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Abstract: With the rapid growth of IoT devices, ensuring the security of embedded firmware has
become a critical concern. Despite advances in existing vulnerability discovery methods, previous
research has been limited to vulnerabilities occurring in binary programs. Although an increasing
number of vendors are utilizing Lua scripting language in firmware development, no automated
method is currently available to discover vulnerabilities in Lua-based programs. To fill this gap, in
this paper, we propose FLuaScan, a novel progressive static analysis approach specifically designed
to detect taint-style vulnerabilities in Lua applications in IoT firmware. FLuaScan first heuristically
locates the code that handles user input, then divides the code into different segments to conduct
a progressive taint analysis. Finally, a graph-based search method is applied to identify vulnerable
code that satisfies the conditions of taint propagation. To comprehensively compare FLuaScan with
state-of-the-art tool Tscancode, we conducted various experiments on a dataset consisting of 13 real-
world firmware samples from different vendors. The results demonstrate the superior performance
of FLuaScan in terms of accuracy (increased TP rate from 0% to 42.50%), effectiveness (discovered
21 vulnerabilities, of which 7 are unknown), and practicality (acceptable time overhead and visual
output to assist in manual analysis).

Keywords: vulnerability detection; IoT security; firmware; taint analysis; embedded devices

1. Introduction

The rapid development of Internet of Things (IoT) technology has resulted in the
proliferation of embedded devices in everyday life. Reports project that the number of IoT
terminals worldwide will increase to 1.67 billion by 2023 and to 4.16 billion by 2025 [1].
Unfortunately, IoT manufacturers exhibit a lack of software security awareness, resulting in
many IoT devices deployed on the Internet with either known or unknown vulnerabilities.
Recent network attacks [2] have exposed the dire state of IoT security vulnerability, which
significantly endangers the normal operation of both the network and the physical world.
In 2016, Mirai compromised hundreds of thousands of DVRs and home routers to launch
a DDoS attack against Internet mainstays like Netflix, Dyn, and GitHub [3]. Although
numerous new technologies (e.g., edge computing [4-6] and artificial intelligence [7,8])
have been proposed and used to enhance network security, the current security situation of
IoT devices remains weak [9]. It is crucial for the community to develop techniques that
facilitate automatic vulnerability analysis of firmware.

Two fundamental methods for identifying firmware vulnerabilities are static
analysis [10,11] and dynamic analysis [12-14]. Despite the progress made in dynamic
analysis—for example, Firmadyne has successfully emulated the execution of over
1900 firmware images—this technique has several limitations, including low success
rates and distorted simulation environments, leading to abnormal program behavior.
Consequently, static analysis, which can ignore the complex environmental depen-
dencies of firmware while detecting multiple vulnerabilities, is gaining interest in the
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research community as a complementary method to dynamic analysis. For example,
KARONTE [11] is a static analysis framework for embedded firmware that can discover
vulnerabilities due to multibinary interactions. SaTC [10] also performs taint analysis
to discover bugs in binary programs. It utilizes shared keywords related to user input
in the front end and back end to infer the taint source.

Currently, the analysis target of most research on static analysis is limited to binary
programs. This limitation is troublesome because IoT manufacturers are increasingly using
scripting languages (especially Lua) in their development. Meanwhile, vulnerabilities in
script programs are more harmful and easier to exploit, since they are often unrestricted by
traditional security defense mechanisms such as ASLR, DEP, and Stack Canary. Despite the
possibility of numerous high-risk vulnerabilities that could compromise device security,
the academic community lacks methods to identify such bugs automatically.

To fill this gap, we propose FLuaScan, the first scalable software system to automatically
expose vulnerabilities in the Lua applications of IoT firmware. FLuaScan first locates input
processing code from complex multifile code based on the characteristics of dispatch. Then,
we devised a progressive taint analysis method to address the limitations of current static
taint analysis engines that hinder cross-functional and cross-file analysis. This method
facilitates the examination of taint propagation from processing handlers to sink points and
effectively performs static vulnerability analysis.

We conducted a comparative analysis of FLuaScan and existing tools on a total of
13 devices. The experiments demonstrate that FLuaScan exhibits higher accuracy, efficacy,
and practicality than state-of-the-art tool Tscancode. FLuaScan achieves an average accuracy
of 42% in detecting vulnerabilities within a duration of 30 s for real-world firmware images.
Finally, we employed FLuaScan to identify a total of 21 vulnerabilities, 7 of which were
previously undocumented.

The contributions of this paper are summarized as follows:

e  Weobserved and analyzed the distribution patterns employed by vendors for different
functional code, subsequently proposing a novel technique for precise localization of
service handlers within vendor-made service programs;

e  We designed and implemented FLuaScan, which utilizes progressive taint analysis to
effectively discover taint-style vulnerabilities in the Lua applications of IoT firmware;

e  Weevaluated our tool against 13 firmware programs in popular, real-world embedded
devices. Experiments demonstrate that FLuaScan outperforms the state-of-the-art
tool in terms of correctness, effectiveness, and practicality. Specifically, we found
21 vulnerabilities, 7 of which were previously unknown.

2. Background
2.1. WEB Application in Firmware

IoT devices usually provide a web-based interface for end users to configure the
system. In the early stage, the web server is usually written in C language. However,
now, more and more vendors tend to use powerful scripting languages in development,
especially Lua. Although there are no standards for how to implement this interface, many
vendors prefer to utilize web technology because of its flexibility and simplicity. However,
it has been proven that developing secure web applications is a non-trivial task [15]. Web
servers have become the primary targets for hackers due to their vulnerabilities that can be
remotely exploited, allowing for the acquisition of elevated privileges.

2.2. Taint-Style Vulnerabilities

Web applications often provide many features for end users and act correspondingly
on user inputs and interactions, e.g., form submissions or clicks. A security vulnerability
occurs when user-supplied data (i.e., taint) are not sufficiently sanitized and used in
critical operations (i.e., sinks) of the application. Such vulnerabilities are known as taint-
style vulnerabilities [16,17]. Taint-style vulnerabilities are a persistent security threat to
web applications. Common types of vulnerabilities, such as command injection (CI),
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SQL injection (SQLi), etc., are instances of taint-style vulnerabilities. An attacker might
exploit such a flaw by providing malicious inputs to change the expected behavior of the
application, e.g., injecting malicious code.

2.3. Vulnerability Detection Methods in Embedded Devices

In recent years, numerous efforts have been made to identify vulnerabilities in em-
bedded devices. This section provides a detailed analysis of these methods, highlight-
ing their strengths and weaknesses. Furthermore, we point out the shortcomings in the
existing research.

We use Table 1 to organize existing vulnerability detection literature. The “Literature”
column records the abbreviation of the literature. The “Dependence” column indicates
the conditions on which the work relies. The “Technique” column represents the core
technology used in the work. The “Purpose” column indicates the research objectives of
the work. The “Target” column records the objects analyzed in the work.

Table 1. Summary of existing vulnerability detection methods in embedded device.

. Dependence
Category Strategy Literature Devi F A Target Technology Purpose
evice w PP
Binary Multibinary taint style
KARONTE [11] v program interaction and vulnerabilities
in firmware taint analysis (BOE/ CI)
. . . Sensitive
SainT [18] v IoT app Taint analysis information leak
Taint - -
analysis- Binary Tamt—st.yle_
based DTaint [19] v program Taint analysis vulnerabilities
method in firmware (BOF/ CI)
Static Binary Taint-style
analysis SATC [10] v program Taint analysis vulnerabilities
in firmware (BOE/CI)
Binary
CryptoREX [20] v ) pflfogram IR-based analysis Crypto misuse
in firmware
Costin [21] v Correlation analysis Backdoor
pattern- . Static data
m%tchlélg— Stringer [22] v Firmware comparison Backdoor
ase
thod i i
metho Firmalice [23] v Symsg;:;fgﬁ?i%% and Backdoor
. Full system Emulation
Firmadyne [24] v emulation purpose
artl)aly_sis FirmAE [25] v Firmware Arbitration emulation E}r)r::ﬁ)a;iscgn
asis
4 V4 Forward I/0 Dynamic analysis
Avatar [26] and fUIl;EEIa;SEgH mode framework
FIRMAFL [12] v Greybox fuzzing BOF/NPD
i IoTFuzzer [27] v Blackbox fuzzing BOF/NPD
dynam" RPFuzzer [28] v Greybox fuzzing DoS
Analysis
SRFuzzer [29] v Blackbox fuzzing BOF/NPD/XSS
; Firmware Blackbox fuzzing
Fuzzing Snipuzz [14] v and message snippet NPD/DoS
inference
. Blackbox fuzzing
Diane [30] v and app static analysis BOF/DoS
taint analysis and
FirmFuzz [31] v structured symbolic Bgf//)l(gl;D

expression

BOF: buffer overflow; CI: command injection; NPD: null pointer dereference; DoS: denial of service; XSS:

cross-site scripting.
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According to the technical approach, there are two main categories: dynamic analysis
and static analysis.

Dynamic analysis involves running the embedded devices in a certain way and
conducting analysis during the runtime [32]. Such methods can be divided into two cate-
gories based on research strategy: emulation and fuzzing. Emulation focuses on running
firmware to mimic the behavior of a real device as closely as possible. IRMADYNE [24] is
a firmware emulation framework designed for automated dynamic analysis in large-scale
embedded firmware. Although it is promising, its emulation rate of network reachability
and web service availability is considerably low. FIRMAE [25] uses several heuristics to ad-
dress the problems encountered in FIRMADYNE and increases the emulation success rate.
However, it can only handle observed cases and may not handle problems in new devices.
AVATAR [26] enables complex dynamic analysis of embedded devices by orchestrating
the execution of an emulator, together with the real hardware. FirmFuzz [31] employs
a greybox-based generational fuzzing approach coupled with static analysis and system
introspection to provide targeted and deterministic bug discovery within a firmware image.
The above examples of dynamic analysis rely on emulation, but accurate emulation is a non-
trivial task in practice due to the diversity of embedded devices [33]. Many works [34-39]
have made advances in providing large-scale and reliable emulation environments for
dynamic analysis, although many problems remain unsolved [13]. Emulation does not
directly discover vulnerabilities, whereas fuzzing can [40]. Table 1 introduces some typical
fuzzing works. RPfuzzer [28] is a fuzzing framework specifically designed to find protocol
vulnerabilities in router devices. IoTFuzzer [27] attempts to find memory corruption vul-
nerabilities in IoT devices via their official apps; therefore, it is firmware-free. Snipuzz [14]
represents a novel automated blackbox fuzz testing approach to overcome the challenge
of applying syntax-based fuzz testing to various non-standard communication protocol
formats widely used in IoT devices. Diane [30] views the functions that are executed before
data-transforming functions but after input validation, as fuzzing triggers and uses them
to fuzz IOT devices automatically.

Static analysis refers to the process of discovering vulnerabilities in a program with-
out executing it. They can be divided into two categories based on research strategy:
pattern-matching-based methods and taint-analysis-based methods. Pattern-matching-
based methods identify inherent patterns in vulnerabilities and convert them into rules for
automated vulnerability mining. Such methods are usually designed to find a backdoor in
firmware. Costin [21] uses fuzzy hashing to match weak keys in the firmware and finds
the similarity between different firmware images across four different dimensions through
association analysis. Stringer [22] proposed a method based on static data comparison
analysis to detect undisclosed features and hard-coded authentication backdoors in COTS
device firmware. Taint analysis [17,41] is an effective approach to finding taint-style vulner-
abilities. It tracks the propagation of taints introduced from external sources (e.g., untrusted
user-supplied data) during program execution, checks if the tainted data could flow to criti-
cal program locations (sinks), and reports the sinks that could potentially be manipulated
by attackers [42]. Several works have been proposed utilizing taint analysis methods for
vulnerability detection in IoT devices. SainT [18] detected privacy-related vulnerabilities in
IoT devices by tracing the information flow between sources and external sinks. To find
cryptographic misuse vulnerabilities, CRYPTOREX [20] lifts binary code to a unified IR and
performs static taint analysis across multiple executables. KARONTE [11] leverages static
analysis techniques to perform multibinary taint analysis. SaTC [10] determines whether
variable names are commonly shared between front-end files and back-end functions and
leverages this information to enhance taint analysis.

In general, dynamic analysis has the advantage of low false-positive rates when dis-
covering vulnerabilities, but its disadvantage is the need to address numerous dependency
conditions and the difficulty of conducting large-scale analysis. Static analysis, on the other
hand, has the advantage of requiring fewer dependency conditions and being suitable for
large-scale analysis, but it has a higher false-positive rate. In this study, we chose to use
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the static analysis approach to explore vulnerabilities in embedded devices, focusing on
high-impact taint-style vulnerabilities.

However, in the academic community, the current research focus in vulnerability dis-
covery is primarily limited to binary programs, leaving vulnerabilities in Lua applications
reliant on manual identification.

2.4. Tscancode and Semgrep

Although no tools have been designed to detect vulnerabilities in Lua applications of
IoT firmware, several works support the analysis of Lua applications. To the best of our
knowledge, TscanCode [43], which was released on GitHub with 1.7 k stars, can perform
static analysis of Lua applications. It was developed by Tencent to help programmers
identify code defects at the beginning of the design process. However, it was not designed
for IoT scenarios, leading to a high-false negative rate when detecting firmware programs.
Semgrep [44] is a fast, open-source static analysis engine for finding bugs, detecting de-
pendency vulnerabilities, and enforcing code standards. Analysts can extract specific code
snippets or perform taint analysis on programs using the interface provided by Semgrep.
Additionally, Semgrep supports various programming languages, including Go, Java, C,
and C++, among others. Owing to its robust capabilities and open nature, Semgrep has
garnered widespread adoption and currently boasts 8.4k stars on GitHub. However, for
the Lua language, Semgrep only supports intraprocedural analysis. Semgrep [44] plays
a crucial role as an import component of the prototype system presented in this paper.
Moreover, semgrep [44] offers an online playground (https://semgrep.dev/playground/
accessed on 20 August 2023) that facilitates a more profound comprehension of the code
snippets provided in the subsequent sections.

3. Empirical Analysis and Problem Statement

In this section, we first present an empirical analysis of our research object. Then,
based on the results, we make a detailed statement of our research problem.

3.1. Empirical Analysis

We conducted an empirical analysis to gain a precise understanding of the usage
details of the Lua language in firmware. First, 552 firmware programs from 7 vendors
were selected as the initial dataset. We wrote a program to automatically extract the
system(rootfs) file from these firmware programs. Then, we traversed their rootfs to
identify and record the language type of each script program (Lua, asp, php, etc.). The
results regarding the Lua language are recorded in Table 2. The first row represents the
brand of the images, and the second row represents the total number of images involved in
the empirical analysis. If the number of Lua programs in the file system exceeds 50, we
classify an image as special, while the third row records the number of special images. The
fourth row (%) records the percentage of special images among all surveyed images, while
the last row records the average number of Lua programs in the special images. The results
presented in Table 1 reveal three facts.

Table 2. Information about representative experimental platforms in empirical analysis.

Brand Xiaomi Tplink Trendent Linksys Netgear Totolink Zyxel
Images 192 133 81 53 39 23 31
Lua > 50 184 69 25 16 5 5 9

% 95.83% 51.88% 30.86% 30.19% 12.82% 21.74% 29.03%
Avg. 209.39 168.39 173.68 149.63 125 117.34 95

Fact-1: IoT vendors widely use Lua programs in their product development, account-
ing for up to 56.70% of all surveyed images.

Fact-2: When vendors use Lua for development, it is usually in the form of multiple files.

Fact-3: The use of Lua programs is not limited to a single vendor but multiple vendors.
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3.2. Research Scope and Research Goals

Fact-1 mentioned above indicates the significant prevalence of Lua program usage in
firmware. However, the detection of vulnerabilities in these programs lacks an effective
approach. Vulnerabilities in web servers are commonly high-risk, and Lua is widely used
in IoT development. Consequently, in this work, we aim to strengthen static analysis
methods for the identification of taint-style vulnerabilities within the Lua-based web server
of firmware. We focus on data-flow analysis, despite the absence of a dedicated solution
for Lua programs. Nevertheless, its theoretical foundation has found extensive utilization
in both academic [10,11,45,46] and industrial [47] domains.

3.3. Research Challenge

Based on the facts presented in Section 3.1, designing and implementing a static taint
analysis tool for Lua applications in firmware is challenging.

First, the development environment for IoT devices is heavily fragmented, with man-
ufacturers exhibiting preferences for diverse frameworks. Most existing static analysis
methods are designed for desktop systems, while their web applications often utilize
popular frameworks. These frameworks have comprehensive documentation, which con-
siderably aids in conducting static analysis. However, these methods cannot be directly
ported to firmware objects. Meanwhile, as Fact-3 shows, multiple vendors use Lua to de-
velop IoT devices. Furthermore, usually, they have their respective framework but without
documentation. Consequently, data-flow analysis encounters challenges in pinpointing the
initial input source from users.

Second, we need to propose a new interprocedural and cross-file taint-tracking algo-
rithm to compensate for failures of existing methods. As Fact-2 shows, Lua applications in
firmware are complicated and usually consist of various files. Therefore, a taint analysis
with interprocedural and cross-file support is a prerequisite for accurate vulnerability
detection. However, existing tools can only support intraprocedural analysis.

Thirdly, it is necessary to establish vulnerability models in the IoT field to rectify the
shortcomings of current approaches. However, this is a formidable undertaking due to the
intricate interdependence between software and hardware within IoT devices. Moreover,
the web servers of these devices necessitate intricate interactions with back-end programs
and underlying system modules.

4. Motivation

In this section, our core insight for solving this problem is demonstrated by utilizing
motivating examples. After analyzing the web server based on Lua of multiple vendors, we
discovered a common characteristic. In Lua applications, a dispatch module is commonly
utilized to parse requested packets from users and direct them to corresponding handlers
for real processing. Although different vendors may implement similar functionalities
differently in web server development, a general convergence can be observed in their
dispatch modules. Two typical approaches for implementation of the dispatch module are
found, as illustrated in Listings 1 and 2.

As lines 2—4 show in Listing 1, the web server in the Xiaomi R3600 router dispatches
different service handlers by registering different entries. Service handler refers to the
code snippet implementing the desired work of a single interaction, such as the function
setConfiglotDev in Listing 1, which is responsible for configuring the router’s wireless
network. The term “registering entries” is coined to describe this type of dispatch method.
As for the TP-Link Archer AXE75 router, its web server dispatches different service handlers
through the dispatch_tbl function in the Listing 2. In the same way, we named this kind of
dispatch a “handler table”.

There is a command injection vulnerability at line 21 of Listing 1. However, existing
tool TscanCode [43] fails to find this vulnerability. The root cause is that Tscancode fails to
locate the service handler and therefore does not apply precise data-flow analysis. Therefore,
our insight is leveraging the dispatch module to enhance taint analysis. Specifically, we
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first locate the dispatch module by analyzing its appeal characteristics, then further extract
the service handler. Afterward, taint analysis is launched starting from the service handler.

Listing 1. Code snippet from Xiaomi R3600.

function index ()

5 end

entry({"api”, "misystem”, "set_band"}, call("setBand”), (""), 123)
entry({"api”, "misystem”, "set_config_iotdev"}, call("setConfiglotDev"), (""), 221)
entry({"api”, "misystem”, "get_unconfig_iotdev"}, call("getunConfiglotDev"), (""), 222)

function setConfiglotDev ()

end

local XQFunction = require(”xiaoqgiang.common.XQFunction")
local LuciUtil = require(”luci.util”)
local result = { ["code”"] = 0 }
local ssid = LuciHttp.formvalue("ssid")
local bssid = LuciHttp.formvalue("bssid")
local uid = LuciHttp.formvalue("user_id")
if XQFunction.isStrNil(ssid)
or XQFunction.isStrNil(bssid)
or XQFunction.isStrNil(uid) then
result.code = 1523

end
if result.code ~= @ then
result[”"msg”] = XQErrorUtil.getErrorMessage(result.code)
else
XQFunction.forkExec("connect -s "..ssid..” -b "..bssid.. " -u "..uid)
end

LuciHttp.write_json(result)

Listing 2. Code snippet from TP-Link Archer AXE75.

local dispatch_tbl = {

3

5 end

lang = {

["read”] = {cb= get_sysinfo},["write”"]= {cb = set_sysinfo},["mcu_read”]= {cb = get_mcu_sysinfo}},
index_lang = {

["read”] = {cb= get_sysinfo},["write”"]= {cb = set_sysinfo},["mcu_read”]= {cb = get_mcu_sysinfol}},
mobile_lan = {

["read”] = {cb = get_sysinfo_mobile},["write”] = {cb = set_sysinfo_mobile} 3},

country = {

["read"] = {cb = get_country},["write”] = {cb = set_country} },

country_list = {

[".super”] = {cb = get_country_list},["read”] = {cb = get_country_list} }

; function dispatch(http_form)

return ctl.dispatch(dispatch_tbl, http_form)

function set_country(http_form)

5 end

local uci_r = uci.cursor()

local country = http_form.country

local old_country=uci_r:get(LOCALECFG, "sysinfo”, "country”) or "no_country”
uci_r:set(LOCALECFG, "sysinfo", "country”, country)

uci_r:commit (LOCALECFG)

local config = require "luci.sys.config”
config.merge_config_by_country(old_country)

return true

5. Design and Implementation
5.1. Overall Design

Based on the above insights, we designed a prototype system, FLuaScan, which takes
IoT firmware as initial input and ultimately outputs suspicious vulnerability points, along
with their data flow details. As shown in Figure 1, FLuaScan consists of three tightly
coupled modules.
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Figure 1. Overview of FLuaScan.

As indicated by @ in Figure 1, the handler location module automatically extracts
Lua applications from the firmware. Then, FLuaScan utilizes heuristic methods based
on the characteristics described in Section 4 to identify the dispatch mode and locate
service handlers.

Then, FLuaScan carries out a progressive taint analysis (@ in Figure 1) starting from
these service handlers. During the analysis process, our system divides multiple Lua files
into segments and performs taint analysis in a segmented manner.

The final module is the graph-based vulnerability search module (® in Figure 1). It
records the taint flows from module ® and organizes them as a graph based on their
relationships. Then, FLuaScan utilizes graph search algorithms to identify the execution
paths in dangerous functions that accept user input without sanitization and reports them
as potential vulnerability points.

5.2. Handler Extraction

Given an IoT firmware, FLuaScan first extracts rootfs from the image file. FLuaScan
subsequently traverses the rootfs, extracting all Lua files and recording their respective paths.

Thirdly, FLuaScan conducts a scan of each source file using semgrep. By applying
the rules presented in Listing 3, two dispatch methods can be identified. In these cases,
$F represents the function name of the handler, and the locations of these functions are
recorded. Then, FLuaScan conducts an initial analysis of each handler to identify user
inputs and pinpoint the initial point for data flow analysis. The user input of the web server
sources from the HTTP protocol, so FLuaScan identifies the user-controllable portions in
the HTTP request packets. The web server receives user input through the HTTP protocol.
FLuaScan extracts the user-controllable portions from the HTTP request packets to find the
taint source. As shown in lines 6 to 8 shown in Listing 4, three parts are user-controllable:
the form data, environmental variables, and cookies. To record the user-controllable
variables and support the following graph-based search, a novel concept called the analysis
node is introduced.

Listing 3. Code snippet to extract service handler utilizing semgrep.

rules:
- id: FLuaScan-handler-extract
languages: [lual]
pattern—either:
- pattern: entry ($ENTRY, call($F),...)
- pattern: $ENTRY = {cb = $F}
message: $ENTRY -> $F

Ny :< attr, pos, type > (1)

As shown in Equation (1), the analysis node is defined as a 3-tuple, including attr, pos,
and type. The type field is used to distinguish between different analysis nodes. For user-
controlled variables, the type is denoted as I, and the node name is represented as I, as
an abbreviation (like I1 in Figure 2). The attr field is used to record additional information.
Taking user-controllable variables as an example, the attr field records the function name
of the handler. The pos field is responsible for recording the specific position of the node,
including the file path and the starting and ending offset of the variable in the file.
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Figure 2. The overview of progressive taint analysis engine.
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Listing 4. Code snippet to execute handler analysis utilizing semgrep.

rules:
- id: fluascan-handler-analysis
mode: taint
pattern—-sources:
- pattern-either:

- pattern: $FV = $HTTP.formvalue("...")
- pattern: $FE = S$HTTP.getenv("...")
- pattern: $FV = $HTTP.getcookie("...")
pattern-sinks:
- patterns:
- pattern: $MOD.$FUNC(...)
- pattern—-not: $HTTP.formvalue(”...")
- pattern—not: $HTTP.getenv("...")
- pattern-not: $HTTP.getcookie("...")

- pattern-not: LuciHttp.write_jsonp(...)
- pattern-not: lutil.split(...)
- pattern—-not: $M.isStrNil(...)
- pattern: uci:set(..)
pattern-sanitizers:
- pattern-either:
- pattern: XQFunction._cmdformat(...)
- pattern: tonumber (...)
languages: [lual]

5.3. Progressive Tnint Analysis

Once user-controllable variables have been identified, FLuaScan employs taint anal-
ysis to expose vulnerabilities. However, the current limitation of semgrep [44] is that
it exclusively supports intraprocedure analysis, potentially leading to false positives in
vulnerability detection. To overcome this issue, we designed a progressive taint analysis
engine. This engine divides multiple Lua files into segments and conducts taint analysis
on each segment. It also records taint propagation across various functions and files to
establish their relationships. FLuaScan initially employs the ctags [48] syntax analysis tool
to parse each Lua file and assigns a distinct identifier to each object. Subsequently, this
identifier is utilized for correlation analysis. Next, as shown in Figure 2, FLuaScan performs
three rounds of taint analysis on all files: (a) handler analysis, (b) taint propagation, and (c)
sink analysis.

During the (a) handler analysis process, FLuaScan aims to identify the data flow from
user input to middle nodes. Middle nodes are defined as analysis nodes that have the
potential to facilitate taint propagation between different functions. These nodes can be
categorized into two types: (1)Invocation of subfunctions; during this process, taint can
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potentially propagate with the transfer of parameters. (2) Database write operations; during
this process, taint can potentially propagate after being written to a database, then retrieved
again. The type field of the middle mode is set as M (like M2 in Figure 2). The semgrep
configuration used to accomplish this task is illustrated as Listing 4. We employed the taint
mode of semgrep and designated the three user-controllable parts in the HTTP protocol
as the sources of tainted data. As for the sink points, in Listing 4, lines 11-17 aim to find
the invocation of subfunctions, while line 18 aims to find the database write operations. In
Listing 4, lines 21-22 show the designs of sanitizers, including two categories: (1) vendor-
customized security filtering functions, which perform security checks and filtering on
variable content, and (2) string conversion functions, such as tonumber, making the user
input unable to trigger vulnerabilities after the conversion.

During the (b) taint propagation process, FLuaScan aims to identify data flows within
the invocation of subfunctions. The semgrep configuration utilized to achieve this task is
depicted in Listing 5. The taint mode of semgrep is consistently used, while the config-
uration of sinks and sanitizers remains unchanged. However, the taint sources are been
changed, consisting of two types: (1) parameters passed when a subfunction is called
(lines 5-10 in Listing 5) and (2) data retrieved from the database (line 12 in Listing 5). The
taint sources from subfunctions are defined as propagation nodes (like P1 in Figure 2), with
their type field set to P.

Listing 5. Code snippet to execute handler analysis utilizing semgrep.

rules:
- id: fluascan-taint-propagation
mode: taint
pattern—-sources:

- patterns:
- pattern-inside: function $FNAME($VAR,...)...end
- focus—-metavariable: $VAR

- patterns:

- pattern-inside: function $FNAME ($VAR)...end
- focus-metavariable: $VAR

- patterns:
- uci:get(...)

There is ample evidence to suggest that the incorrect utilization of vulnerable functions
serves as the root cause of numerous vulnerabilities. Hence, precise modeling of vulnerable
functions is imperative to detect vulnerabilities effectively. Current methods disregard
the specificities of IoT scenarios, only perceiving a limited number of sensitive system
APIs as vulnerable. During the development process, it has been observed that numerous
manufacturers tend to encapsulate low-level system APIs into higher-level custom APIs.
Overlooking these interfaces can lead to erroneous identification of vulnerabilities. Hence,
we decided to identify these custom APIs and continue to employ taint analysis with
semgrep to accomplish this goal. In the specific configuration shown in Listing 6, the
tainted sources are defined as the function’s parameters, while the underlying foundational
command execution functions (like io.popen andos.execute) are designated as the sink points.
Finally, FLuaScan discovered many custom APIs that are specific to various vendors, such
as XQFunction.forkExec,Lucilltil.exec, andsubprocess.call. Furthermore, these sensitive APIs
are defined as sink nodes (like S1 in Figure 2).
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Listing 6. Code snippet to locate custom APIs utilizing semgrep.

. rules:

- id: fluascan-sensitive-api-find

mode: taint
pattern—-sources: <same as listing 5 >
pattern-sinks:
- pattern-either:
- pattern: io.popen(...)
- pattern: os.execute(...)
- pattern: Nixio.exec(...)

Once these custom APIs are identified, the (c) sink analysis process aims to identify

Listing 7. Code snippet to locate custom APIs utilizing semgrep.

rules:
- id: fluascan-sink-analysis

mode: taint
pattern-sinks:
- pattern-either:
- pattern: XQFunction. forkExec(...)
- pattern: LuciUtil.exec(...)
- pattern: io.popen(...)
- pattern: os.execute(...)
- pattern: sys.fork_exec(...)
- pattern: subprocess.call(...)
- pattern: sys.call(...)
- pattern: luci.sys.call(...)
- pattern: sys.fork_call(...)
- pattern: db:exec(...)
pattern—-sources:
- patterns:

- pattern-inside: function $FNAME ($VAR, ..

- focus—-metavariable: $VAR
- patterns:

- pattern-inside: function $FNAME ($VAR)...

- focus—-metavariable: $VAR
- pattern—either:

- pattern: $FV = $HTTP.formvalue(”...")
- pattern: $FE = $HTTP.getenv("...")
- pattern: $FV = $HTTP.getcookie(”...")

- pattern: db:exec(...)

the incorrect usage of vulnerable functions. Unsafe usage can be classified into two types:
direct propagation, which involves the direct propagation of user inputs to vulnerable APIs
within a function, and indirect propagation, which refers to the propagation of user inputs
across functions via middle nodes to access vulnerable APIs. FLuaScan utilizes semgrep to
achieve this objective with the configuration presented in Listing 7.

.)...end

end

Therefore, in the taint source setup, lines 24-27 in Listing 7 focus on the direct propa-

5.4. Graph-Based Vulnerability Search

gation, while lines 17-22 focus on indirect propagation. In the sink point setup, both previ-
ously discovered custom vendor APIs and common sensitive APIs are taken into account.

Upon completion of progressive taint analysis, the details of taint propagation between

distinct snippets were elucidated. However, vulnerability mining requires finding a com-
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plete path from the input to the sink point. Therefore, FLuaScan proposes a graph-based
vulnerability search method. Drawing on the previously mentioned concept of analysis
nodes, vulnerability detection is redefined as a graph search problem. Specifically, our
initial step involves utilizing the Neo4j database to store all nodes that have been analyzed
in prior stages. Then, FLuaScan creates three labels (INode, MNode, PNode, and SNode)
in the Neo4j database corresponding to three different types of nodes. FLuaScan inserts
INode and MNode into the Neo4j database, creating the internal taint relationships, based
on the result of the handler analysis process. Subsequently, based on the results shown in
(b) and (c), the relationships between PNode and MNode, as well as between PNode and
SNode, are processed in a similar manner. The necessary condition for the existence of a
vulnerability is to find a path from INode to SNode. Currently, finding such a path is not
possible due to our limitation in obtaining only the relationships of direct contamination
within different code snippets. The analysis of subfunctions is essential to connect these
distinct code snippets into a whole path. During the progressive taint analysis, in the
(a) process, the invocation of subfunctions acts as the sink point and is represented as
MNodes in the Neo4j database. In contrast, in the (b) and (c) processes, the parameters of
subfunctions function as taint sources and are represented as PNodes in the Neo4j database.
FLuaScan examines the pos attributes of all MNodes and PNodes. A relationship between
the MNode and the PNode is established if they pertain to the same subfunction. Finally,
FLuaScan employs a Cypher query to search for paths that start from the INode, traverse
multiple MNodes, and end at the SNode. Detail of the Cypher query are demonstrated
in Listing 8.

Listing 8. Cypher query to detect vulnerability.
MATMH p=(a:INode)-[*]1->(b:SNode) return p

To assist users in manual analysis, FLuaScan provides an interactive web page
displaying all identified suspicious vulnerability points. Figure 3 (raw figure at https:

//sm.ms/image/L8VRorXCgnUSefk accessed on 20 August 2023) shows a screenshot of
the web page, which represents the paths that meet the vulnerability requirements.

2 > & *@”‘L
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Figure 3. The visual result of a graph-based vulnerability search in FLuaScan.

The purple, red, blue, and yellow nodes, respectively, represent INodes, MNodes,
PNodes, and SNodes, respectively. In addition to this web page, FLuaScan also includes a
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VSCode plugin, assisting in manual analysis. With the assistance of this plugin, comments
are automatically added at the positions of analysis nodes and displayed with different
highlight colors based on their type.

6. Experiment

To ensure thorough testing of FLuaScan, three evaluation questions are proposed.

Q1: Correctness: What is the number of true positives generated by FLuaScan?
(Section 6.1);

Q2: Effectiveness: Can FLuaScan detect vulnerabilities in real-world devices?
(Section 6.2);

Q3: Practicability: How are the time overhead and actual user experience of FLuaS-
can? (Section 6.3).

To bolster the credibility of the experiment, we painstakingly curated a diverse test set
consisting of multiple devices sourced from various vendors. As shown in Table 3, the test
set comprises firmware from 13 devices obtained from 7 distinct vendors. The final row
documents the count of Lua files present within the firmware. The test set has an average
of 147 Lua files per image, satisfying the requirement of the research objective for multifile
detection. In order to evaluate the advancement of FLuaScan, we also compared it with
current state-of-the-art tool TscanCode in the experiment.

Table 3. Information about the test set.

# Brand Device Version Lua Files
1 xiaomi r3a V2.12.8 202
2 xiaomi r3600 V1.0.17 209
3 xiaomi r4c V2.28.48 207
4 tplink TL-WR1043N V5_161118 140
5 tplink Archer-C1900  V2.0_220524 156
6 tplink Archer-AXE75 V1_220405 215
7 zyxel NBG6716 V1.00 69
8 zyxel NBG6604 V1.00 117
9 linksys EA6350V2 V2.1.2.184309 137
10 totolink A6000R V1.0.1 140
11 totolink X5000R V9.1.0cu.2089 114
12 trendent TEW-821DAP V1.08B04 115
13 netgear EX8000 V1.0.1.164 91

6.1. Correctness

We conducted vulnerability detection on each firmware in the test set using FLuaScan

and TscanCode. These two tools output some alerts; then, we will hire three expert
vulnerability hunters to conduct a second confirmation of these suspicious vulnerability
points. If experts determine that the danger can be excluded, it is classified as a false positive
(FP); otherwise, it is classified as a true positive (TP). The detailed experimental results
are recorded in Table 4, where the “alerts”, “TP”, and “FP”columns represent the total
number of potential vulnerability points identified by the tool, the number of confirmed
vulnerabilities after secondary verification, and the number of false positives, respectively.
In addition, the “Handlers” column records the number of service handlers identified by
FLuaScan from Lua applications.

As shown in Table 3, TscanCode exhibits a significantly higher number of alerts com-
pared to FLuaScan. However, TscanCode fails to discover actual vulnerabilities. FLuaScan
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achieved an average accuracy rate of 42.50% on this test set. The success of FLuaScan
in achieving exceptional results can be attributed to its precise extraction of handlers. In
contrast, TscanCode not only fails to achieve this but also struggles to identify vulnerabili-
ties accurately. Meanwhile, for the ninth firmware, as FLuaScan was unable to locate the
handler that processes user input, no vulnerabilities were discovered.

Table 4. Detailed result of the test set.

. Brand Device FLuaScan TscanCode
Alerts TP FP Handlers Alerts TP FP
1 xiaomi r3a 6 5 11 448 149 0 149
2 xiaomi 13600 17 6 11 488 179 0 179
3 xiaomi rdc 0 5 5 399 166 0 166
4 tplink WR%L;W 3 11 347 141 0 141
5 tplink %rfgh(fg' 2 11 321 138 0 138
6  tplink ﬁ;fg;; 2 11 820 297 0 297
7  zyxel  NBG6716 3 2 1 92 9 0 90
8  zyxel  NBG6604 3 2 1 65 18 0 118
9  linksys  EA6350V2 0 0 0 0 134 0 134
10  totolink  A6000R 7 3 4 113 152 0 152
11 totolink  X5000R 7 3 4 91 163 0 163
12 trendent SZ%VXP 2 1 1 37 122 0 122
13  netgear  EX8000 8 4 4 43 9% 0 9

6.2. Effectiveness

After organizing all the suspicious vulnerabilities identified by FLuaScan, we ulti-
mately discovered 21 vulnerabilities, of which 7 are unknown. We meticulously compiled
a comprehensive summary of the information about these vulnerabilities and organized it
in Table 5. The third, fourth, and fifth columns represent the affected devices, the function
names where the vulnerabilities are located, and the types of vulnerabilities, respectively.
The vulnerabilities FLuaScan found can be categorized into two types: command injection
(CI) and SQL injection (SQLAi). The sixth column (MNode) in the table reveals the count of
middle nodes through which the vulnerability traverses from user input to the sensitive
function. Each middle node signifies a cross-file invocation. The results indicate that
the majority of vulnerabilities involve cross-file invocations, highlighting the necessity
of cross-file static analysis. However, current state-of-the-art tool TscanCode is unable
to accomplish this. The seventh column represents whether the vulnerability is known,
while the last column records the severity level of the vulnerability. The results highlight
two distinct characteristics. First, a vulnerability can potentially affect multiple products
within the same vendor. Second, the vulnerabilities we uncovered exhibit a significant
level of risk, all falling into moderate to high-severity categories. These two characteristics
are similar to those summarized in other literature reports, indicating the universality of
our findings.

6.3. Practicality

To evaluate the practicality of FLuaScan, we adopted a combined approach of quanti-
tative and qualitative evaluation. In quantitative terms, we separately recorded the runtime
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of FLuaScan and Tscancode to detect the same image. In Figure 2, we present these re-
sults in the form of bar and line charts. The brown and green bars represent the runtime
of FLuaScan and Tscancode, respectively, while the blue line represents the number of
Lua files.

As shown in Figure 4, within the same brand, as the number of Lua files increases,
the runtime of both Tscancode and FLuaScan also increases. However, regarding the
same image, FLuaScan always takes more time than Tscancode. FLuaScan has an average
runtime of 25.16 s, while Tscancode has an average runtime of 1.51 s. The primary factor
contributing to the higher time overhead of FLuaScan is its greater analytical depth in
comparison to Tscancode, in addition to the extra operations involving database writing
and analysis. Meanwhile, on average, FLuaScan can complete vulnerability detection for
a real-world device image in less than half a minute. Considering the higher accuracy of
FLuaScan, we believe that this time overhead level is acceptable. Since security analysts
typically need to manually verify the results provided by automated tools, it is essential for
the tool to be able to collaborate with manual code auditing.

Table 5. The vulnerabilities found by FLuaScan.

#  Vendor Device Vuln Function Type MNode 0 Day Severity
1 xiaomi r3a,r4c setconfigloTDev CI 0 Known High
2 Xxiaomi rdc,r3a,r3600 wifi_access CI 2 Known High
3 xiaomi r3a,r4c getThumb CI 1 Known High
4 xiaomi r3a,rdc setSyncRouterFile CI 2 Unknown High
5 Xxiaomi r3a,rdc setDeviceNickName SQLi 3 Unknown Middle
6 xiaomi r3a,rdc updateDeviceNickname  SQLi 3 Unknown Middle
7 xiaomi r3a,r4c backupData CI 3 Known High
8 tplink TL_WRlAOfill\i ,r zi\Crcllglgl(‘)-AXE%, set_country CI 3 Known High
9 tplink Archer-AXE75 vpn_user_update CI 0 Known High
10 zyxel NBG6604,NBG6716 multiple_ssid CI 1 Known High
11 zyxel NBG6604,NBG6716 multiple_ssid5G CI 1 Known High
12 zyxel NBG6604,NBG6716 wlanwpsstation CI 1 Known High
13 zyxel NBG6604,NBG6716 action_wireless CI 1 Known High
14  totolink A6000R enable_wsh CI 0 Known High
15  totolink A6000R,X5000R action_reboot CI 0 Unknown High
16  totolink A6000R,X5000R reset_wifi CI 0 Known High
17 netgear EX8000 iface_shutdown CI 1 Unknown High
18  netgear EX8000 iface_reconnect CI 1 Unknown High
19  netgear EX8000 iface_delete CI 1 Unknown High
20  netgear EX8000 action_bandwidth CI 1 Known High
21  trendnet TEW-821DAP action_bandwidth CI 0 Known High
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Figure 4. The runtime of FLuaScan and Tscancode to detect vulnerabilities in the test set.

We also compared the usage mode of TscanCode and FLuaScan in qualitative terms.
The output of TscanCode is relatively simple, as it only includes the locations of the issues
and is separated from the original code, making it difficult to assist in manual analysis
directly. FLuaScan offers two visual output options: (1) using interactive graphs to display
the specific propagation of vulnerabilities and tainted data flow, as shown in Figure 3,
and (2) As shown in Figure 5, highlighting sensitive snippets of vulnerable code based on
their attributes with the assistance of the VSCode plugin. In conclusion, FLuaScan’s visual
output options and acceptable time cost make it more practical than TscanCode.

function SEECONFIETOEDEY()

local XQFunction = require("xiaogiang.common.XQFunction")
local LuciUtil =
local result = {

["code"] = 0

require("luci.util")

if XQFunction.isStrNil(ssid)
or XQFunction.isStrNil(bssid)
or XQFunction.isStrNil(uid) then
result.code = 1523

end
if result.code ~= @ then
result["msg"] = XQErrorUtil.getErrorMessage(result.code)
else
~ XQFunction.forkExec("connect -s "..ssid.." -b "..bssid.. " -u "..uid)--[TAINT-STNK]
end
LuciHttp.write_json(result)

end

Figure 5. The vulnerability source code highlighted with different colors supported by FLuaScan’s
VSCode plugin.
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Based on the above results, we have presented the differences between FLuaScan and
Tscancode regarding correctness, effectiveness, and practicability in a tabular form. As
shown in Table 6, compared with existing tool TscanCode, the results demonstrate the
superior performance of FLuaScan in terms of accuracy, effectiveness, and practicality.

Table 6. Comparison of FLuaScan and Tscancode in terms of correctness, effectiveness, and practicability.

Correctness Effectiveness Practicability
Tscancode 0% TP Rate 0 actual vulnerabilities time cost: average 1.51 s
output: simple text
FLuaScan  42.50% TP Rate 21 vulnerabili’Fies(9 unknown) time cost: average 25.16 s (acceptable)
moderate to high severity risk output: two visual output assist manual analysis

7. Discussion

This section aims to examine the constraints of our methodology and provide insights
into potential directions for future development. During the operation of FLuaScan, it lever-
ages existing software tools like Semgrep and Neo4j. However, the methodology employed
in FLuaScan is entirely innovative, and no method described in existing literature can do
the same. At present, FLuaScan exclusively focuses on supporting the Lua programming
language. However, the fundamental theories discussed in this paper regarding vulnerabil-
ity mining are applicable to various programming languages. Furthermore, the semgrep
we employ demonstrates the capability to support multiple programming languages, fa-
cilitating seamless portability to other script languages. After conducting surveys, we
discovered that many IoT manufacturers also employ languages such as ASP and PHP in
their product development. Therefore, enhancing FLuaScan to support multiple scripting
languages is our next research direction. Meanwhile, some manufacturers are developing
products by packaging compiled Lua bytecode as firmware rather than directly using Lua
source files. The absence of symbol information in this scenario poses numerous challenges
for static analysis. The next step of our research is to find ways to improve FLuaScan to
adapt to Lua programs without sources.

8. Conclusions

In conclusion, this paper provides a thorough study of the security concerns associated
with Lua applications in IoT firmware. This paper introduces an innovative progressive
taint analysis method that precisely identifies service handlers, performs segmented taint
analysis, and utilizes graph search to identify vulnerability paths. Furthermore, we devel-
oped a prototype system, FLuaScan, and conducted experiments to demonstrate its supe-
riority over current state-of-the-art tool TscanCode in terms of correctness, effectiveness,
and practicality. FLuaScan discovered 21 vulnerabilities during the experiment, of which
7 are unknown. The work presented in this paper provides a solid foundation for future
research on vulnerability detection in other language scripts programs of IoT firmware.
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