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Abstract: Machine learning applications are having a great impact on the global economy by trans-
forming the data processing method and decision making. Agriculture is one of the fields where
the impact is significant, considering the global crisis for food supply. This research investigates
the potential benefits of integrating machine learning algorithms in modern agriculture. The main
focus of these algorithms is to help optimize crop production and reduce waste through informed
decisions regarding planting, watering, and harvesting crops. This paper includes a discussion on
the current state of machine learning in agriculture, highlighting key challenges and opportunities,
and presents experimental results that demonstrate the impact of changing labels on the accuracy of
data analysis algorithms. The findings recommend that by analyzing wide-ranging data collected
from farms, incorporating online IoT sensor data that were obtained in a real-time manner, farmers
can make more informed verdicts about factors that affect crop growth. Eventually, integrating these
technologies can transform modern agriculture by increasing crop yields while minimizing waste.
Fifteen different algorithms have been considered to evaluate the most appropriate algorithms to
use in agriculture, and a new feature combination scheme-enhanced algorithm is presented. The
results show that we can achieve a classification accuracy of 99.59% using the Bayes Net algorithm
and 99.46% using Naïve Bayes Classifier and Hoeffding Tree algorithms. These results will indicate
an increase in production rates and reduce the effective cost for the farms, leading to more resilient
infrastructure and sustainable environments. Moreover, the findings we obtained in this study can
also help future farmers detect diseases early, increase crop production efficiency, and reduce prices
when the world is experiencing food shortages.

Keywords: crop prediction; machine learning; feature selection; artificial intelligent; smart farming

1. Introduction

Agriculture is a vital element that has a significant role in nourishing the world’s
growing population. To keep pace with the increasing demand for foodstuffs, farmers need
to make the best use of them to reap output while minimizing losses. Forecasting and exam-
ining reap growth is a serious part of modern agriculture, and machine learning has become
a powerful tool to achieve this goal line [1,2]. Smart farming, or precision agriculture, is
a modern farming conduct that utilizes recent technology to optimize reap production
and minimize waste. Smart farming aims to increase reap output while minimizing using
resources such as water, fertilizer, and energy [3].

Figure 1 illustrates IoT and machine learning-based crop analysis and prediction
processes. Over the years, numerous elements and technologies have been integrated into
the architecture of a smart farm, such as sensing and monitoring systems, Internet of Things
(IoT) sensors, data analytics and Artificial Intelligence (AI), precision agriculture techniques,
remote monitoring and control, automated systems, livestock management systems, cloud
computing and big data storage, energy management, and farm management software,
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to enhance farming practices and boost productivity [4–6]. In smart farming, the Internet
of Things is considered one of the key contributing technologies used. IoT sensors can be
utilized to monitor soil moisture, temperature, and other environmental aspects [7], and
the gathered data from the IoT sensors can be used to define the best time to plant, water,
and harvest reaps. By using IoT sensors, farmers can guarantee that the reaps receive the
right amount of water and nutrients, which can improve their quality and yield [8,9].
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In recent years, machine learning applications have entered our lives in many areas,
from health to defense industries and education to urbanization, and have taken an effec-
tive way in decision-making situations. At the same time, it started to produce information
and technology solutions by forming the basis of the newly emerging search engine infras-
tructure, such as ChatGPT (Chat Generative Pretrained Transformer from the OpenAI [10],
Google Bard [11], and similar AI-based chatbots and some other tools). Many research
companies reveal that new trends will grow even more in various platforms. In this respect,
the effect of machine learning-oriented systems and solutions in the technology field will
increase its effectiveness as a huge multiplier, and many sectors, such as chip design [12]
and traffic estimations [13], would be changed by enforcing machine learning models.

Generally, it is essential to collect and analyze accurate data using machine learning
algorithms. The data collection is critical in both quality and size to obtain accurate results
and make high predictions. In general, big data have size, speed, and various characteristics.
Their large size helps eliminate randomness and allows the data to provide detailed results.
In addition, large-scale analysis data could be more structured. Using more than one
dataset from different sources in the analysis will provide a higher success rate. Many
sources, such as sensors, social media, digital networks, physical devices, the stock market,
and health centers, are sufficient data sources. This data can be accessed through APIs,
web collection, and direct access paths. Data can be in two forms: static datasets or stream
data. Data from different platforms are incorporated into the data processing operations.
Analysis using these collected data makes data cleaning and preprocessing more critical
while using machine learning algorithms.

Machine learning algorithms can analyze vast amounts of data from IoT sensors
and other sources. It is a rapidly growing field that has the potential to transform the
way we predict and analyze crop growth and output. Machine learning algorithms use
statistical/mathematical models and algorithms to analyze data and make predictions,
enabling computer systems to learn and improve from experience without being explicitly
programmed [14]. In agriculture, especially in the cultivation area, machine learning
algorithms can be trained on comprehensive data collected from farms, such as weather
patterns, soil properties, crop growth stages, and pest and disease outbreaks. By evaluating
the collected data, machine learning models can forecast reap growth, output, and quality
with high accuracy [15].

A noteworthy application of machine learning in agriculture is precision farming,
which includes employing data and technology to optimize agricultural conducts such
as fertilization, irrigation, and pest control to improve reap output and quality. Machine
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learning models can examine bulky amounts of data from several sources, such as satellite
imagery, drone footage, and soil sensors, to craft comprehensive maps of reap growth,
nutrient levels, and moisture content. Farmers can utilize these maps to regulate their
farming conducts, such as applying fertilizer or watering specific field areas, to maximize
reap output and minimize waste [16]. Machine learning can also help farmers identify
the most profitable crops to plant based on market demand and environmental factors.
By analyzing historical market data and weather patterns, machine learning models can
predict the demand for different crops and suggest optimal planting times and locations [17].
This can help farmers maximize their profits while minimizing the risk of crop failure. In
addition to predicting crop growth and output, machine learning can also analyze the
quality of the harvested crops. Machine learning models can analyze the color, texture, and
shape of fruits and vegetables to determine their ripeness and quality. This information can
be used to optimize the harvesting process and ensure that only high-quality produce is
sold to consumers [18,19].

There are several encounters for deploying machine learning in agriculture, such as
the lack of data groundwork, high cost of sensors and other technology, and need for
specialized proficiency to develop and maintain the different solutions. However, as more
farms implement precision agriculture and gather data, the potential profits of deploying
machine learning in agriculture will become more evident. It is worth mentioning that
machine learning in agriculture is still in its early stages, and more research needs to be
conducted in this area to realize this technology’s potential fully. So far, the results are
promising, and machine learning will likely become increasingly important [20].

In this study, the authors explore the effects of machine learning on multiple indus-
tries and present an overview of the methodologies utilized in various research studies.
They emphasize the significance of gathering and analyzing precise data by applying
machine learning algorithms to construct models that correctly predict labels based on the
input data. This study discusses several classification algorithms, such as Decision Tree
(DT), Naïve Bayes Classifier (NBC), Support Vector Machine (SVM), and Random Forest
(RF), which can be employed to build such models. The authors predict that adopting
machine learning-focused systems and solutions will significantly enhance efficiency and
productivity, resulting in massive industry changes.

This paper is structured as follows: First, the introduction and background reading
are presented in Section 1 to provide a comprehensive understanding of the topic. Then, in
Section 2, a relevant literature review is presented. Section 3 introduces artificial intelligence
in smart farming to delve deeper into the subject. Crop analysis and prediction- benefits
and challenges are given in Section 4. Section 5 outlines the methodologies used in this
study, followed by the presentation of the experimental results in Section 6. Lastly, Section 7
is dedicated to the conclusion and future recommendations.

2. Literature Review

Machine learning approaches and algorithms are utilized in crop yield prediction
methods to improve the quality of the crop so that the farmer’s profit is maximized. The
quality of the agricultural sector is improved; hence, the overall economy is enhanced. This
issue has been discussed in detail in the literature [21–35]. In [21], a review of machine
learning algorithms to predict palm oil yield is discussed. The authors conducted a com-
parative analysis of the related work, focusing on the suggested approaches’ advantages,
disadvantages, and limitations. Furthermore, based on the discussion and evaluation of
the existing studies, the authors provided a new architecture based on machine learning
methods to predict palm oil yield.

The authors in [22] focused on crop prediction and yield by studying soil quality,
considering that soil properties have a major effect on crop production. The authors
studied different soil properties, such as NPK (Nitrogen, Phosphorous, Potassium) levels,
temperature, rainfall, moisture, PH value, and humidity. Comparative analyses concern
three machine learning algorithms: Naïve Bayes, Logistic Regression, and Random Forest.
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Moreover, the authors conducted a comparison between these algorithms concerning
accuracy. A crop production model proposed in [23] aims to manage the produced crop
using machine learning algorithms to help farmers in developing countries who are still
using traditional methods and cannot recognize the correct market value of their products.
The proposed system is based on three scenarios; firstly, choosing the best crops based
on the farmer’s location; secondly, providing guidance on soil preparation; and thirdly,
providing the best way of crop marketing from farmer to consumer. The authors applied
Support Vector Regression; Voting Regression techniques; Random Forest Regression
algorithms; and proper real climate, weather, and soil data.

Due to the scarcity of natural resources around the world, the authors in [24] proposed
to utilize supervised machine learning algorithms, such as K-Nearest Neighbor Support
Vector Machine, Random Forest, and Artificial Neural Network, to help farmers make the
proper decision regarding crop selection and production; therefore, the country’s overall
economic status will be improved. Observing the growth process of chili and cotton
crops using mobile phone images and machine learning techniques is the subject of the
study [24]. The authors suggested a prediction method using the following supervised
machine learning algorithms: Random Forest, Support Vector Machine, Decision Tree,
K-Nearest Neighbor (K-NN), Gaussian Naïve Bayes (GNB), and logistic regression (LR).
The authors claimed that the study might help in the smart-farming process by recognizing
the best machine learning algorithm for better crop prediction and analysis, especially
for chili and cotton crops. In [25], a dataset for soil prediction was collected from Tamil
Nadu Agricultural University (TNAU), India, which involved 32 districts. Based on
the comparative analysis of different machine learning algorithms, such as Naïve Bayes,
Bayes Net, and Instance-Based Learner (IBK) algorithms, the authors claimed that the
provided comparative results help farmers to make the proper decision regarding crop
selection and production. The authors in [26] recommended 22 types of crops in this study
and proposed a three-step framework: firstly, data preprocessing and feature extraction;
secondly, classification; and, finally, performance evaluation. As a result of the comparison,
the authors claimed that the best classifier for this problem is Naïve Bayes, with an accuracy
of 99.45%. This research work would provide a better outcome if the authors performed
the classification and performance evaluation for a real problem.

Since crop monitoring is considered the main domain in the smart-farming process
and crop diseases are the main reason for yield losses, especially in developing countries,
the authors in [27] provided a comprehensive survey on crop monitoring techniques
concerning crop yield estimation and disease detection using deep learning models. Based
on the results and comparison, the authors claimed that crop monitoring techniques using
deep learning methods are more accurate and powerful than some developing countries’
traditional methods. In [28], the authors proposed a novel technique based on Support
Vector Machines for auxiliary information on real applications of the agriculture sector.
The authors claimed that they obtained an accuracy of 91% compared to the existing
applications. The farmers can use this proposed methodology to gain a better yield of the
crops, and different governmental sectors can use it to improve crop productivity. However,
the authors did not suggest any recommendations for fertilizer systems to improve crop
management.

In [29], a machine learning and Multilayer Perception method, along with the quantity
of rainfall, have been suggested by the authors to help farmers in making a proper decision
regarding a harvest even before they start planting. Furthermore, the suggested method
focuses on the optimal process for the marketing and storage of the crop. Based on the
provided results, the authors claimed that the proposed method would be beneficial for
farmers to improve agricultural yield outcomes. In [30], the main objective of this research
was to predict crop productivity loss by utilizing linear regression methods based on data
taken from the previous year’s statistics. The models were created using real-world data,
and the evaluation process was based on samples. The authors applied both Naïve Bayes
and Decision Tree algorithms in this evaluation. They claimed that the proposed method
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improves production and maximizes the farmer’s profit. In [31], the authors developed a
web-based application for crop yield prediction to be used by farmers. This tool provides
farmers with a list of various crops planted previously to predict and learn about the best
crop to cultivate in the future. Furthermore, the tool can provide farmers with climate data
and information to help them make the best decision regarding market demand and prices.

In [32], the author’s survey’s main objective was to evaluate the performance of
different publications from 2016 to 2020 that aimed to predict fungal illnesses on the crops.
The authors evaluated different machine learning algorithms utilized in the literature. As
per the provided comparative results, the authors concluded that the best performance
among all machine learning models, SVM, variations of choice trees, and Naïve Bayes
has been widely utilized and gained the best results regarding the yearly prediction of
crop diseases. In [33], using machine learning, the authors proposed a system for the early
prediction of crop diseases in plants by utilizing the Convolutional Neural Network (CNN)
method. The dataset that is taken from a village is trained and tested. Different diseases
are collected in a database, and the classifier is trained to compare the accuracy and choose
the one with high accuracy. The provided model helps farmers predict plant diseases
and make the best decision regarding the type of crop to be planted. The authors in [34]
recognized problems facing farmers in India regarding crop yield prediction; therefore, they
collected datasets published online. To facilitate analyzing and studying data, the dataset
was clustered using the K-Means Clustering algorithm, and the Naïve Bayes algorithm was
used to recognize the best crop to plant. The provided analysis and results show that the
proposed system is beneficial for farmers, not only for the early prediction of crop yields
but also for selecting the best crop to plan.

Based on the above literature review, it can be noticed that this issue has been discussed
in the literature from different perspectives. Most of the work in this field utilized machine
learning algorithms to help farmers with crop prediction gain better yield and improve
overall production. However, many research analyses did not consider a real problem
for which to perform classification and performance evaluation. Further, the authors did
not give clear notifications about the obtained accuracy. Exceptionally, in [26], the authors
provided analysis and performance evaluation with an accuracy of 99.45%, but still on 22
selected crops only and not based on real data. With this paper, we aim to improve the
performance of machine learning usage in smart farming by:

• Presenting experimental results that demonstrate the impact of changing labels on the
accuracy of data analysis algorithms.

• The research outcome recommends that farmers could make more informed verdicts
about factors that affect crop growth by analyzing wide-ranging data collected from
farms, including real-time data from IoT sensors.

• As per the provided analysis in this research work, the machine learning algorithms
demonstrate a high level of classification accuracy. Notably, the Bayes Net algorithm
achieved an impressive accuracy of 99.59%, while both the Naïve Bayes Classifier and
Hoeffding Tree algorithms yielded a remarkable accuracy of 99.46%. These results
highlight the efficacy and reliability of these algorithms in accurately classifying the
given data.

• Therefore, by integrating different technologies, the achieved results can be used
as an indicator for the farmers to have early and informed decisions regarding
crop prediction to improve productivity, and hence the overall economy will be
improved, accordingly.

3. Machine Learning in Smart Farming

Innovative farming methods have profoundly transformed agriculture using advanced
technologies to increase productivity, enhance sustainability, and lessen environmental
harm. Machine learning (ML), a vital component of this change, has enabled various
applications that simplify farming operations and better inform decision-making processes.
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ML applications are widely used in livestock, water, soil, and crop management. ML
improves animal welfare for livestock and boosts production, increasing sustainability via
predictive modeling and real-time health monitoring [35]. ML is exploited to optimize
irrigation and water usage for water management by analyzing various parameters. The
application of newly emerging ML technologies and large amounts of available weather
and water data makes it easier to manage water resources. This is especially helpful
because natural events can be unpredictable, and the relationships between them can be
complicated [36].

In soil management, ML helps analyze soil health, predict nutrient needs, and conclude
the factors affecting soil distribution controls [37]. As in crop management, ML detects
diseases and weeds, evaluates crop quality, recognizes species, and predicts crop yield.

Crop yield prediction is immensely important for farmers and policymakers, gov-
ernments concerned with food security, and food marketing organizations [38]. These
stakeholders can use yield prediction models to make data-driven decisions and develop
strategies for efficient resource allocation, food distribution, and price stabilization. This
leads to a more resilient food system that can be assured by anticipating crop production
changes. However, predicting crop production is a complex task, as it is affected by many
factors, such as weather conditions, the kind of fertilizer used, soil type, and the variety of
seeds. Consequently, tackling this task necessitates the incorporation of diverse datasets
and a range of attribute types.

Supervised learning techniques benefit crop yield prediction among the numerous
ML categories. This is due to their robust predictive capabilities and ability to handle
different attribute types. These methods employ labeled data to forecast outcomes based
on specific inputs. For example, they project crop yields based on weather conditions and
soil quality data.

Forecasting crop yield can be achieved using a broad spectrum of ML techniques,
including Artificial Neural Networks (ANNs), Support Vector Machines, and Random
Forests [39–42]. These algorithms’ ability to process historical and up-to-date information
regarding weather, soil conditions, and crop health facilitates precise crop yield predictions.
The resulting insights enable farmers to make educated decisions about planting, irrigation,
and fertilization, ultimately leading to optimized yields and less resource wastage.

Machine learning is already playing an important role in providing farmers with
information to make agriculture more efficient and productive, hence maximizing their
profits. Therefore, farmers are highly encouraged to apply ML algorithms and techniques
efficiently, especially while collecting, processing, and analyzing data. ML technology
can provide a solution to most challenges farmers face [43]. It can help them predict the
weather more accurately, decrease waste, boost output, and increase profit margins. In
this regard, farmers are motivated to use the advanced technology to collect data, such
as autonomous vehicles, variable rate technology, GPS-based soil sampling, automated
hardware, telematics, software, sensors, cameras, robots, drones, GPS guidance, and control
systems [44].

According to [45], two-thirds of the farmers worldwide struggle to use technology,
and more than 50% are unaware of the existing solutions. Teaching farmers to work with
machine learning can be a transformative step in modernizing agriculture and improving
productivity. While AI technology may seem daunting to some, there are ways to educate
farmers about the benefits of smart farming and the usage of machine learning algorithms.
Farmers need to be aware of the great benefits they may achieve if they use automation
and AI on their farms. Training and informative workshops are the fastest ways to do
so. This training needs to include foundation knowledge of ML, identifying use cases in
agriculture, the importance of data collection and preparation for better prediction, ML
algorithms and their best applications, and addressing concerns or misconceptions related
to ethical and privacy considerations. They should be introduced to success stories of smart
farms and encouraged to increase collaboration and share knowledge with their peers. A
very important point is to introduce them to user-friendly tools and platforms that do not
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require programming skills for easy adaption. Since ML is a rapidly evolving field and new
techniques and tools emerge frequently, we should encourage farmers to continue learning
and stay updated with the latest developments in the field.

Despite the optimistic outlook of ML in agriculture, similar to any ML issue, the
quality of the results is predominantly influenced by the quality of the input data. The
efficacy of crop yield prediction depends heavily on the quality and availability of data.
Crop prediction requires wide-ranging data, including weather, soil, historical yield, and
satellite imagery. Guaranteeing data quality through efficient collection, preprocessing,
and feature selection is critical in model development. However, agricultural big data
introduces several challenges, which will be examined in the following section.

4. Crop Analysis and Prediction Benefits and Challenges

As stated earlier, while machine learning is being exploited in multiple fields, it
remains an active area of research and a challenging one in the agricultural domain. This
section summarizes the main benefits and challenges ML faces when used in crop analysis
and predictions based on recent research [46–50]. Figure 2 shows AI-based crop analysis
and prediction phases.
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4.1. Benefits

The following are the key advantages farmers can receive from utilizing machine
learning on their farms:

• More effectiveness: This approach is more effective and accurate in identifying patterns
and saving farmers time and resources because a larger volume of data can be evaluated
by machine learning in a shorter amount of time than with previous methods.

• Increased crop yield: Using many data sources for analysis, including weather patterns,
soil quality, and historical machine learning algorithms, can help farmers make more
informed decisions that increase crop yields.
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• Lower costs: Machine learning may assist farmers in maximizing the use of resources,
such as water, fertilizer, and pesticides, by offering insights into crop development
and health. This can save expenses while lowering how much of an impact agriculture
has on the environment.

• Early disease detection: Farmers can take preventative measures to stop the spread
of illness and reduce crop loss by identifying early indicators of crop diseases with
machine learning. Once the model is sufficiently trained, it can detect anomalies such
as discoloration on growth size in the early stages of disease much faster than humans
would notice.

• Improved crop management: By offering insights into variables such as soil moisture,
temperature, and nutrient levels, ML algorithms can assist farmers in improving their
crop management tactics. This can assist farmers in making data-driven decisions
regarding the best time to water, fertilize, and sow their crops.

Overall, using ML in crop analysis and prediction can help farmers optimize their
crop yields, reduce waste, and increase profitability while promoting sustainable farm-
ing practices.

4.2. Challenges

Although crop analysis and prediction can significantly benefit from machine learning,
there are also various challenges we need to consider. The main difficulties consist of
the following:

• Data quality: The accuracy and dependability of machine learning models depend on
the caliber of the training data. Obtaining high-quality data in agriculture can be chal-
lenging because of changes in the soil, climate, geography, and other environmental
factors. As a result, gathering and cleansing data might be difficult. Ref. [51] discusses
the main challenges related to fruit detection and recognition based on deep learning.
They have concluded that most of the factors leading to low accuracy, slow speed,
and poor robustness of fruit detection and recognition are related to the scarcity of
high-quality fruit datasets, detection of small target fruits, fruit detection in occluded
and dense scenarios, detection of multi-scale and multi-species fruits, and lightweight
fruit detection models.

• Data volume: ML models frequently need a large amount of data for efficient training.
Large data management and collection in agriculture can be complex, especially for
small farms. Ref. [52] considers volume, velocity, variety, and veracity as the main
challenges of big data.

• Model complexity: Because agricultural systems are intricate, it can be challenging to
develop machine learning models that account entirely for all the important variables
affecting crop development and output. Selecting the best model architecture for
a specific crop analysis or forecast activity can be difficult and requires extensive
knowledge [53]. Additionally, the most common use of ML techniques provides
analysis for prediction, recommendations, situation determination, and automation.
NN, RF, SVM, DT, and Naïve Bayes algorithms are the most popular techniques used
in agronomy. The main challenges for these algorithms are the large volume of data,
which increases the complexity of the training time and computation for SVM [53],
and the need to tailor the algorithm for each specific problem in the case of RF [54].
The design of big data architecture is one of the most complex challenges, considering
that it must be flexible and highly scalable [55]. Ref. [56] analyzed the factors affecting
soil temperature and concluded that the relationship between variables affecting the
soil temperature is quite complex and challenging, leading to the estimation of it
using physically and statistically based models with a tradeoff between resolution,
accuracy, and computational efficiency. According to them, the best ML technique for
soil temperature retrieval generally depends on training datasets, model structure,
and target level of accuracy.

Other challenges related to the usage of ML in agriculture are:
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• Interpretability: Analyzing the outcomes of ML models, particularly those that use
deep learning techniques, which are quite complex, can be challenging. Because of
this, it may be difficult for farmers to comprehend the elements that go into making a
particular crop prediction or suggestion.

• Accessibility: In situations with limited resources, obtaining access to the hardware
and software infrastructure required for developing and deploying ML models may
be challenging.

• Privacy and security: These concerns exist around collecting, storing, and using
sensitive agricultural data. It can be challenging to ensure privacy and security while
still allowing access to the data for ML research.

• Human factors: It is possible that farmers and other interested parties need more time
to be ready to adopt new methods and technology, such as ML-based systems. For
technology to be used more widely, it must be made accessible, user-friendly, and
capable of providing real benefits.

Addressing these challenges requires collaboration between data scientists, farmers,
and other stakeholders to ensure that ML algorithms are effective, usable, and ethical.

5. Methodology

In our research endeavor, we deployed a comprehensive array of 15 diverse machine
learning algorithms to construct models based on agricultural data, including 2200 records
encompassing 22 distinct crop labels. These models provide farmers with recommendations
on the most suitable crops to cultivate. Our methodology for crop analysis in Figure 3
adheres to the standard stages of data analysis [53–56]. A significant improvement is
the inclusion of multiple classifiers, which are fine-tuned and evaluated to identify the
most suitable ones for the input data. Moreover, our methodology incorporates feature
reduction and augmentation techniques [57], essential for highlighting pertinent features
that enhance crop detection and assist farmers in selecting the most appropriate features
for accurate predictions.
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In our study, we proposed applying various machine learning algorithms with differ-
ent features for crop analysis. These algorithms were carefully chosen based on their unique
capabilities and characteristics and included the Naïve Bayes Classifier, Random Forest,
and Multilayer Neural Network. We thoroughly analyzed the results, emphasizing the
essential features contributing to high accuracy. To ensure high-quality data, we emphasize
the importance of data collection and preprocessing, including tasks such as cleaning and
transformation. Figure 3 provides an overview of our crop analysis and prediction of our
methodology, incorporating IoT and machine learning algorithms.



Appl. Sci. 2023, 13, 9288 10 of 20

We have the following steps in our models for crop prediction.

– Data Collection: The collection of data from IoT devices on farms is vital for conducting
machine learning analysis. By gathering crucial information on crop usage, crop type,
water requirements, and harvest methods for agriculture, we can significantly increase
productivity on smart farms.

– Data Modeling: The accuracy of data analysis was tested through experiments that
involved altering labels. To group crops, we categorized them into four broad groups
based on various factors, rather than predicting individual crop types. We analyzed
a dataset of crop types using machine learning, utilizing seven different features
to classify them. Additionally, we determined the minimum number of features
necessary for precise learning and prediction.

– Model Evaluation and Interpretation: We want to achieve precise crop detection
by selecting appropriate features for our machine learning algorithms. To ensure
optimal results, we considered parameter properties on the relevant properties. This
allowed us to obtain accurate and reliable data for our agricultural operations. During
our experiments, we analyzed the effects of modifying the labels on the accuracy
of our data analysis algorithm. This enabled us to understand the impact of minor
label changes better and helped us optimize our approach toward achieving greater
accuracy in our results. To achieve success in crop classification, it is vital to utilize
broader labels. It is crucial to thoroughly investigate and ascertain the most efficient
classification techniques within this domain.

Several classification algorithms, such as Naïve Bayes Classifiers, Random Forest,
and Multilayer Neural Network, are used to build a model to predict the correct labels
based on provided data. The constructed model was initially achieved by training using
training data; then, the results were evaluated using test data to ensure that predictions
were accurate and desired values.

The following algorithms were used in our experiment:

– Naïve Bayes Classifier is a supervised learning algorithm that uses Bayes’ theorem
to classify objects. It is used in machine learning and data mining applications for
text analysis, medical diagnosis, spam filtering, and other similar tasks. Naïve Bayes
assumes that features in a class are considered independent of each other. In practice,
the Naïve Bayes algorithm performs well, especially when the data are sparse, and the
number of features is extensive. Below is the pseudocode for Naïve Bayes Classifier:

Input: {X: Training set; m: Number of observations; n: Number of features; Labels y
for the training set}.

Output: {New data point x to be classified; predicted class for x}.

• For each unique class value c in y, calculate the prior probability for class c

P(c) = count(c)/m

where count (c) is the count of observations with class c.

• For each feature i in X and each unique class value c in y, calculate the conditional
probability of feature i given class c as follows:

P(i|c) = (count (i, c))/(count(c))

where count (i, c) is the count observations with the feature i and class c.

• Calculate the posterior probability for each class given the new data point x:

◦ Initialize the posterior probability P(c|x) to P(c)
◦ For each feature i in x: =, multiply P(c|x) by P(i|c) if x[i] is observed in the

training data, otherwise ignore the term.

• Choose the class with the highest posterior probability as the predicted class for x.

– Random Forest is a type of supervised machine learning algorithm that is used in
regression and classification problems. It is an ensemble learning algorithm that
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uses Decision Trees to make a prediction. Random Forest creates many Decision
Trees and combines their predictions to make a final prediction. More trees created
yield high accuracy and robust results. Below is the pseudocode for the Random
Forest algorithm:

Inputs: {(x, y): Training data set; T: Number of trees; d: Maximum depth of each tree; f:
Number of features to consider at each split}

Outputs: {Learned trees for classification}

• For each tree in the Random Forest:

◦ Select a bootstrap sample from the training data set.
◦ Create a Decision Tree T_t with a maximum depth of d.
◦ Randomly select f features to consider at each split of T_t.
◦ Use the selected features to find the best split at each node of T_t.

• Create the list of Decision Trees T_1, T_2, ..., T_T.
• For each input data:

◦ For each decision, find the prediction.
◦ Obtain predictions of all the trees.
◦ Calculate the final predicted class.

– Multilayer Neural Network is a machine learning algorithm consisting of multiple
layers of interconnected nodes between the input and output layers.

To minimize the error between the predicted output and the actual output, the neural
network involves adjusting each neuron’s weight and biases by using an optimization
algorithm such as backpropagation. Below is the pseudocode for the Multilayer Neural
Network algorithm:

• Define the number of layers and the number of neurons per layer.
• Initialize the weights and biases for each neuron in the network randomly.

For each input data:

• Forward propagate the input through the neural network to obtain the predicted output.
• Calculate the error rate between the predicted output and the actual output.
• Backward propagate the error through the neural network to adjust the weights and

biases using the optimization algorithm.
• Repeat until the error converges to a satisfactory level.

By integrating these methodologies, we aimed to provide farmers with efficient and
effective crop recommendations, ensuring they receive tailored advice based on the most
pertinent features while minimizing the required effort and time investment.

6. Experimental Results

In this work, we used 15 different machine learning algorithms to model agriculture
data, which recommend to farmers the most suitable crops to produce on the farm. Tabular
data are used in this work for classification of the crop data. Data are collected from the
Kaggle database, which is an online platform for scientists to share their research data [58].
The dataset includes several features, such as ratio of Nitrogen content (N), temperature,
pH value of the soil, rainfall, humidity, ratio of Phosphorous content (K), and ratio of
Potassium content (P) in the soil. The crop prediction dataset has 2200 records, which have
22 crop labels, such as apple, banana, rice, coffee, cotton, black gram, watermelon, chickpea,
coconut, grapes, jute, kidney beans, grape, lentil, and orange. The dataset includes several
features, such as the ratio of Nitrogen content (N), temperature, pH value of the soil, rainfall,
humidity, ratio of Phosphorous content (K), and the ratio of Potassium content (P) in the
soil. Sixty-seven percent of the data is used in training, and the rest of the data are used for
testing. Table 1 shows accuracy values and error rates for the algorithms considered. Bayes
Net, Naïve Bayes Classifier, Hoeffding Tree, and Random Forest algorithms yield the best
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accuracy. The DT algorithm yields 88.50%, and the rest of the classification algorithms have
more than 90% accuracy. Error metrics can be formalized as follows:

K (Kappa) = (Po − Pe)/(1 − Pe) (1)

where Po is relative observed agreement and Pe is hypothetical probability of chance agreement.

MAE (Mean Absolute Error)valueI =

N
∑

i=1
|yi − xi|

n
(2)

where n is the total number of data, xi is the true value, and yi is the prediction.

RMSE (Root Mean Square Error) =

√√√√√
[

n
∑

i=1
(xi − x′i)]

n
(3)

where xi is observed and xi
′ is the predictive value.

RAE (Relative Absolute Error) =

n
∑

i=1
|yi − y′i|

n
∑

i=1
|yi − y|

(4)

where y is the average value of the data.

Root Relative Squared Error (RRSE) = A =

√√√√√√√
n
∑

i=1

(
Pi − Tj

)2

n
∑

i=1
(Ti − T)2

(5)

where P is the predicted value and T is the target value.

Table 1. Accuracy and error values for each classification algorithm.

Method Accuracy (%) Kappa (0~1) MAE
(0~1)

RMSE
(0~1)

RAE
(%)

RRSE
(%)

Bayes Net 99.59 0.995 0.0010 0.018 1.14 8.64

Naïve Bayes Classifier 99.46 0.994 0.0009 0.020 1.05 9.73

Logistic 97.99 0.979 0.0020 0.038 2.30 18.24

Multilayer Perception 98.79 0.987 0.0046 0.033 5.33 16.18

Simple Logistic 98.66 0.986 0.0025 0.029 2.88 14.03

IBK 97.86 0.977 0.0032 0.043 3.69 21.05

KSTAR 97.86 0.977 0.0036 0.038 4.11 18.47

LWL 76.74 0.756 0.0752 0.188 86.59 90.26

Ada BoostM1 6.82 0.036 0.0829 0.203 95.51 97.79

Regression 98.38 0.983 0.0099 0.042 11.41 20.44

Decision Table 88.50 0.879 0.0565 0.145 65.10 69.61

Hoeffding Tree 99.46 0.994 0.0009 0.020 1.05 9.74

J48 98.79 0.987 0.0012 0.032 1.35 15.36
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Table 1. Cont.

Method Accuracy (%) Kappa (0~1) MAE
(0~1)

RMSE
(0~1)

RAE
(%)

RRSE
(%)

Random Forest 99.46 0.994 0.0032 0.024 3.63 11.75

Random Tree 98.12 0.980 0.0017 0.041 1.96 19.79

Table 2 shows each algorithm’s build and test time. It can be noticed that the Multilayer
Perception algorithm build time is greater than other algorithms because this algorithm is
an Artificial Neural Network algorithm, including several hidden layers in addition to the
input and output layer. The MLP algorithm runs with several iterations to find the best
model for the given input and output set, which increases the build time. KSTAR and LWL
algorithms have higher testing times than others. The NBC algorithm is the most efficient
algorithm in classifying crop data based on accuracy and process time.

Table 2. Build and test times for classification algorithms.

Method Build Time (Seconds) Test Time (Seconds)

Bayes Net 0.48 0.25

Naïve Bayes Classifier 0.03 0.67

Logistic 4.83 0.06

Multilayer Perception 17.39 0.05

Simple Logistic 3.86 0.02

IBK 0.03 0.69

KSTAR 0 6.9

LWL 0 9.56

Ada BoostM1 0.04 0

Regression 2.4 0.05

Decision Table 0.75 0.01

Hoeffding Tree 0.41 0.06

J48 0.27 0.03

Random Forest 1.57 0.13

Random Tree 0.02 0

Table 3 demonstrates accuracy and error measurement in the Multilayer Perception
algorithm with different sample sizes of training data. When 10% of the data is used in
training, accuracy with MLP is 93.53%; however, when 90% of data is used, accuracy is
97.72%. In the MLP algorithm, reaching high accuracy and efficient time complexity is
important. The MLP algorithm can be very efficient in numeric-based data; however, it will
be slow if collected data are images or videos.

Table 4 presents the build and test times for the Multilayer Perception (MLP) algo-
rithm under different scenarios involving modifications to the training and testing data
percentage. It is worth noting that the MLP algorithm has longer build times than other
algorithms [59,60]. The results indicate that the lowest build time is observed when the
training set is at 40%, while the highest build time occurs when the training set is at 10%.
On the other hand, test times are consistently low across all scenarios, with the highest
being at 0.05 when the training set is at 10%. Experiments show that the MLP algorithm
has higher build times than the other ML algorithms, but testing time is very efficient.
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Table 3. Accuracy and error values for Multilayer Perception algorithm (training set from 10%
to 90%).

Training
Set

Accuracy
(%)

Kappa
(0~1)

MAE
(0~1)

RMSE
(0~1)

RAE
(%)

RRSE
(%)

10% 93.53 0.9323 0.0166 0.0726 19.06 34.69

20% 95.39 0.9518 0.0096 0.0568 11.10 27.22

30% 95.91 0.9571 0.0082 0.0545 9.47 26.14

40% 97.87 0.9778 0.0065 0.0436 7.51 20.92

50% 97.90 0.9790 0.0057 0.039 6.50 18.87

60% 97.95 0.9786 0.0056 0.0433 6.41 20.76

70% 98.63 0.9857 0.0043 0.033 4.95 15.83

80% 98.41 0.9833 0.0038 0.0315 4.42 15.10

90% 97.72 0.9761 0.0038 0.0331 4.41 15.88

Table 4. Build and test times for Multilayer Perception algorithm (training set from 10% to 90%).

Training Set Build Time
(Seconds)

Test Time
(Seconds)

10% 19.18 0.05

20% 17.03 0.03

30% 17.47 0.01

40% 14.26 0.02

50% 14.54 0.02

60% 14.12 0

70% 14.79 0.01

80% 13.81 0

90% 13.21 0

After performing machine learning classification on a dataset with seven features and
one label representing the crop type and recording the accuracies of different algorithms in
Table 1, further simulations were conducted to determine the minimum number of features
required to achieve high accuracy in algorithm learning and prediction. In this work, our
primary focus is to determine the meaningfulness and correlation of the numerous features
used for predicting crop outcomes. To achieve this, we utilized the Variance Inflation
Factor (VIF), a statistical measure in machine learning, to assess multicollinearity [61]. By
calculating the VIF for each variable, we gained valuable insights into potential correlations
among predictor variables in the model. This crucial step allowed us to identify the best
VIF values, indicating collinearity, and values below 10, signifying non-collinearity. As a
result of this preparation, we were able to select the most suitable combination of features
for our dataset. Table 5 shows the results of four scenarios where we selected three to
four features and evaluated the accuracy of crop detection for each set. The second set of
features (Temperature, Humidity, pH, Rainfall) achieved the highest accuracy, reaching
97.05% with Bayes Net and 97.32% with Random Forest. In contrast, the worst prediction
outcome occurred when using the features N, P, and K, where the best accuracy obtained
was 68.04% with Random Forest.
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Table 5. Accuracy (%) for different feature sets.

Method N, P, K K, P, Rainfall
Temperature,

Humidity, pH,
Rainfall

N, Temperature,
Humidity, pH

Bayes Net 67.64 85.69 97.05 89.70

Naïve Bayes
Classifier 65.37 85.16 96.39 87.03

Logistic 66.17 74.19 85.42 76.07

Multilayer
Perception 66.84 80.34 89.17 82.88

Simple Logistic 66.84 72.86 85.16 74.73

IBK 66.57 79.27 91.04 81.02

KSTAR 65.10 81.14 91.71 80.74

LWL 42.11 46.39 61.23 50.26

Ada BoostM1 6.81 6.81 6.81 6.81

Regression 65.37 84.22 95.98 86.49

Decision Table 63.77 79.27 74.73 72.19

Hoeffding Tree 65.37 85.29 96.52 86.89

J48 65.10 83.55 94.65 84.49

Random Forest 66.57 82.88 97.32 87.03

Random Tree 68.04 79.27 94.92 83.15

The results in Table 5 highlight the importance of selecting the appropriate features
for achieving high accuracy in crop detection using machine learning algorithms. The set
of features (composed of Temperature, Humidity, pH, and Rainfall) we identified can be
used as a guide for selecting relevant features for crop determination in future agricultural
data analysis.

More experiments were conducted to investigate the impact of changing the label on
the accuracy of the data analysis algorithm. The results are displayed in Table 5 Instead of
predicting the specific crop type, we manually grouped the crops into four more general
categories based on their growth characteristics, usage, type, water requirements, and
harvest method, as described in Table 6. Then, we tested the accuracy of the algorithm to
predict these new general labels one at a time. Table 6 presents a classification of crops
based on several class labels. The table includes information on the growth characteristics,
usage (food, feed, fiber), type, water requirements, and harvest method for various crops.
The crops are classified based on their growth characteristics, such as grass, bush, and tree;
their water requirements, such as drought tolerance, drought, and water loving; as well as
their harvest method, which can be performed by hand or machine. For example, rice and
maize are classified as grasses, with the type being cereal, whereas chickpeas and pigeon
peas are classified as bushes, with the type being legumes.

This experiment aims to explore whether the algorithm could accurately predict
more general categories of crops, which could be helpful in situations where general
characteristics of crops are investigated, and specific crop types are not known or easily
identifiable. The experiment results are summarized in Table 7, where we compared the
accuracies of various classification methods for each general category. Table 7 shows that
some classification methods perform better in predicting general categories. For example,
the IBK, KSTAR, and KSTAR methods achieved high accuracies for predicting all general
categories compared to the type of the crop (first column in the table), while Bayes Net,
Naïve Bayes Classifier, Logistic, and Multilayer Perception had low accuracies for all
categories. The experiment demonstrates the potential usefulness of using more general
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labels in crop classification and provides insights into which classification methods may be
most effective for this task.

Table 6. Classification of crops based on several class labels.

Item Growth
Characteristics

Use (Food,
Feed, Fiber) Type Water Re-

quirements
Harvest
Method

Rice Grass Food Cereals Drought By Hand Or
Machine

Maize Grass Feed, Fiber Cereals Drought By Hand Or
Machine

Chickpea Bush Food Legume Drought Machine

Kidney beans Bush Food Legume Drought By Hand
And Machine

Pigeon peas Bush Food Legume Drought
Resistant By Hand

Mothbeans Bush Fiber Legume Drought
Resistant Both

Mungbean Bush Food Legume Drought Hand Picked

Black gram Bush Food Legume Drought
Tolerance Both

Lentil Bush Food Legume Drought Hands

Pomegranate Tree Fiber Fruit Drought
Tolerant Hands

Banana Tree Fiber Fruit Water Loving Hands

Mango Tree Fiber Fruit Drought
Tolerance Hands

Grapes Tree Fiber Fruit Drought
Tolerance Hand

Watermelon Sprawling
Vines Fiber Fruit Drought

Tolerance Hands

Muskmelon Bush Fiber Fruit Drought
Tolerance Hands

Apple Tree Fiber Fruit Drought
Tolerance Hand

Orange Tree Fiber Fruit Water Loving Hand

Papaya Tree Fiber Fruit Water Loving Hand

Coconut Tree Fiber Fruit Water Loving Hand

Cotton Bush Fiber Plant Drought
Tolerant Machine

Jute Shrub Fiber Plant Water Loving Hands

Coffee Shrub Fiber Fruit Drought Hands

Further research could explore the potential benefits of using a combination of classi-
fications (multi-labeling) and investigate the potential of using more granular or specific
labels that may impact the accuracy of classification algorithms.
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Table 7. Comparison of the accuracies (%) of various classification methods.

Method Accuracy Growth
Characteristics Usage Type Water

Requirements
Harvest
Method

Bayes Net 99.59 96.79 91.31 99.13 85.69 89.17

Naïve Bayes Classifier 99.46 79.41 85.69 90.59 65.90 76.33

Logistic 97.99 83.28 86.76 91.04 80.62 66.57

Multilayer Perception 98.79 97.99 98.12 97.41 87.16 95.72

Simple Logistic 98.66 82.08 87.71 90.91 80.08 67.51

IBK 97.86 98.53 98.66 98.72 97.99 97.99

KSTAR 97.86 99.19 99.19 98.86 97.86 97.86

LWL 76.74 83.02 88.23 67.27 57.75 70.18

Ada BoostM1 6.82 76.87 82.08 45.32 44.11 61.23

Regression 98.38 99.19 99.06 99.09 98.93 98.93

Decision Table 88.50 96.12 95.58 95.04 93.04 94.65

Hoeffding Tree 99.46 79.41 85.43 89.82 66.31 76.60

J48 98.79 98.26 97.86 98.63 98.39 99.33

Random Forest 99.46 99.33 99.73 99.45 99.73 99.59

Random Tree 98.12 98.66 99.33 98.36 97.59 98.66

7. Conclusions

Our research highlighted the significance of incorporating machine learning algo-
rithms and IoT sensors in modern agriculture to optimize reap production and reduce
waste through informed decision-making. This study identifies the challenges and opportu-
nities associated with integrating these technologies in agriculture. It presents experimental
results that demonstrate the impact of changing labels on the accuracy of data analysis
algorithms along with accuracy, error values, build, and test time for each classification
algorithm. The findings suggest that analyzing wide-ranging data collected from farms,
including real-time data from IoT sensors, can enable farmers to make more informed
decisions about factors that affect harvest growth. Despite the challenges associated with
deploying machine learning in agriculture, our results achieved so far are very promising
in that machine learning approaches will become increasingly crucial for production pre-
dictions in agriculture in the future. In this experiment, crops were investigated according
to general characteristics using different machine learning algorithms, and valuable results
were obtained by making predictions in cases where certain crop types are unknown or
cannot be easily identified. Our work indicated that appropriate feature selection is critical
to achieve better accuracy in machine learning algorithms while analyzing agricultural data.
Using the Temperature, Humidity, pH, and Precipitation features in the dataset, it achieved
the highest accuracy, reaching 97.05% with Bayes Net and 97.32% with Random Forest.
This research provided valuable insights into the potential benefits of these technologies in
modern agriculture, and further research and development in this field could help optimize
crop production, reduce waste, and improve food security globally.

In future work, more crop data will be evaluated using GPS-based IoT and sensor
data from different geographic regions. All these results will be analyzed using a machine
learning algorithm. Thus, our data evaluation pool will be established. In addition, different
species of the same plant variety will be analyzed separately, and it will be possible to
reveal which product is the best type of product among the same species using different
machine learning algorithms.
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