. XSS vulnerabilities can be categorized into three pri-
mary types [10,11]: reflected XSS, stored XSS, and DOM-based XSS. The primary objective
of this paper is to detect reflected and stored XSS vulnerabilities.

*  Reflected XSS occurs when a malicious script, injected into an HTTP request, is
directly included in the response without appropriate sanitization, leading to its exe-
cution by the web browser. This vulnerability commonly manifests in scenarios where
malicious scripts are embedded within search content, thereby becoming integral
components of search results or error messages. Reflected XSS is also referred to
as non-persistent XSS since the malicious scripts are not permanently stored on the
server.

*  Stored XSS refers to the practice of storing malicious scripts on the server. When a
user requests relevant content, the malicious script is included as part of the response,
leading the browser to execute it. A common instance of this vulnerability involves
injecting malicious scripts into message boards. Upon viewing the content within this
message, the injected script is executed. Since the malicious scripts persistently reside
on the server, Stored XSS is alternatively referred to as persistent XSS.

*  DOM-based XSS occurs when the client-side script alters the Document Object Model
(DOM) using a malicious script. Unlike stored and reflected XSS, the malicious script
associated with DOM-based XSS can be inserted into the URL as the value of a
particular DOM object or HTML element, without ever reaching the server.

2.2. XSS Vulnerability Detection

According to the analysis methodology, the detection of XSS vulnerabilities can be
classified into three distinct categories: static analysis, dynamic analysis, and a combination
of both known as hybrid analysis. Static analysis [5,12-14] focuses on the analysis of code
structures and functions within the source code of web applications, without taking into
account the runtime state. While it excels in conducting a thorough examination of the
application’s source code to minimize false negatives, it is susceptible to generating false
positives. Hybrid analysis [3,6,15-17] incorporates a comprehensive evaluation of both
the source code and runtime state of the application, thereby mitigating false positives
to a certain degree. However, the source code of an application may be unavailable in
certain cases. Consequently, dynamic analysis has become a prevalent technique to detect
vulnerabilities [18] utilized in such circumstances. A concise overview of several studies
on dynamic analysis is presented as follows.

Doupé et al. [7] introduced a methodology for inferring server-side states during
browsing, aiming to enhance code coverage. Their approach was implemented within state-
aware crawlers, which facilitated the clustering of similar pages. Nevertheless, this crawler
solely takes into account static HTML links and forms for detecting state alterations. The
failure to accommodate the dynamic attributes inherent in contemporary web applications
may result in the omission of dynamically triggered links and forms.

Pellegrino et al. [19] incorporated client events into their methodology to discover
additional client-side states. Through dynamic analysis of the client-side JavaScript pro-
gram, their approach enables the identification of dynamically generated URLs and forms.
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However, the support for client-side events is restricted and does not encompass the
comprehensive utilization of JavaScript in contemporary applications.

Eriksson et al. [8] proposed an effective navigation model construction method to
model the client- and server-side state to a certain extent in Black Widow. This method
provides a relatively comprehensive modeling of the dynamic characteristics of web ap-
plications. However, it fails to fully utilize the modeled state information, resulting in
low efficiency in vulnerability detection. Our work is directly related to Black Widow.
And we have evaluated our method based on it. Prior to this, Black Widow had been
evaluated based on open-source tools developed by the community [20-22] and academic
black-box scanners [7,19]. The overall performance of Black Widow in code coverage and
vulnerability detection is superior to these scanners.

From another perspective, Clustering similar pages can reduce the access to forms
with similar functionality and improve the efficiency of vulnerability detection. Existing
research mainly uses visual analysis [23-26] or webpage text content [27-29] to determine
similar pages. Although these methods are effective in their application scenarios, they are
not suitable for our research objectives.

The work that best matches our research objectives is ReScan [30], a middleware
framework that can be used for black-box web application scanners. Unfortunately, ReScan
cannot be directly applied to Black Widow, which hinders our experimental evaluation.

2.3. Challenges

The state-of-the-art black-box web scanner, Black Widow, fully models the dynamic
characteristics of web programs to a certain extent. The strategy taken by Black Widow
is to build a navigation model for the web application, a transformation graph between
client-side states. State refers to the content of the client page. It models the client-side state
to further map the server state. The transformation between the state mainly includes the
GET requests, form submissions, iframes and JavaScript events.

Challenge 1: There are numerous repetitive visits to similar states in the scanning
process, especially for the state of HTML forms. Based on Black Widow’s excellent mod-
eling of web applications, there are certain flaws in its use of the model. Especially due
to insufficient restrictions on similar states, the scanner spends a lot of time on repet-
itive visits to similar states. For example, every product page http://example.com/
product.php?id=X contains a form http://example.com/product.php?id=X&action=edit
for modifying information. X represents the number of the product. Ideally, a form for edit-
ing the product only needs to appear once in the navigation model. However, insufficient
restrictions may cause undesirable repetition. It will significantly reduce the efficiency of
the scanner. This inspired us to design a filtering method for similar states.

Challenge 2: Current black-box web scanners lack an appropriate method for judging
the importance of HTML forms to guide the fuzzing order of them. In Black Widow and
other black-box scanners [7,19], there is only a limited connection between HTML forms
and XSS vulnerabilities. The fuzzing order of the form in current black-box scanners refers
to the sequence in which the scanners discover the forms. They lack an appropriate method
for judging the importance of HTML forms. This also leads to low efficiency of detecting
XSS vulnerabilities, further resulting in missing some XSS vulnerabilities within a limited
scanning time. It is inspired by previous research [31-33] on fuzzing of other types of
applications. We attempt to explore information in the state that is closely related to XSS
vulnerabilities. Based on this information, a ranking method is designed to provide priority
to fuzzing specific HTML forms.

3. Approach

Motivated by the challenges of Section 2.3, this section aims to introduce our approach
for black-box web application scanning. We implement our approach as a black-box
scanner SSBW that can be divided into two modules: a state-sensitive crawler, responsible
for crawling web application information, and a fuzzer, dedicated to XSS vulnerability


http://example.com/product.php?id=X
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http://example.com/product.php?id=X&action=edit
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verification. The two key components of our approach are the filtering method of the
navigation model construction process in the crawler and the heuristic ranking method in
the traversal process. Figure 1 provides an overview of our scanner and the positions of
the two key components of our approach.

The goal of the crawler is to obtain the information from the web application quickly,
comprehensively and accurately. The most important information for detecting XSS vul-
nerabilities is the form in the web application. Thus, in scenarios where the ability to
identify new forms is limited, we believe that optimizing the efficiency of XSS vulnerability
detection relies on two crucial factors: minimizing the fuzzing of similar forms and priori-
tizing the fuzzing of forms with more injection points. We employ a filtering method in the
crawler to exclude similar forms and the fuzzing order of the forms is determined by the
traversal order of the forms. In the fuzzing module of this paper, we maintain consistency
with the fuzzer implemented by Black Widow.
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Figure 1. Architecture of SSBW.

3.1. Overview

SSBW is divided into two modules: crawler and fuzzer. The input of the crawler is
the URL of the website to be tested. First, an empty node and the URL is constructed to
an initial edge, which is the original navigation model graph. Next, we select the only
edge of the graph to visit and get the web page corresponding to the initial URL. The web
page contains a variety of elements that may find the new state, i.e., GET requests, form
submissions, iframes, JavaScript events [8]. The methods for transformation between states
are categorized into “get”, “form”, “iframe”, and “event”. Thus, an association relationship
between the current state (that is, the web page visited by the initial URL) and the elements
in the page that may reach new states can be built. Each association relationship is a new
edge, the starting node of the edge is the current state, the end node of the edge is the
new state that may be reached, and the information required for the transition between
the states is recorded. To improve the efficiency of the crawler, it is necessary to delete
similar edges (introduced in Section 3.2.4) among all the new edges, in order to avoid
repeated visits to the same page or similar forms. Finally, the filtered unique edges are
added to the navigation model to create a new navigation model. There are many edges
in the new navigation model graph. In order to achieve a balance between the coverage of
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injection points and the exploration of new states, a proper traversal strategy is required for
determining which edge to visit next. We designed different ranking methods for edges with
different transformation methods. For edges with a transformation method of “form”, their
visit order determines the order of fuzzing. Therefore, we believe that their ranking methods
play a crucial role in vulnerability detection. The parts of Crawler are detailed in Section 3.2.

During the crawling process, when an edge with the transformation method “form”
is visited, tokens with sufficiently high entropy will be injected to map the Inter-state
Dependency (ISD), which helps in identifying the mapping relationship between potential
source and sink points. The scanner will check if the previously injected token reappears
when visiting the new page. Finally, the scanner will submit all the ISD to the fuzzer for
vulnerability verification. This is covered in Section 3.3.

3.2. State-Sensitive Crawler

To improve the efficiency of the black-box scanner, the crawler in SSBW crawls the
same page and records similar states as little as possible. This relies on the precise iden-
tification and filtering of similar states through the crawler. Therefore, our crawler is
state-sensitive.

3.2.1. Navigation Model

Inspired by the approach of Eriksson et al. [8], our navigation model is defined in the
same way as same as Black Widow. The navigation model is implemented as a directed
graph, each node represents the state of the application in terms of unique URLs, and
the edges describe the method and necessary information required for the transformation
between the states. The transformation methods between the states are divided into “get”,
“form”, “iframe” and “event”. Every time we visit a page, we build an association between
that page and elements within the page that may reach a new state. Each association represents
a new edge, with the starting node being the current state (representing the currently visited
page). The ending node of the edge represents a possible new state. The edge itself records
the transition information between states and its parent edge.

Visiting states are represented in the navigation model as visiting edges. To properly
visit the new state, we need to recursively build the workflow by tracing the parent edge
until we find a safe state that represents a GET request. This is based on the HTTP RFC [34],
which states that requests of type GET are not considered state-changing and can be safely
executed as a starting point.

3.2.2. Traverser

Firstly, we select one of the four transformation methods from the navigation model.
For XSS vulnerability detection, the key injection point is the parameters of forms. Thus,
we increase the probability of the “form” being selected to 50%, following the same ap-
proach as Black Widow. Secondly, we design a unique ranking method for edges with the
“form” transformation method, giving priority access to forms with the highest number
of input parameters. The edges of the other three transformation methods are ranked in
terms of their discovery time through breadth-first traversal. Finally, the edge with the
highest priority is selected and visited according to the recursive construction workflow
(constructed in navigation model). If the transformation method of the selected edge is
“form”, an additional token consisting of eight random lowercase characters is injected into
the parameters in the form.

Our ranking method for the edges with the “form” transformation method is based
on the principle that granting priority visits to forms with more input parameters can
potentially detect more inter-state dependencies within a given time period. It is inspired
by the observation that forms with a greater number of injection points have a higher
probability of containing XSS vulnerabilities. Each input parameter represents a potential
injection point. The number of input parameters for each form is recorded by the extractor
when it discovers the form submission. We believe that injecting and inspecting tokens
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constitute the preparation stage of fuzzing. It means that the order in which we visit the
forms essentially determines the order in which they are subjected to fuzzing.

3.2.3. Extractor

The function of the extractor is to extract potential new states that can be navigated to
from a visited web page, and build edges between the current state and new states. The
current state represents the currently visited page. Possible operations on the page include
GET requests, form submissions, iframes and JavaScript events. In order to facilitate the
detection of XSS vulnerabilities, the GET request here excludes the form submission using
“get”. The new state is accessed by performing operations within the page.

3.2.4. Filter

For all edges obtained by the extractor, there may be repeated GET requests, as well as
edges related to similar form submissions. The filtering algorithm is shown in Algorithm 1.
In the navigation model graph, a list of unique URLs, denoted URL, is maintained. This
helps filter the construction of repeated GET requests. Alternatively, we have defined two
functions (similarUrl and similarForm) to filter similar form submissions. After filtering
out similar new edges, we add all the unique edges to the navigation model.

Repeated GET requests: If the URL (only including GET requests) of page C exists
on page A, and the URL of page C exists on page B, then only one edge of page C needs to
be built to visit it.

Edges of similar form submissions: We will illustrate similar form submissions
through the following two examples. First, every product page http://example.com/
product.php?id=X contains a form with action http://example.com/product.php?id=
X&action=edit for modifying information. We then only need to build a corresponding
edge (X represents the number of the product). Second, those two URLs can be http:
/ /example.com/product.php/X and http://example.com/product.php/X/edit after URL
rewriting.

Function similarUrl: The function is used to determine whether the URLs of the page
where the form is located are similar. It determines similarity through the protocol of the
URL, domain name, path and parameter list. The parameter list consists of parameter
names passed through the “get” method. Except for one item in the path that can be
changed, the protocol, domain name, and parameter list should be consistent, e.g., http://
example.com/product.php?id=1 and http://example.com/product.php?id=2 are similar,
http:/ /example.com/product.php/1/edit and http:/ /example.com/product.php/2/edit
are similar.

Function similarForm: This function is used to determine whether the forms are
similar. It is mainly judged by the similar action attribute and the same parameter list of
the form. The similarity judgment of the action attribute still adopts a function similar Url.


http://example.com/product.php?id=X
http://example.com/product.php?id=X
http://example.com/product.php?id=X&action=edit
http://example.com/product.php?id=X&action=edit
http://example.com/product.php/X
http://example.com/product.php/X
http://example.com/product.php/X/edit
http://example.com/product.php?id=1
http://example.com/product.php?id=1
http://example.com/product.php?id=2
http://example.com/product.php/1/edit
http://example.com/product.php/2/edit
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Algorithm 1: Function filter

Input:

The list of possible new edges, E;

The list of unique URLs, URL

The dictionary of forms that have been visited, D

Output:

The list of unique edges, U,

// Every edge contains two nodes and necessary information.
1 fore € E,, do

2 similarEdge = False

3 if type(e) = get then

4 if e.node2.url € URL then

5 ‘ similarEdge = True

6 end

7 end

8 if type(e) = form then

9 forurl € D do

10 if simliarUrl(e.nodel.url,url) then

// ewalue.form contains the form information we care

about;D[url] is a list. It represents all the forms
in the web page whose URL is equal to url.

1 if similarForm(e.value.form,D[url]) then

12 similarEdge = True

13 break

14 end

15 end

16 end

17 if not similarEdge then

18 ‘ Dlurl].append (e.value.form)

19 end

20 end

21 if not similarEdge then

22 | Ue.append(e)

23 end

24 end

25 return U,

3.3. Fuzzer

The stored XSS vulnerability may not necessarily trigger on the landing page after
submitting the payload, such as modifying the payload submitted on the user information
page, which can only be triggered on the page where the user information is viewed.
Inter-state Dependency (ISD) maps the connection between user input and the states of a
web application. Scanners can discover the dependencies between these states by injecting
tokens when accessing the form, and checking whether the previously injected tokens
appear on the new page. The tokens injected are introduced in the Traverser module. Token
inspection is completed in two stages: one is when accessing a new state, and the other is
to check all states after completing the crawling process. Finally, the ISD is submitted to the
fuzzer for vulnerability verification.

The fuzzer of SSBW adopts Black Widow’s fuzzer, which injects a carefully prepared
XSS payload dictionary at the injection point and checks all corresponding sink pages for
triggering vulnerabilities. By detecting the successful execution of Javascript functions
defined in the payload to determine whether the vulnerabilities have been triggered, no
false positives will be generated.
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4. Evaluation

To evaluate the effectiveness of our approach, we implement it based on Black Widow
and compare with Black Widow on a set of eight different web applications. We primarily
compare the crawling capabilities and vulnerability detection capabilities.

4.1. Implementation

We have incrementally implemented the filtering and ranking methods based on
Black Widow, resulting in the development of two scanners. The first scanner, named
51, applies the filtering method on Black Widow. The second scanner, SSBW, combines
both the filtering and ranking methods simultaneously. Black Widow controls mainstream
web browsers (chrome) through Python and selenium, which can handle the dynamic
characteristics of modern web applications. SSBW and S1 also adopt related technologies.
Next, we will discuss the specific experimental subjects and comparative content.

4.2. Experimental Setup

We evaluate our approach on a set of eight different real-world web applications and
answer the following questions.

e RQ1. How effective is the filtering method in the crawler?
*  RQ2. Is the ranking method beneficial for vulnerability detection?
*  RQ3. How effective is SSBW in vulnerability detection?

To make the comparison as fair as possible, we repeated all experiments three times.
As in previous studies, we imposed a maximum time limit of eight hours for each scanner
to perform a single scan. We take the average of the experimental results for code coverage
and the union set of the experimental results for XSS vulnerabilities. Experiments were
conducted on a desktop with a 16-core Intel Core i7-10700 CPU 2.90 GHz and 32 GB of
RAM.

Web Applications: The eight applications we selected are sourced from previous
studies [8,35], including reference applications with known vulnerabilities: WackoPicko (2018),
phpBB (2.0.23) and Vanilla (2.0.17.10); and modern production-grade applications: osCommerce
(2.3.4.1), Joomla (3.9.6), WordPress (5.1), PrestaShop (1.7.5.1), and ImpressCMS (1.4.4).

Code coverage: To compare the crawling capabilities of the scanner, we calculate the
Lines of Code (LoC) executed by web applications during scanning as a metric to measure
code coverage. We implement this by enabling Xdebug [36] in each application. During
the crawling process, we add functionalities such as version upgrade, user deletion, and
password modification to the crawler’s blacklist. This ensures the normal operation of the
crawler and the correct deployment of the application. Although these pages may also
contain vulnerabilities, they should be scanned separately due to their greater impact on
crawlers and applications.

Vulnerability detection: Our rank method aims to crawl more attack surfaces in a
shorter time, so we also compare the scanner’s ability in vulnerability detection. To be
consistent with the terminology used in previous works [7,8,19], we also define an XSS
vulnerability as any injected JavaScript code that results in execution. Unlike the previous
clustering method of XSS vulnerabilities, we believe that independent injection points
are a unique vulnerability, while previous research has clustered the injections with the
same SQL query into a set of vulnerabilities, since developers only need to change one
line of server code to fix the vulnerability. Our method is based on the fact that injection
points from different pages may call the same SQL query encapsulated in the program;
however, clustering them together cannot accurately evaluate the vulnerability detection
ability of scanners. Believing that different injection points are a unique vulnerability is
more conducive to a fair comparison of the scanner’s vulnerability detection capabilities.
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4.3. Analysis of Results

We present our experimental results in this section and analyze them around the
three questions raised in the previous section. In addition, we analyze some surprising
experimental results in the next section.

4.3.1. Filtering Method (RQ1)

To evaluate the effectiveness of our filtering method, we present the code coverage
and detected XSS vulnerabilities on the eight applications by Black Widow and the scanner
with the filtering method added to Black Widow (S1).

As shown in Table 1, we count the unique LoC executed by web applications during
the operation of Black Widow and S1. Compared with Black Widow, S1 performs better
in code coverage on all eight applications. S1 increases the coverage by about 57% in
PrestaShop. Due to the small number of lines of code in WackoPicko, the improvement in
coverage is less than 1%. Overall, S1 increases the code coverage by approximately 17% in
the eight applications.

Table 1. LoC executed by web applications during the operation of SSBW, S1 and Black Widow.

APP/Scanner SSBW S1 Black Widow
WackoPicko 1035 1035 1025
Vanilla 15,713 15,337 14,135
osCommerce 17,691 15,764 13,059
Joomla 44,539 44,561 43,947
WordPress 42,820 42,814 41,118
ImpressCMS 21,395 21,353 19,005
phpBB 11,935 11,900 8971
PrestaShop 146,674 147,132 93,556

Through further analysis of the crawling paths, we found that there were duplicate
GET requests and similar form submissions in Black Widow’s crawling paths. The rea-
son for duplicate GET requests is the presence of similar administrator consoles, where
there are many GET request pages that can jump to each other. Black Widow lacks strict
filtering methods for this. The reason for similar submissions is that Black Widow does
not fully define the filtering method for edges of “form”. Consequently, it will perform
multiple rounds of crawling on similar forms with the same functionality, thus wasting
time. Repeated crawls in these two types of similar states reduces the efficiency of Black
Widow.

To further explore the effectiveness of the filtering method in reducing visiting similar
states during the scanning process, Figure 2 depicts the temporal evolution of code coverage.
At the same time of execution, both SSBW and S1 can almost have higher code coverage than
Black Widow. We believe that this is a positive effect of filtering similar states. Sometimes
the code coverage of SSBW is lower than that of Black Widow (e.g., during the 2—-4 h period
of Joomla). We believe this is because SSBW spends the necessary fuzzing time on forms
with more input parameters.
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Figure 2. The relationship between LoC and time in eight applications.

Table 2 shows all the XSS vulnerabilities found by Black Widow and S1 on all the
applications. In total, S1 finds 81 unique XSS vulnerabilities, and more vulnerabilities are
detected in three applications compared to Black Widow. Especially in osCommerce and
Vanilla, the total number of XSS vulnerabilities detected by S1 is three times as many as
Black Widow. It is more important that S1 does not miss any XSS vulnerabilities compared
to Black Widow. This indicates that our filtering method helps improve the crawling
capabilities of the scanner and thus enhance vulnerability detection capabilities.

Table 2. Number of XSS vulnerabilities detected by SSBW, S1, Black Widow and the classification

of them.
Scanner SSBW S1 Black Widow
Type R-XSS S-XSS R-XSS S-XSS R-XSS S-XSS
WackoPicko 2 2 2 2 2 2
Vanilla - 11 - 7 - 1
osCommerce 1 68 1 31 - 12
Joomla - - - - - -
WordPress - - - - - -
ImpressCMS - 3 - 3 - 1
phpBB - 45 - 33 - 33
PrestaShop 2 - 2 - 2 -

In summary, the experimental results of code coverage and vulnerabilities detection
illustrate that our filtering method is effective.

4.3.2. Ranking Method (RQ2)

In this section, we demonstrate that our ranking method is beneficial for vulnerabilities
detection in two aspects. On the one hand, our ranking method can increase the number of
vulnerabilities detected by the scanner. On the other hand, our ranking method has little
negative impact on code coverage.

Table 2 shows all the XSS vulnerabilities found by SSBW and the scanner with filtering
method added to Black Widow (S1) on all the applications. SSBW is S1 with the ranking
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method applied. Compared with S1, SSBW detected 4, 37, 12 more vulnerabilities in Vanilla,
osCommerce, and phpBB. This indicates that SSBW has a stronger vulnerability detection
capabilities than S1.

The unique LoC executed by web applications during the operation of SSBW and
51 are listed in Table 1. Except in osCommerce, there are subtle code coverage changes
in other applications. In the PrestaShop with the largest reduction, the reduction in code
coverage was only about 0.31%. This illustrates that the negative impact on code coverage
is very little.

Therefore, the experimental results illustrate that the ranking method is beneficial for
detecting vulnerabilities.

4.3.3. SSBW in Vulnerability Detection (RQ3)

In this section, the results of the comparison of XSS vulnerabilities detected by various
scanners are presented. As shown in Table 2, we list the number of XSS vulnerabilities
detected by SSBW and Black Widow on the eight applications. Overall, 134 and 53 vulner-
abilities were detected by SSBW and Black Widow, respectively. SSBW detected 81 more
vulnerabilities than Black Widow, representing an increase of about 150%.

In Table 3, a deeper analysis is conducted to examine the relationship between the
sets of XSS vulnerabilities detected by the three scanners. A, B and C represent the sets of
XSS vulnerabilities detected by SSBW, S1 and Black Widow. With the exception of Vanilla
and osCommerce, SSBW successfully detected all vulnerabilities that were detected by S1,
and S1 detected all the vulnerabilities that were detected by Black Widow on the other six
applications. Compared with S1, SSBW detected a total of 44 new vulnerabilities on Vanilla
and osCommerce, although it did miss three vulnerabilities. Similarly, compared with Black
Widow, SSBW detected additional 58 new vulnerabilities on osCommerce, even though it
missed two vulnerabilities. This indicates that SSBW demonstrates superior vulnerability
detection capability compared to S1 and Black Widow.

Table 3. Number of XSS vulnerabilities missed by SSBW compared to S1, S1 compared to Black
Widow and SSBW compared to Black Widow.

Set B-A C-B C-A
Type R-XSS S-XSS R-XSS S-XSS R-XSS S-XSS
WackoPicko -
Vanilla -

osCommerce -

N =
1
1
1
N

Joomla - - - - - -
WordPress - - - - - -
ImpressCMS - - - - - -
phpBB - - - - - -
PrestaShop - - - - - -

On the other hand, Table 1 shows the code coverage of SSBW and Black Widow,
respectively. The code coverage of SSBW has increased by an average of about 19%. This
indicates that the crawling capability of SSBW is also better than that of Black Widow.

From these two perspectives, SSBW is more effective than Black Widow.

4.4. Case Studies

The results in the Section 4.3 indicate that SSBW has good code coverage and excellent
XSS vulnerability detection capabilities. This section provides an in-depth analysis of some
surprising experimental results.

Vulnerabilities Missed by SSBW: Throughout the entire experiment, we found that
SSBW misses a total of three XSS vulnerabilities detected by S1 or Black Widow on Vanilla
and osCommerce. This is caused by our heuristic filtering method. S1 and Black Widow
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perform fuzzing according to the order in which the form is discovered. Our ranking
method modifies the fuzzing order of the form. In the scenario where it is not feasible
to perform fuzzing on all forms, this will inevitably lead to some forms not being tested.
Therefore, SSBW misses the three vulnerabilities. This is also a limitation of our method.

Crash on Web Applications: We also found that both Black Widow and SSBW may
cause server crashes in some applications during the scanning process. The above situation
has occurred in Vanilla, osCommerce, phpBB, and ImpressCMS. Unfortunately, we were
unable to successfully analyze the more detailed reasons for the server crash. We speculate
that the partial payload injected during the fuzzing process has affected the successful
parsing of the web page, or that operations during the crawling process have incorrectly
configured the website’s parsing method. We believe that this is not a flaw only found in
SSBW and Black Widow, but rather a common problem with black-box scanners. Therefore,
in order to avoid unfair comparisons caused by accidental factors such as website crashes
as much as possible, we repeated all experiments three times.

Surprisingly, the scanning process for phpBB always ended within eight hours; how-
ever, SSBW can detect XSS vulnerabilities that Black Widow cannot. In theory, the end of
the scan represents that the scanner has fuzzed all the forms that have been crawled. Black
Widow should be able to detect all vulnerabilities detected by SSBW. We further analyze
the execution path of phpBB and the forms that have been fuzzed. The conclusion is that
SSBW's ranking method enables some forms to be fuzzed before the server crashes. The
lack of ranking method in Black Widow resulted in some forms not being fuzzed before the
server crashed.

5. Conclusions and Future Work

In this work, we present a state-sensitive black-box web application scanning method,
including a filtering method for excluding similar states and a heuristic ranking method
for optimizing the fuzzing order of forms. The filtering method reduces repetitive visits
to similar states in the scanning process, especially for the state of HTML forms, which
further improves the code coverage of the black-box web scanner within a limited scanning
time. The ranking method helps to prioritize the fuzzing order of forms with more injection
points, which further improves the efficiency of the black-box web scanner in detecting
XSS vulnerabilities. We implemented our method in our black-box scanner SSBW and
evaluated it on a set of eight real-world web applications. Compared with Black Widow,
the state-of-the-art black-box scanner, SSBW had an average increase of about 19% in code
coverage, and the maximum increase was about 57% on PrestaShop. In terms of XSS
vulnerabilities detection, SSBW detected a total of 81 more XSS vulnerabilities than Black
Widow within eight hours on four applications.

This paper introduces four types of states: GET requests, form submissions, iframes,
and Javascript events. It provides a detailed introduction to the similar state filtering
method for GET requests and form submissions. The method of judging similar states
between iframes and GET requests is also similar. However, due to the dynamic charac-
teristic of Javascript events, determining the similarity of their states without executing
events is currently challenging. Exploring methods to avoid repeated visits to similar
states of Javascript events is a topic worthy of future study. Additionally, current black box
scanners still extensively rely on prepared payload dictionaries for fuzzing. The utilization
of artificial intelligence techniques, such as reinforcement learning, is also worth explor-
ing as a way to efficiently generate payloads based on the information detected by black
box scanners.
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