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Abstract: Urban traffic prediction is essential for intelligent transportation systems. However,
traffic data often exhibit highly complex spatio-temporal correlations, posing challenges for accurate
forecasting. Graph neural networks have demonstrated an outstanding ability in capturing spatial
correlations and are now extensively applied to traffic prediction. However, many graph-based
methods neglect the dynamic spatial features between road segments and the continuity of spatial
features across adjacent time steps, leading to subpar predictive performance. This paper proposes a
Dynamic Spatio-Temporal Graph Fusion Convolutional Network (DSTGFCN) to enhance the accuracy
of traffic prediction. Specifically, we designed a dynamic graph fusion module without prior road
spatial information, which extracts dynamic spatial information among roads from observed data.
Subsequently, we fused the dynamic spatial features of the current time step and adjacent time steps
to generate a dynamic graph for each time step. The graph convolutional gated recurrent network
was employed to model the spatio-temporal correlations jointly. Additionally, residual connections
were added to the model to enhance the ability to extract long-term temporal relationships. Finally,
we conducted experiments on six publicly available traffic datasets, and the results demonstrated
that DSTGFCN outperforms the baseline models with state-of-the-art predictive performance.

Keywords: traffic prediction; dynamic graph structure; graph convolutional network; spatio-temporal
modeling

1. Introduction

With the rapid growth of the number of vehicles in urban areas, cities face numerous
challenges, such as traffic congestion and environmental pollution resulting from vehicle
emissions. Intelligent Transportation Systems (ITS) can effectively alleviate the above
problems and provide many conveniences to people’s lives [1]. As a primary foundation in
advancing ITS, precise traffic prediction plays a critical role in facilitating vehicle allocation,
mitigating road congestion, reducing traffic accidents, and optimizing the operational
capacity of urban road networks [2].

Traffic data often exhibit complex and dynamic spatio-temporal relationships [3],
making accurate predictions challenging. In early studies [4,5], traffic data were considered
as linear time series for analysis, neglecting non-linear temporal relationships. With the
advancement of deep learning, Recurrent Neural Networks (RNNs) have proven effective
in capturing non-linear dependencies within time series, leading to their widespread
application in traffic prediction [6]. Nevertheless, these methods focus solely on capturing
traffic data’s temporal aspects, failing to encompass the intrinsic spatial characteristics. A
road’s traffic state is influenced by its historical traffic state and its neighbors. That is to
say, the traffic state of a road is significantly correlated with the spatial structure of the
road network. Thus, it is necessary to model the spatial correlation among various road
nodes in the traffic network [7]. Some early studies modeled road networks as grids and
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used Convolutional Neural Networks (CNNs) to capture spatial features [8]. However,
due to the irregularity of traffic roads and the fact that CNN-based methods typically
deal with Euclidean structured data, they cannot effectively capture the complex spatial
features of urban road networks [9]. Recently, Graph Neural Networks (GNNs) have
gained adequate traction in traffic prediction [10], providing a more suitable framework for
modeling the spatial characteristics of road networks. GNN-based methods consider each
road segment in the road network as a node in the graph [11,12], while the relationships
between different road segments are treated as edges. This way, the road network is
constructed as a structured graph.

While most GNN-based methods have shown promising results, they often rely on
predefined static adjacency matrices that cannot effectively capture the complex and dy-
namically changing spatial dependencies in traffic data. Some methods also extract spatial
features by constructing adaptive graph structures [12,13], where the model generates
the adjacency matrix through learning. However, the adaptive and predefined adjacency
matrices remain static, limiting their ability to capture the dynamic spatial dependencies. In
real-life scenarios, each road node in a road network can have varying effects on the traffic
state of its neighboring road nodes over time. The correlations between road segments are
dynamically changing. Figure 1a illustrates a traffic road network instance where sensors
are strategically placed on the primary roads to record traffic speed data. Sensor 1 and
Sensor 4 record the vehicle speeds on roads within residential areas, while Sensor 2 and
Sensor 5 record the vehicle speeds on roads within the office area. Sensor 3 is located on
a road that lies between these two areas. These sensors are abstracted as nodes in the
graph, and the strength of spatial correlation between them is abstracted as edges. As time
progresses, the traffic states on various road segments change, and the spatial correlation
between road nodes also varies. Figure 1b illustrates the dynamic changes in correlation
between nodes. During the morning peak hours, the traffic states in the residential area
significantly affect Sensor 3, but the influence gradually diminishes over time.
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Furthermore, existing models commonly employ RNN-based methods or CNN-based
methods to model temporal correlations [14,15]. RNNs capture temporal dependencies in
time series effectively. However, due to the typical sequential structure of RNNs, RNN-
based methods require multiple iterations to model long-term temporal correlations, which
can lead to error accumulation and gradient explosion issues [16]. Unlike RNNs, CNN-
based methods have advantages such as parallel operations and gradient stabilization.
However, CNNs perform implicit temporal modeling. The time steps are not visible, which
leads to a lack of flexibility [17]. Several research studies have employed Transformer-
based architectures to extract the temporal dependencies [18,19]. These approaches have
demonstrated promising capabilities in modeling long-term temporal correlations. How-
ever, Transformers rely on positional encoding to capture the order information within a
sequence, which leads to limited effectiveness in capturing local temporal correlations [20].
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Considering the multifaceted aspects and complexities of the matter at hand, we
propose a method named DSTGFCN based on an encoder–decoder framework to achieve
traffic prediction. In particular, the DSTGFCN captures dynamic spatio-temporal features
from observed data to construct dynamic adjacency matrix. With the graph convolution
gated recurrent network and the dynamic adjacency matrix, the model achieves simulta-
neous modeling of dynamic spatio-temporal correlations and adds residual connections
between the graph convolution gated recurrent layers to address problems such as er-
ror accumulation and gradient explosion. The main contributions of this paper can be
summarized as follows:

• A multi-step ahead prediction model is proposed to achieve accurate traffic prediction.
A dynamic graph fusion module can extract spatial information from observed data
without prior knowledge and fuse dynamic spatial features from adjacent time steps
to generate a dynamic adjacency matrix.

• We effectively modeled the dynamic spatio-temporal correlations by combining the
Graph Convolutional Gated Recurrent Unit (GC-GRU) with the dynamic adjacency
matrix. Residual connections were added between the GC-GRU layers to propagate
gradients and extract long-term temporal dependencies efficiently.

• The proposed model was tested against multiple baselines on six real-world traffic
datasets and showed superior predictions. In addition, ablation experiments validated
the effectiveness of each component.

This paper is organized as follows: Section 2 presents a comprehensive review of
related works. Section 3 introduces the preliminary content and formulates the research
problem. Next, in Section 4, we provide a detailed description of our proposed approach.
The experiments, including comparative experiments, ablation experiments, and visualiza-
tion of predictions, are presented in Section 5. Section 6 discusses the advantages of the
proposed method. In the end, Section 7 summarizes the paper and presents plans.

2. Related Work

In the past decades, traffic prediction has been an essential component of ITS and
has been extensively researched. Earlier research efforts were usually based on statistical
methods for traffic prediction, ignoring the nonlinear characteristics and complex variations
in traffic data [4]. Machine learning methods can capture the nonlinear dependencies in
traffic data compared to statistical methods [5]. However, they rely on high-quality manual
features, which can be time-consuming to extract.

With the continuous development of traffic big data and artificial intelligence tech-
nologies [21], a growing body of research has proposed various spatio-temporal modeling
methods to capture the spatio-temporal features within traffic data [7]. Existing approaches
usually model traffic data’s temporal and spatial dimensions separately [22]. Sequence
models are typically used to extract temporal relationships, such as Long Short-Term
Memory (LSTM) [23], Gated Recurrent Units (GRUs) [24], and Temporal Convolutional
Networks (TCNs) [25]. As traffic road networks naturally possess a non-Euclidean struc-
ture, GNN-based approaches are well suited for capturing the non-Euclidean relationships
between multiple traffic time series to model spatial dependencies [26]. For instance, the
Temporal Graph Convolutional Network (T-GCN) leverages graph convolutional networks
(GCNs) to capture spatial features and GRUs to capture temporal features, which can
effectively model spatio-temporal correlations [27].

Recent research has highlighted the limitations of predefined adjacency matrices in
adequately capturing the spatial relationships and latent information between nodes when
designing spatio-temporal GNNs. The Adaptive Graph Convolutional Recurrent Net-
work (AGCRN) addresses this issue by learning specific node attributes and constructing
adaptive graphs to explore latent spatial relationships further [13]. Similarly, Ta et al. [28]
adopted a macroscopic and microscopic perspective to learn global and local spatial struc-
tures, aiming to acquire an optimal graph structure. Jiang et al. [29] proposed a Meta-Graph
Learner that relies solely on observed data to construct an adaptive adjacency matrix. The
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abovementioned methods have further improved prediction accuracy in traffic forecasting
tasks, indicating that adaptive adjacency matrices can compensate for the limitations of
predefined adjacency matrices in modeling spatial correlations. However, in traffic data,
the spatial relationships among road segments are vary with time. Li et al. [17] designed
a dynamic graph generator that extracts static, dynamic, and temporal information from
traffic data to generate dynamic graphs. Zhao et al. [30] employed a channel attention
mechanism to allocate dynamic weights to historical traffic sequences at different time
steps to achieve dynamic adjustment of spatio-temporal correlation. In the work of Hu
et al. [31], dynamic graphs were generated by combining spatial heterogeneity information
and geospatial proximity information at each time step. Zhang et al. [32] modeled dynamic
spatial correlations by exploring fine-grained features between nodes. Zheng et al. [33]
concatenated spatial information from recent time steps and each past time step to generate
dynamic spatio-temporal graphs. Despite achieving promising predictive performance, the
above methods rely on prior road spatial knowledge and fail to effectively extract dynamic
features from traffic data and model dynamic spatial correlations.

Motivated by the abovementioned research, we propose a novel traffic prediction
model called DSTGFCN. This model addresses the challenges of complex and dynamic road
networks by extracting dynamic spatial information from observed data and generating a
dynamic adjacency matrix at each time step, all without relying on prior knowledge of the
road spatial relationships. Therefore, DSTGFCN is not limited to a fixed spatial structure
and applies to large-scale traffic road networks.

3. Preliminaries

Definition 1 (Traffic Network). We used a directed graph G = (V , E ,A) to represent the spatial
topological structure of the traffic road network. V is the set of |V|= N nodes, and each node relates
to each traffic sensor that records traffic information. E is the set of |E |= M edges. A ∈ RN×N

represents the adjacency matrix, where each element signifies the connection strength between nodes.

Definition 2 (Traffic State). A traffic state vector Xt ∈ RN×c represents the observed values of all
traffic sensors in the traffic network G at time step t, such as traffic speed or flow. Here, c represents
the number of features.

Problem (Traffic Prediction). Given a road network G = (V , E ,A) and its observed P
step traffic states X = (Xt−P+1, Xt−P+2, . . . , Xt−P) ∈ RP×N×c, traffic prediction aims
to predict the subsequent Q step traffic states Y =

(
X̂t+1, X̂t+2, . . . , X̂t+Q

)
∈ RQ×N×c by

learning the function F , represented as follows:

(Xt−P+1, Xt−P+2, . . . , Xt−P;G) F→
(
X̂t+1, X̂t+2, . . . , X̂t+Q

)
(1)

4. Methodology

The overall framework of the proposed DSTGFCN is shown in Figure 2. This frame-
work employs an encoder–decoder structure to facilitate multi-step prediction. Inspired by
the research in [13], we substituted all the linear layers in the GRU with graph convolutions
to construct GC-GRU as the fundamental unit for spatio-temporal modeling. During the
encoding stage, the dynamic graph fusion module extracts spatial information for each time
step based on the traffic state, time information, and learnable spatial node embeddings to
model dynamic spatial correlations. Then, it fuses the dynamic spatial features of adjacent
time slots to generate a dynamic graph. The GC-GRU receives the dynamic adjacency
matrix to model dynamic spatio-temporal correlations. Simultaneously, the spatial node
embeddings adequately learn the dynamic and latent spatial information from historical
traffic data to construct an adaptive adjacency matrix. Since future traffic states cannot be
observed during the decoding phase, the decoder utilizes an adaptive adjacency matrix to
model spatio-temporal correlations and achieve multi-step traffic prediction. Furthermore,
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residual connections are added between layers of the GC-GRU to harness the capacity of
the multi-layer network in a stable training process.
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4.1. Dynamic Graph Fusion Module

In this section, we will design a dynamic graph fusion module. This module aims
to generate an adjacency matrix that represents the dynamic spatial correlations in the
traffic road network by fusing the dynamic features extracted from the road attributes. As
the dynamic spatio-temporal correlations heavily depend on real-time traffic states, it is
essential to model the dynamic spatial correlations by inputting real-time traffic states.

The core of constructing the dynamic feature matrix ensures a comprehensive encoding
of the input’s dynamic, latent spatial, and temporal information. To achieve this, we
incorporate the following components at each time step: the current traffic state Xt ∈ RN×c,
and the time-related embeddings including time of day TD

t ∈ RN×d and day of the week
TW

t ∈ RN×d. To further efficiently extract the hidden space features between nodes, we
use two spatial node embeddings E1 ∈ RN×e and E2 ∈ RN×e. Additionally, we extract
features for the traffic state Xt using two non-linear fully connected layers and convert
the dimensionality from N × c to N × h. From this, at time step t, we create two dynamic
feature matrices by fusing the above features in a concatenated manner as follows:

DF1
t = FC(Xt) ‖ E1 ‖ TD

t ‖ TW
t (2)

DF2
t = FC(Xt) ‖ E2 ‖ TD

t ‖ TW
t (3)

where DF1
t , DF2

t ∈ RN×(h+e+2d), N is the number of nodes, h is the feature dimension, e
is the node embedding dimension, and d is the temporal embedding dimension. FC(·)
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denotes the network of two non-linear fully connected layers. We then compute the
dynamic feature matrix at the current time step using the self-attention mechanism [34]:

∼
At = So f tmax

((
DF1

t WQ
)(

DF2
t WK

)T

√
h

)
(4)

where WQ, WK ∈ R(h+e+2d)×h are the parameters of the self-attention mechanism.
∼
At ∈

RN×N denotes the spatial correlation between road nodes at time step t. In this way, each
dynamic feature matrix can learn unique adjacency relationships at each input time step
through Equation (4), which reflects the time-varying traffic topology.

Although the traffic conditions are dynamic, these changes occur gradually. For
instance, the relationships between neighboring road segments exhibit variations during
peak and off-peak periods. However, within consecutive time intervals, the local spatial
dependencies between neighboring road segments change slowly. Hence, we employ a
gating mechanism to extract and fuse crucial spatial topological information from the

current time step’s dynamic feature matrix
∼
At and the previous time step’s dynamic

adjacency matrix At−1, as follows:

zt = Sigmoid
(∼

AtW∼
At

+ At−1WAt−1

)
(5)

where W∼
At

, WAt−1 ∈ RN×N are two learnable linear transformation matrices. Finally, we

can obtain the dynamic adjacency matrix At ∈ RN×N at time step t:

At =


∼
A0, t = 0

zt �
∼
At + (1− zt)�At−1, t > 0

(6)

The dynamic graph fusion module combines the dynamic spatial information of the
road network at each time step to generate the dynamic adjacency matrix. However, during
the decoding phase, future traffic states cannot be observed, and the input to each GC-GRU
in the decoder is the previous time step’s predicted output. Using predicted outputs to
construct the dynamic adjacency matrix may introduce errors and inaccurately represent
the road network structure. In the encoding stage, E1 and E2 implicitly learn the dynamic
and latent features from historical information through the dynamic graph fusion module.
Therefore, we utilize E1 and E2 to construct an adaptive adjacency matrix in the decoder to
represent the spatial structure:

Aadp = So f tmax
(

ReLU
(

E1E2
T
))

(7)

During the decoding and prediction phase, the adaptive adjacency matrix Aadp ∈
RN×N can effectively extract spatial dependencies within the road network through graph
convolution.

4.2. Graph Convolutional Gated Recurrent Layer

The spectral-based GCN has shown great potential in capturing spatial correlations
among traffic sequences [35,36]. Given the traffic road nodes, the GCN is a fundamental
operation for extracting features from these nodes. The graph convolution operation is
approximated using a first-order Chebyshev polynomial expansion as follows:

Z = X ∗G Θ =
(

IN + D
1
2 AD

1
2

)
XW + b (8)

Here, X ∈ RN×c and Z ∈ RN×h are the input and output of the graph convolution
operation (∗G). A ∈ RN×N is the adjacency matrix, D ∈ RN×N is the degree matrix,
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and W ∈ Rc×h and b ∈ Rh denote the learnable weight and bias, respectively. However,
Equation (8) only considers the effect of first-order neighboring nodes. According to the
summary and analysis of Yin et al. [37], we employ a diffusion convolution layer to model
the graph signal’s diffusion process within K finite steps. Thus, for Equation (8), we utilize
the diffusion convolution in the following manner:

Z = X ∗G Θ =
K

∑
k=0

(
IN + D

1
2 AD

1
2

)k
XWk + b (9)

Besides spatial correlation, traffic prediction is also influenced by complex temporal
correlation. The GRU has gained popularity and has been extensively applied in time series
prediction. Similar to previous works [18], we combined the diffusion graph convolution
and GRU modules and refer to them as the GC-GRU. As illustrated in Figure 3, the GC-GRU
replaces the linear layers responsible for the gating and update gates in the GRU with the
graph convolution. As a result, the GC-GRU can effectively model both temporal and
spatial correlations in the input graph signal, as shown in the following equation:

ut = Sigmoid([Xt, Ht−1] ∗G Θu)
rt = Sigmoid([Xt, Ht−1] ∗G Θr)

ĥt = Tanh
(
[Xt, (rt �Ht−1)] ∗G Θĥt

)
Ht = ut �Ht−1 + (1− ut)� ĥt

(10)
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Figure 3. Structure of GC−GRU.

At time step t, Xt represents the input and Ht represents the output hidden state of
GC-GRU. ut and rt denote the update gate and reset gate. The notation ∗G denotes the
diffusion graph convolution operation defined by Equation (10), and Θu, Θr, Θĥt

are the
learnable parameters corresponding to the diffusion graph convolution. � denotes the
Hadamard product.

Although the GRU addresses the issue of vanishing gradients in RNNs during back-
propagation, it cannot retain all the information for long durations. In a multi-layer GRU,
the lower layers can capture local temporal dependencies, while higher layers can capture
longer-range temporal dependencies. However, using multiple layers of GRU during
training can lead to problems like vanishing or exploding gradients. Residual connections
mitigate the decay of gradients during the propagation between layers. Adding residual
connections in multi-layer GRUs can alleviate the vanishing or exploding gradient issues,
making the training process more stable. As shown in Figure 2, DSTGFCN adopts two
layers of GC-GRU in both the encoder and decoder to enhance the model’s ability to extract
spatial and temporal features in long-term prediction scenarios. The P units (corresponding
to P historical time steps) form a graph convolution gated recurrent layer in a cascading
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manner, and residual connections are added between the layers to enhance the model’s
prediction capability and stability.

4.3. Multi-Step Traffic Prediction

In Figure 2, the decoder module is employed for multi-step traffic prediction. It utilizes
the hidden states from the encoder and the adaptive graph adjacency matrix obtained from
the dynamic graph structure learning module to recursively generate multi-step predictions,
i.e., the future traffic state. L1 loss is selected as the loss function:

L1(Θ) =
1
Q

1
N

t=Q

∑
t=1

i=N

∑
i=1

∣∣X̂i,t(Θ)− Xi,t
∣∣ (11)

Here, Θ denotes all trainable parameters in the model, Q is the count of prediction
steps, and N is the quantity of road nodes. X̂i,t(Θ) and Xi,t represent the prediction and
ground truth of node i at time t.

5. Experiments

Next, we conducted experiments on six real-world datasets to demonstrate the ef-
fectiveness of DSTGFCN in traffic speed or flow prediction tasks. In this section, we will
first introduce the datasets, experimental settings, evaluation metrics, and representative
baselines. Next, we will discuss the experiments comparing the performance of DSTGFCN
against other baselines. Furthermore, we conducted ablation experiments to assess the
impact of individual components in the model on predictive performance. Finally, we
will visualize the predicted values and dynamic adjacency matrix for a more intuitive
understanding and evaluation of the model.

5.1. Datasets

We evaluated the performance of our model using six real-world traffic datasets, which
encompass two types of traffic data: traffic speed and traffic flow.

• METR-LA is a dataset of traffic speed collected from 207 sensors on the highways in
Los Angeles.

• PEMS-BAY is a dataset comprising traffic speed data from 325 traffic road sensors in
the Bay Area.

• PEMS03 is a dataset of traffic flow collected from 358 sensors in the California Third
District.

• PEMS04 is a dataset of traffic flow collected from 307 San Francisco Bay Area sensors.
• PEMS07 is a dataset of traffic flow collected from 883 sensors in the California Seventh

District.
• PEMS08 is a dataset composed of traffic flow data collected from 170 sensors in the

San Bernardino area.

Table 1 presents the detailed information on these six datasets. Following previous
research works [12,38], we divided the first two traffic speed datasets into training, valida-
tion, and testing sets in a ratio of 7:1:2. The division ratio was 6:2:2 for the other traffic flow
datasets. All data points were collected every 5 min. Z-score normalization was used to
standardize all the datasets.
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Table 1. Details of datasets.

Dataset Nodes Time Steps Time Range Data Type

METR-LA 207 34,272 2012.03–2012.07 speed
PEMS-BAY 325 52,116 2017.01–2017.06 speed

PEMS03 358 26,208 2018.09–2018.11 flow
PEMS04 307 16,992 2018.01–2018.02 flow
PEMS07 883 28,224 2017.05–2017.08 flow
PEMS08 170 17,856 2016.07–2016.08 flow

We analyzed the six datasets mentioned above, as shown in Figure 4. For the traffic
speed datasets, we display the distribution of speed values. The METR-LA dataset exhibits
some extreme values, which can be attributed to missing data. In contrast, the speed distri-
bution in the PEMS-BAY dataset was concentrated between 50 mph and 80 mph, indicating
a relatively simple traffic pattern with less congestion. We illustrated the distribution of
flow values of these traffic flow datasets. PEMS03, PEMS04, and PEMS08 displayed similar
flow distributions, with traffic flow concentrated between 0 and 300 vehicles per hour.
In contrast, the flow distribution in the PEMS07 dataset was more uniform, lacking clear
traffic patterns.
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5.2. Experiment Settings

All experiments were performed on a computer with an Intel Core i9 13900K/F
CPU@5.8 GHz and a GeForce RTX 3090 GPU card with 24 G of video memory, and the
model was implemented based on the PyTorch 1.12.0 framework. The number of hidden
states was 32. The time and node embedding dimension were 15 and 20, respectively. Both
the historical observation and prediction data steps were set to 12. We used the Adam
optimizer to optimize the model, where the learning rate was set to 0.01, and batch size
was set to 32. The optimization time was 100 epochs, and early stopping was employed to
avoid overfitting.
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5.3. Evaluation Metrics

The experiment used three metrics that are widely used to assess the accuracy of traffic
prediction, which are Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and
Mean Absolute Percentage Error (MAPE). The details of the equations are as follows:

MAE =
1
n

n

∑
i=1

∣∣∣ytrue(i) − ypred(i)

∣∣∣ (12)

RMSE =

√
1
n

n

∑
i=1

(
ytrue(i) − ypred(i)

)2
(13)

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣ytrue(i) − ypred(i)

ytrue(i)

∣∣∣∣∣× 100% (14)

Among them, MAE is the average of the absolute errors between the predicted values
and the ground truth, reflecting the prediction accuracy. RMSE measures the concentration
of prediction results around the line of best fit. MAPE reflects the relative magnitude of
the deviations between the predicted values and the ground truth. n is the number of
samples. ytrue(i) and ypred(i) denote the ground truth and the predicted values of the ith

sample. Smaller values indicate better prediction performance for the above three metrics.

5.4. Baseline Methods

We compared DSTGFCN with eight baselines, including a traditional time series analy-
sis method (ARIMA), deep learning-based methods (FC-LSTM, STGCN, and DCRNN), and
excellent existing GNN-based methods (GW-net, AGCRN, DSTAGCN, and STG-NCDE).

• ARIMA [14]. A statistical model commonly used for analyzing and predicting time
series data.

• FC-LSTM [14]. LSTM network with the fully connected network to generate traffic
series predictions.

• STGCN [11]. This model employs graph convolution and 1D convolution to capture
spatial and temporal features, respectively.

• DCRNN [14]. DCRNN combines dual directional diffusion convolution and GRUs for
traffic prediction.

• GW-Net [12]. Graph WaveNet combines diffusion causal convolution with GCNs
based on an adaptive adjacency matrix to capture potential spatial correlations.

• AGCRN [13]. The model captures spatial correlations between roads through the two
proposed adaptive learning modules.

• DSTAGCN [33]. The model connects multiple time frames to construct a dynamic
spatio-temporal graph, capturing global spatio-temporal correlations.

• STG-NCDE [39]. The model employs two neural control differential equations to
forecast traffic states.

5.5. Experimental Results and Comparative Analysis

Table 2 presents the performance comparison between DSTGFCN and the baseline
models for 15 min (short-term), 30 min (mid-term), and 60 min (long-term) predictions
on the METR-LA and PEMS-BAY datasets. Table 3 displays the performance comparison
between DSTGFCN and the baseline models for average one-hour predictions on the four
traffic flow datasets. Our proposed model demonstrated superior predictive performance
in traffic speed and traffic flow prediction tasks. The traditional statistical method ARIMA
performed the worst, failing to capture the nonlinear relationships in the traffic sequences.
FC-LSTM, being a classical recurrent neural network, effectively extracted nonlinear fea-
tures from sequences. However, it only modeled temporal correlations and overlooked the
spatial correlations in the traffic road network, resulting in lower accuracy than the graph-
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based models. This finding highlights the importance of modeling spatial correlations to
achieve accurate predictions.

Table 2. Performance comparison of DSTGFCN and baseline models on traffic speed prediction tasks.

Dataset Model
15 min 30 min 60 min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

METR-
LA

ARIMA 3.99 8.21 9.60% 5.15 10.45 12.70% 6.90 13.23 17.40%
FC-LSTM 3.44 6.30 9.60% 3.77 7.23 10.90% 4.37 8.69 13.20%
STGCN 2.88 5.74 7.62% 3.47 7.24 9.57% 4.59 9.40 12.70%
DCRNN 2.77 5.38 7.30% 3.15 6.45 8.80% 3.60 7.59 10.50%
GW-Net 2.69 5.15 6.90% 3.07 6.22 8.37% 3.53 7.37 10.01%
AGCRN 2.87 5.58 7.70% 3.23 6.58 9.00% 3.62 7.51 10.38%

DSTAGCN 2.74 5.24 7.12% 3.14 6.27 8.65% 3.59 7.33 10.26%
DSTGFCN 2.53 4.97 6.52% 2.88 6.03 7.79% 3.28 7.13 9.59%

PEMS-
BAY

ARIMA 1.62 3.30 3.50% 2.33 4.76 5.40% 3.38 6.50 8.30%
FC-LSTM 2.05 4.19 4.80% 2.20 4.55 5.20% 2.37 4.96 5.70%
STGCN 1.36 2.96 2.90% 1.81 4.27 4.17% 2.49 5.69 5.79%
DCRNN 1.38 2.95 2.90% 1.74 3.97 3.90% 2.07 4.74 4.90%
GW-Net 1.30 2.74 2.70% 1.63 3.70 3.7% 1.95 4.52 4.6%
AGCRN 1.37 2.87 2.94% 1.69 3.85 3.87% 1.96 4.54 4.64%

DSTAGCN 1.36 2.85 2.88% 1.70 3.84 3.83% 2.01 4.60 4.71%
DSTGFCN 1.29 2.73 2.69% 1.59 3.63 3.52% 1.85 4.30 4.25%

Bold in the table indicates optimal results.

Table 3. Performance comparison of DSTGFCN and baseline models for traffic flow prediction tasks.

Model
PEMS03 PEMS04 PEMS07 PEMS08

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

ARIMA 35.41 47.59 33.78% 33.73 48.80 24.18% 38.17 59.27 19.46% 31.09 44.32 22.73%
FC-LSTM 21.33 35.11 23.33% 27.14 41.59 18.20% 29.98 45.84 13.20% 22.20 34.06 14.20%
STGCN 17.55 30.42 17.34% 21.16 34.89 13.83% 25.33 39.34 11.21% 17.50 27.09 11.29%
DCRNN 17.99 30.31 18.34% 21.22 33.44 14.17% 25.22 38.61 11.82% 16.82 26.36 10.92%
GW-net 19.12 32.77 18.89% 24.89 39.66 17.29% 26.39 41.50 11.97% 18.28 30.05 12.15%
AGCRN 15.98 28.25 15.23% 19.83 32.26 12.97% 22.37 36.55 9.12% 15.95 25.22 10.09%

DSTAGCN 15.31 25.30 14.91% 19.48 30.98 12.93% 22.07 35.80 9.21% 15.83 24.70 10.03%
STG-NCDE 15.57 27.09 15.06% 19.21 31.09 12.76% 20.53 33.84 8.80% 15.45 24.81 9.92%
DSTGFCN 14.60 25.45 15.66% 18.53 30.51 12.37% 19.70 32.94 8.39% 15.25 24.56 9.88%

Bold in the table indicates optimal results.

STGCN and DCRNN are typical spatio-temporal data prediction models. Both models
consider spatial factors, which lead to improved prediction accuracy. However, these
methods only utilize adjacency matrices defined by spatial distances for graph convolution
operations, which may only partially capture spatial relationships. GW-Net, AGCRN, and
STG-NCDE employ adaptive adjacency matrices to explore further hidden spatial features,
which can be understood as learning the optimal graph topology of the traffic road network.
Although they demonstrated excellent performance, these models still employed static
graphs when modeling spatial correlations and did not consider the dynamic variations of
spatial relationships. DSTAGCN connects the graphs of the recent and past time frames
to construct a dynamic adjacency matrix, resulting in improved prediction capabilities
compared to static graphs. Compared to the models above, DSTGFCN fully extracted the
dynamic features from the traffic data and combined dynamic spatial features from multiple
time frames to generate the dynamic adjacency matrix more efficiently and appropriately.
As a result, DSTGFCN exhibited excellent predictive capabilities.

Figure 5 visualizes the prediction errors of DSTGFCN and two other baselines at each
time step on the PEMS04 and PEMS08 datasets. The error growth rates of AGCRN and
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STG-NCDE were similar, but STG-NCDE performed better than AGCRN in short-term
predictions. AGCRN exhibited good performance in long-term predictions on the PEMS08
dataset, where DSTGFCN slightly lagged behind AGCRN regarding MAPE. However,
overall, DSTGFCN demonstrated lower errors across the entire time range, showcasing the
superior performance of our model.
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Figure 5. Prediction errors for each time step on PEMSD4 and PEMSD8.

Lastly, we found that the difficulty of prediction varied across different datasets.
Traffic flow data exhibited a more comprehensive range of variations than traffic speed
data, as traffic speed is usually constrained within a specific speed range. Therefore,
traffic flow data are more complex, leading to more significant errors for all models in
traffic flow prediction tasks. In Figure 4, the PEMS-BAY dataset shows a relatively simple
traffic pattern, resulting in significantly better prediction results. However, in contrast,
the PEMS07 dataset exhibits a more complex traffic pattern, leading to larger MAE and
RMSE values for all models on that dataset. Consistently achieving better prediction results
across all the datasets demonstrated that DSTGFCN effectively captures the dynamic spatio-
temporal dependencies in the traffic road network. This allows DSTGFCN to demonstrate
outstanding performance in both traffic speed and traffic flow prediction tasks.

5.6. Ablation Experiments

We conducted ablation experiments to validate the effectiveness of each component in
the proposed DSTGFCN model. All ablation experiments were performed on the METR-LA
dataset. We named the variants of DSTGFCN as follows:

• w/o Dg: We replaced the dynamic adjacency matrix in DSTGFCN with a predefined
adjacency matrix. That is, dynamic graph fusion was also removed. The predefined
adjacency matrix was constructed in reference to the way defined by Li et al. [14]. The
calculation formula is as follows:

Avi ,vj =

exp
(
−

d2
vi ,vj
σ2

)
, i f dvi ,vj ≤ k

0 otherwise
(15)

where dvi ,vj represents the road network distance from sensor node vi to vj. σ is the standard
deviation of the distance and k is the threshold value, which was assigned a value of 0.1.
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• w/o Fus: We removed dynamic graph fusion when building the dynamic graphs.
• w/o Res: We removed the residual connections in the graph convolution gated recur-

rent layer.
• w/o Fus & Res: We removed both dynamic graph fusion and the residual connections.
• Dg2Sg: DSTGFCN replaced the dynamic adjacency matrix with a predefined adjacency

matrix while removing dynamic graph fusion and the residual connections.
• Dg w/o X: Traffic states are not considered as input when constructing the dynamic

graph.
• Dg w/o T: Time embedding was not considered as input when constructing the

dynamic graph.
• Dg w/o E: Node embedding was not considered as input when constructing the

dynamic graph.

As shown in Table 4, we can observe that DSTGFCN outperformed other variants in
terms of prediction accuracy for 15 min, 30 min, and 60 min. Analysis of the results indicates
a significant decline in predictive performance when the dynamic adjacency matrix was
removed (w/o Dg, Dg2Sg). Therefore, it is necessary to construct a dynamic adjacency
matrix to capture dynamic spatio-temporal features effectively. Additionally, dynamic
graph fusion further enhanced the prediction performance (w/o Fus), validating that the
adjacency relationships of road nodes exhibit certain similarities in adjacent time steps.
The residual connections improved the model’s ability to capture long-term dependencies.
Specifically, in 60 min predictions, DSTGFCN achieved an MAE reduction from 3.45 to
3.28 compared to DSTGFCN w/o Res, resulting in a 4.92% improvement in prediction
accuracy. Meanwhile, DSTGFCN w/o Fus & Res validated that only considering the
dynamic adjacency matrix is inadequate for accurate prediction. Ablation experiments on
the input of dynamic feature extraction indicate that the deficiencies in the current traffic
state (Dg w/o X), time embedding (Dg w/o T), and node embedding (Dg w/o E) will
lower the prediction performance. In summary, these components are all crucial for the
prediction performance of DSTGFCN.

Table 4. Ablation experiments on the METR-LA dataset.

15 min 30 min 60 min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

DSTGFCN 2.53 4.97 6.52% 2.88 6.03 7.79% 3.28 7.13 9.59%
w/o Dg 2.70 5.37 7.07% 3.15 6.59 8.91% 3.68 7.87 11.16%
w/o Fus 2.56 5.08 6.55% 2.92 6.07 8.05% 3.33 7.16 9.95%
w/o Res 2.62 5.27 6.82% 3.03 6.35 8.43% 3.45 7.45 10.32%

w/o Fus & Res 2.63 5.39 6.95% 3.01 6.41 8.35% 3.41 7.47 10.07%
Dg2Sg 2.71 5.40 7.03% 3.16 6.53 8.84% 3.70 7.81 11.16%

Dg w/o X 2.54 5.07 6.67% 2.91 6.13 8.24% 3.32 7.21 10.08%
Dg w/o T 2.55 5.10 6.70% 2.93 6.17 8.21% 3.36 7.34 10.07%
Dg w/o E 2.66 5.38 7.07% 3.01 6.36 8.52% 3.39 7.35 10.17%

Bold in the table indicates optimal results.

5.7. Visualization

To further visually understand and evaluate the proposed model in this paper, we
visualized the ground truth and the model’s predictions. As shown in Figure 6, we selected
two nodes from the METR-LA dataset, Node 89 and Node 101, and displayed their data
for an entire day on 11 June 2012 (from the test set). These two nodes displayed distinct
traffic patterns. For example, Sensor 89 showed traffic congestion only during the morning
peak hours, while Sensor 101 experienced traffic congestion not only during the morning
peak hours but also during the evening peak hours. The results indicate that DSTGFCN
can capture different traffic patterns of different nodes. Additionally, we can observe that
the ground truth curves were highly irregular with significant fluctuations. Our model
could effectively adapt to these abrupt trend changes and make predictions that closely
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approximate the ground truth as much as possible. However, specific local details in
the predictions may be less accurate due to random solid noise, such as the sudden and
significant fluctuations during the morning peak hours in Figure 6a.
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To visually observe the dynamic spatial correlations in the traffic road network, we se-
lected 25 nodes from the METR-LA dataset. We visualize their dynamic adjacency matrices
for two time periods in Figure 7. It can be observed that the dynamic adjacency matrices
changed over time. For instance, Node 20 and Node 5 exhibited a strong correlation at 9:00,
but their correlation weakened at 18:00. Additionally, Node 18 showed a similar correlation
with other nodes in both periods. This indicates that specific road segments have similar
traffic patterns during peak hours. These findings demonstrate that DSTGFCN effectively
constructs dynamic adjacency matrices to capture the dynamic topological relationships in
the traffic road network.
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6. Discussion

This section outlines the primary advantages of the proposed DSTGFCN in traffic
speed and flow prediction. DSTGFCN relies solely on observed data to capture dynamic
spatial features compared to other GNN-based methods. Subsequently, the dynamic
features from adjacent time steps are fused to construct the dynamic adjacency matrix.
The experiments demonstrated a significant enhancement in predictive performance by
incorporating the dynamic adjacency matrix. Furthermore, the model does not require prior
road spatial knowledge, making it more suitable for traffic prediction tasks on large-scale
road networks. Specifically, DSTGFCN can infer the spatial relationships between roads in
the large-scale road network from the PEMS07 dataset, which includes up to 883 road nodes,
and exhibits superior predictive performance. Adding residual connections between GC-
GRU layers captures long-term temporal dependencies and mitigates error accumulation,
further enhancing the model’s predictive capacity. Our model achieved state-of-the-art
predictive performance in traffic speed and flow prediction tasks, underscoring its strong
generalization capability.

7. Conclusions

This paper introduced a novel approach called DSTGFCN for traffic prediction. Con-
sidering the intricate dynamic spatial dependencies among roads in traffic road networks,
we first extract current-time dynamic features from observed data. Subsequently, we fuse
these features with dynamic features from the previous time step to construct the dynamic
adjacency matrix. This dynamic adjacency matrix is utilized in the GC-GRU to model
dynamic spatio-temporal correlations simultaneously. Additionally, to capture long-term
temporal dependencies and alleviate error accumulation, we introduce residual connec-
tions between layers of the GC-GRU. Ultimately, extensive experiments on traffic speed
and traffic flow datasets consistently demonstrated the superiority of our DSTGFCN over
the baselines, showcasing its robust generalization capability.

In future work, we will focus on generating optimal graph structures and enhancing
the model’s resilience to noise interference to improve its predictive capacity.
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