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Abstract: An acoustic emission (AE) is caused by the sudden release of energy by a material as a
result of material degradation related to deformations, cracks, or faults within a solid. The same
situation also occurs in leaks caused by turbulence in the fluid around the leak. In this study, analytical
modeling for an AE due to leakage through a circular pinhole in a gas storage cylinder was performed.
The displacement fields responsible for AEs, excited by the concentrated force (CF) associated with
the turbulent flow though the pinhole, were derived by solving the Navier-Lamé equation. The CF
as an excitation source was formulated in terms of a fluctuating Reynolds stress (FRS) and spatial
Green’s function. In particular, a series of experiments were conducted under different operating
conditions to explore the characteristics of the AE signals due to leak in a gas cylinder. Finally, the
simulation and experimental results were compared to verify the accuracy of the simulation results.

Keywords: acoustic emission; leakage; fluctuating Reynolds stress; Green’s function; simulation

1. Introduction

Reliable maintenance of high-pressure gas vessels, especially those containing fuel
gases, has increased exponentially over the past decade, because the gases are extremely
hazardous under conditions that can cause them to ignite. The most important way to
prevent disasters caused by gas leak fires is to detect leaks and their leak location and make
subsequent repairs. There are several pipeline leak detection methods being used to detect
and locate leaks in a limited area of pipeline [1]. These include flow rate monitoring [2],
pressure fluctuation analysis [3], fiber optic sensing [4], acoustic sensing [5-8], and infra-
red imaging [9]. Among the various methods, acoustic methods have proven to be very
effective in detecting leaks by eliminating disturbing signals through time and frequency
domain analysis and characterization of acoustic emission parameters [10-12].

Acoustic emissions (AEs) are elastic or stress waves generated by a material as the
result of a sudden release of energy from a localized source within the solid. As well as the
material degradation related to deformation and crack and fracture development, and fluid
flow through the hole or crack created in the container system also generate AEs. When
a fluid leak occurs due to the pressure difference between the inside and outside of the
container, the fluid ejected from the leak hole can be characterized by Lighthill’s stress [13].
In the turbulence flow, a fluctuating Reynolds stress (FRS), corresponding to the interaction
between the fluid and the solid wall, is dominant in Lighthill’s stress. The Reynolds stress
is associated with a direction perpendicular to the wall and, consequently, leads to the
excitation of AEs that propagate through the container.

Many experimental investigations have been conducted to characterize the AE caused
by gas leaks. Pollock et al. investigated the AE signal as a function of internal pressure,
hole cross-sectional area, and leak rate [14]. They found that a low frequency sensor
(30 kHz) is suitable for detecting small leaks and that the signal amplitude is nearly linear
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with internal pressure. Yoshida et al. investigated AEs during gas leaks from pipes with
straight and stepwise pinholes in the 100-1200 kHz frequency range [15]. For the straight
pinhole, they found that the mean amplitude of the AE signal increased gradually as
the pressure of the outgoing air increased, with no variation until 0.3 MPa. For stepwise
pinholes, the results were dependent on the shallow depth: compared to the straight
pinhole case, shorter shallow depths showed low mean amplitudes with similar pressure
dependence, while longer shallow depths showed variation in the mean amplitude in the
range of 0.11-0.15 MPa. Laodeno et al. also identified the effect of the hole geometry on
the amplitude and peak frequency of AE due to air leakage [16]. Three types of pinholes
used in the leakage test, namely straight-type, stepwise-type and cone-type, gave different
results. Mostafapou et al. measured AE signals generated by pipe vibrations due to gas
leaks and used the Fast Fourier Transform (FFT) to determine the resonant frequency of
the observed signals [17]. The observed frequencies were confirmed by applying Donnell’s
non-linear theory.

Previously, we presented a mathematical model for AEs generated by point source (PS)
in cylindrical structures [18]. The PS as an internal defect was represented by a concentrated
force (CF) with both spatial and temporal characteristics. In cylindrical coordinates, the
CF generates three scalar potentials responsible for one compressional (P) wave and two
shear waves (horizontally and vertically polarized; SH and SV, respectively), which we
designated as the concentrated force-incorporated potentials (CFIPs). The radial, tangential
and axial displacements were solved by introducing CFIPs to the Navier-Lamé equation
based on the model proposed by Morse and Feshbach [19]. To the best of our knowledge, no
theoretical work on AE excited by gas leakage in cylindrical geometries has been presented
in the literature. The main objective of this work is to present a mathematical formula
applicable to AEs due to a pinhole leakage in cylindrical shells. In this study, we derived
CFIPs responsible for the FRS and analyzed the displacements associated with P, SH and
SV waves on the outer surface of the cylindrical shell. For completeness, an experimental
investigation was also carried out with the aim of characterizing the AE signals due to
pinhole gas leakages from a cylinder. The artificial leak system was constructed with a
commercial N; gas cylinder with a pinhole-type leakage source plugged into the cylinder’s
wall. The AE parameters such as frequency, mean amplitude and RMS were measured as a
function of pressure and pinhole size. The resonant frequency distribution was obtained by
decomposing the observed AE signal by the FFT method. In addition, the observed AE
signal due to gas leakage through the pinhole was modeled by the theoretical formula. This
paper provides the overall process of the generation, propagation, and reception of the AE
signal due to leakage by establishing a mathematical model as well as experimental data.

2. Analytical Model
2.1. Fluctuating Reynolds Stress as Point Source

First, let us define the force f generated by gas leakage. When a leak occurs through a
small hole, turbulence is generated as the fluid upstream of the pinhole accelerates toward
the hole and can be continuously affected by real physical boundaries such as solid walls.
In fact, turbulent fluctuations, known as FRS, contribute to the mean motion of the fluid,
meaning that FRS is actually an additional momentum flux [13]. If the momentum in the x;
direction crosses a unit surface area in the X; direction, the net flux of x;-momentum with a
negative sign can be expressed as [13]

T = —pv;v;, (1)
where the primes represent fluctuating states and v is the velocity along a given direction.
In fact, the FRS in Equation (1) is for instantaneous fluctuations. Therefore, it must be
averaged over a period of time, as follows
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The FRS on the hole wall is the most effective source of AE generated by leakage. For
turbulent flow with a radial velocity of v, through a circular hole, FRS occurs along the
vertical axes (axial and tangential axes), as shown in Figure 1a. The CF generated by the
gas leaking through the pinhole can be written as follows

’ (;]le) and Py = —p 8(;/:;) , (©)]

wall wall

P,=—p

where P, = Py = Py. In this study, we determined the FRS from the reported date [20].
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Figure 1. (a) Two forms of the PS vector along the axial and tangential directions caused by a pinhole
leakage, and (b) a radial cross-section containing the PS and a given point S, in which the red line
represents the arc connecting PS and S.

Figure A1l (in Appendix B) shows the plot of the Reynolds stress quantity (RSQ) vs.
the wall-distance divided by layer distance (). In the figure, RSQ is defined as [20]

u'v’

4)

where 10’ is assumed to be the mean value of the product of v,0y,, and U is the mean
velocity of v,. The experimental data is well fitted by a fifth-order polynomial

RSQ = 0.028 — 0.013(%) + 0.013(%)2 - 0.155(%)3 n 0.193(%)4 _ 0.065(%)5

Substituting RSQ into Equation (3), we obtained
Py = 6.62 x 10~ 4pU>. (5)

According to the mathematical model of hole leakage [21-23], the characteristics of
gas flow, such as mass flow rate (Q) and mean flow velocity in the leak hole, can be divided
into sonic flow and subsonic flow according to the critical pressure ratio (CPR)

7
Pa 2\t
CPR="—={( —— , 6

Per ('Y+1) ©)

where p, is the atmosphere pressure of the surrounding environment, p,, is the critical
pressure when the gas in the leakage section changes from subsonic to sonic flow, and v is
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the isentropic index. When the gas pressure in the gas container (py) is lower than p,,, the
gas flow is in subsonic flow state, and the mass flow rate is given by

r+1

2
B 2y M |(P\7" [(P\'7
o=comm, | Zzn | (7) - () | 7

where Cp is the flow correction factor of the leakage hole (0.6~1.0), Ay, is the cross-sectional
area of the hole, and Z is the compressibility factor of the gas. When pg > p,;, the gas flow
is in a sonic flow state. In this case,

v+1
. YM 2 =1
Q= CDAthO\J ZRT, (7 T 1) . 8)

Since the mass flow rate is the mass of the gas passing through the hole region over a
period of time, the mean flow velocity can be written as

_ Ve _ 4V, 4Q/p

u A D2m  D2rm’

©)
where D is the diameter of the leakage hole.

2.2. Displacement Fields

The NL equation is the fundamental equation governing wave motion in elastic and
homogeneous media. If the media is subjected to a non-equilibrium local force f, the NL
equation can be written in vector form [24] as

%u

(A+20V0hn—nyVXu+f:p$?

(10)
where u is the displacement vector, A and p are Lamé constants, and p is the density of the
media. The displacement field in cylindrical coordinates is specified by three potentials: the
scalar potential ® for the P wave, and two vector potentials, Xé, for the SH wave and Ye,
for the SV wave. Previously, we adapted the model proposed by Morse and Freshbach [19],
expressed by

u=V>o4+ Vx (Xe,)+aVxVx(¥Ye,), (11)

because the three components were easily separated. The displacement vector can be
described by the displacement components in the (7, 6, z) coordinates

u =1+ ugh+ u,z, (12)

where
09 10X 0%

= T e Tz (13
1900 09X a d*°Y
Y= 58 " ar T 79607 (14)
0% (Y 19¥ 1Y )
270z o2 ror 12392 )

Turbulence is generated through the pinhole, but it is maximized at the leaking orifice
due to edge discontinuities. Since the hole cross-sectional area is very small compared to
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the cylinder surface, the force due to turbulent outflow at the orifice surface can be treated
as PS. As the PS, the force f due to FRS is expressed as follows

f=Pud(x—xp)e 't (16)

In Equation (16), w is the angular frequency that transmits FRS energy from the PS to
the cylinder and resonates with the energy of cylinder materials. As a solution to the delta
function, Green’s function g(x; xp) is defined as

V2g(x;x0) = 8(x — xp). (17)
In cylindrical coordinates, Equation (17) is expressed as

V2¢(r,0,210,00,20) = 2(r — 10)0(6 ; 60)0(z = ZO), (18)

and the solution of Equation (18) is given as [18]

g(r,0,z;10,00,20) = Ap18r(7;70)80(60;00)82 (25 20), (19)

where A, is the coupling constant, expressed as the first root of the Bessel function in g,
and the integer v of the aperiodicity in gg. To make the position of the PS the new origin, as
shown in Figure 1b, the coordinates (r, 0, z; o, 6y, z9) are replaced by (&, 9,7;0), defined as

§i =X — Xoi, Gj=xj—xoj=2xj, 8 =0—06p, andn =z—z,

where the PS is located on the x; axis, rg = xp;. Previously [18], we derived the Green’s
function responsible for the PS located inside the cylinder. Assuming that the Green’s
function is periotic (v = 0)

8(¢,9,m) = GorJo(x=0), (20)
1 —KzH _
Gor = —ZKZA(n]o(Kzéo){:KZ” (O(i;z) 21 <28)> / o1
Ap = L X 2 , 22)

7T[€KZZO 4 e—rz(l-20) — 2] {a2 [Jos1 (Kzll)]Z - b2 []v+1(7<zb)]2}

where [ is the length of the cylinder, and a and b are the outer and inner diameters, respec-
tively. (Note: this corrects the erratum in Equation (16) for the n range in Ref. [18].) For
gas leakage, the Green’s function is non-zero on the outer surface of the cylindrical shell
because the PS is located on the outer surface of the cylindrical shell. In this study, the
value of x, was determined empirically.

In Equation (20), the value of ¢ is the shortest distance between the PS and the point
where the detecting sensor is projected onto the equatorial layer containing the PS. However,
as shown in Figure 1b, there is no linear distance between the two points across the hollow
interior. Since the thickness is much shorter than the diameter of the outer circle, we simply
use the value of £ as the length of the arc around the outer circle,

&~ &p = mah/180°, (23)

where 0 is angle between the PS and the projected point.
From Equations (16) and (17), the force vector can be rewritten as

f=PVg(E, 8,m)e ! | 24)
= V[V.Pg(g, 0, 77)] - Vx [V X Pg(cr 0, ’7)}6_”‘”,

2 _ 9 ;19 129 | &
where V- = ag2+5319+€26192+ar]2‘
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Previously [18], the three potential functions were specified as CFIPs generated by

the PS. a(Pp) 13(Pp) (P
0= 7oy = 20, 12020)  0(P0) )
Xe, — —V x (Py) — _% {8(@;;6) B 8(;:9)()}@”, (26)
. _ 1[a(¢Py) o(Py)],
ve, = -3 | X0 A, @)

where ¢, x and 1 are scalar functions. These scalar functions were determined by solving
Equation (10) combined with Equations (11) and (25)-(27) as follows

. k
9(E8,1) = AnJ(ag)cos(mb)e 17 — p(goﬁ%fm<xzé>, (28)
" K, Gy
X(E0,1) = BuJu (BE)sin(md)e 0% — s 00 Jn(1:8), (29)
(&, 9,n) = Cm]m(ﬁg‘)cos(mﬂ)e*ik’?”, (30)

where a2 = k%, — k% > 0, and ,82 = kf—k% > 0. In Equations (28)—(30), Ay, By, and Cy, are
the coupling constants.

As shown in Figure 1a, the CF vectors generated by the FRS act in the axial (P;)
and the tangential (Py) directions. There is no CF in the radial (P;) direction because the
surface boundary is perpendicular to the radial direction. Substituting Equation (28) into
Equation (25), the CFIPs for the P wave is given by

4 K T(k,E) 9
P, =Py [(_ikW)Am]m(aé)Cos(mﬁ)elkM o pprIaZ(f E%) ;;)1 ’ (31)
Oy = —P, {Ammé ]m(aé‘)sin(mﬁ)e_ik””], (32)

similarly, substituting Equation (29) into Equation (26), we obtain the CFIPs for the SH
wave as

X, =0, (33)
. K G O (K
Xp = —Pw{Bmmjmmé)cos(mﬁ)e—‘kv" - () + ¢ ) } (34)

Substituting Equation (30) into Equation (27), the CFIPs for the SV wave is given by

¥, =0, (35)

1 0 ;
¥p = —PuCii [z; Jm(BE) + ) ma(z;ﬁ ) ] cos(md)e i, (36)
since all CFIPs for the P, SH, and SV waves at a given CF direction have been fully derived
due to pinhole leakage, the displacement components in the (&, 9, #7) coordinates generated
by the CFIPs can be obtained using the component form in Equations (13)—(15). Note: in
the same way as in Ref. [18], the component of the displacement d due to Py is expressed as

ttay = Py (AmgFly + BugFly + CougFi + Fiy), 37)
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where Pris P; or Py.
For P,, the radial components u;,

FL = (—iky) a]";(gé) cos(md)e ', (38)
F2=E. =0, )
F;Lz _ k% 1 a]m(Kzg) aGOll (40)

pw?a2 —xk2  E oy

the tangential components uy;,

FL = (ikn)% T (aE)sin(md)e 41)

Fy, =F, =F, =0, (42)

and the axial component u,

F, = —k} Ju(ag)cos(md)e~ 1", (43)
Fzzz = ng =0, (44)
|
4 _ P
F. = Tl @ Jm( z‘?) o (45)

(Note: this corrects the erratum in Equation (62) for F%, in Ref. [18].)
For Py, the radial components u,,

£y = | 25 J(0) — 1220 iy, (46)
Fy = [ R Jm(BE) + 1 9 ma(fg) } cos(md)e~*u, (47)
2 .
Fp = (iky)a [ I (E) — = a]ma(f 09 ]amg(f g)]cos(mﬂ)elkv’?, (48)
Fy=0, (49)
the tangential components g,
Fly = —?22 Jom (&) cos(md)e~*n', (50)
2 .

F3 = { zfm(ﬂé) ! Blma(fé) + J ]géfg)]sin(mﬁ)e_lkv’?, (51)

. 1 a m . —i
£y = ~ i) | 1u60) + L2 sin oy, )

_ K 1 1 Jm (2 1, 0)m(K28) (k2
- {0+ B8] D) T,
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and the axial component g,

FL = ﬂ?m]m(afj)sin(mﬂ)e_ikw, (54)

Py = a (32) I (p2) — (142 ) LuifE) o 22 0nip0)

+ 83]315(35‘;) ] COS(TI’lﬂ)E—ikW”,

(56)

Fh =0, (57)

the remaining task is to evaluate the coupling constants A;;, B;; and Cy;. Let us apply
boundary conditions to the outer surface in the same way as in Ref. [18]. There is no stress
on the outer surface of the cylinder because the effect of the atmosphere pressure on the
displacement field is negligible

Orr = Opg = 0rz = 0. (58)

Introducing Equation (58) to the stress—strain displacement relations for the circular
cylindrical shell studied in this work yields a system of three linear algebraic equations,

given as follows:

apf anaf daf | [Amg bif

Ay Axf axaf| | Bup| = |baf|- (59)
az1f  azp a33r] | Cus by

Elements a;;¢ and b; of the matrix in Equation (59) are given in Appendix A. For the

P, CF, Equation (59) becomes very simple because all elements except a1, b1, and b3; are
zero. We obtain

Bmz = 0; (60)
b b
Amz == 1z = E. (61)
11z asy

The values of k; at a given location of the PS can be obtained by solving the roots of
the function

bz bs
ky) = - — =0. (62)
f ki) 11z 431z
To evaluate the displacements at position (¢, #7) on the outer surface, the arrival times
(ts) of the AE signal generated by the PS force must be introduced into Equation (37). The
arrival times of the P and S waves propagating with velocities cp and cg are given as

VERE B )

Tp =
P cp Cs

respectively, where ¢ is given by Equation (23). Finally, the displacement fields generated
by the gas leakage can be summarized as follows

Ugf = Pf {(t — Tp) (Amfl:;f + Fgfédr) +A(t — Ts) (Bmfpgf + Cmfpgf + F;f(sdg)} (64)

xe b

whered = v, § and z, and f = z and 6. Based on the wave characteristics, Equation (64)
can be divided into the P, SH and SV waves as

ugf = Pf(i’ — Tp) (AmfF;f + F;fédy) E’il’Wt, (65)
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uSH = P(t — 75) (Bm F3 + Fgf(sde)e*iwf, (66)

ug}/ = Pf(t — Ts) (Cmfpgf>€7iwt_ 67)

3. Experiment

The cylinder shell used in this study is a seamless N; gas cylinder (40 L, Mn steel)
manufactured according to KGS AC 212 specification [25]. The length of the shell is
1185 mm, of which the main part with the same cross-sectional area is 1013 mm, and the
outer diameter and the thickness are 232 mm and 4.8 mm, respectively (Figure 2). The leak
source (LS) was created by inserting hexagonal head cap screw with a hole into a bore-hole
in the main segment wall, located at 0.368 m from the front of the main part (the distance
from the LS to the end plate is 0.817 m). The diameters of the holes in the screws comprised
0.2, 0.3, 0.50, 0.80, and 1.2 mm. The pressure in the cylinder was maintained at a given
value by two gas regulators connected to a supply high-pressure cylinder. The pressure in
the cylinder was read and recorded by a digital pressure gauge (PDR500, PDK, Daejeon,
Republic of Korea).

D

Figure 2. AE experimental schematic diagram: 1, test cylinder; 2, LS; 3, pressure gauge; 4, cylinder
valve; 5, vacuum pump; 6, needle valve; 7, on—off valve; 8, pressure regulator system; 9, N, gas
storage (insertion: left, details of hexagonal head cap screw with a circular hole as LS with 5 mm
width and D mm hole; right, position of a sensor represented by # = ¢ mm and ¢ = d°).

To detect AE signals, several broadband AE sensors (IDK-AES-H150, IDK, Daejeon,
Republic of Korea) with a resonant frequency of 150 kHz were used. These sensors can
detect any AE signals in a range of 0-500 kHz. AE acquisition and analysis was performed
using an IDK-AET-H150/E08 system, which includes a pre-amplifier, an 8-channel DAQ
board, and computer data storage (post-processors). The IDK System generates acoustic
data through sequential amplification and FFT of detected electric signals, and runs the
embedded AE Studio Software (v1.6, IDK). No filters were used, and the signal threshold
was 40 dB. AE hits were captured over its full acoustic range during 300 s. Each hit
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represents an AE signal, allowed by a timer controller with 1.0 ms of maximum hit duration
in the DAQ board.

4. Results and Discussion
4.1. AE Properties

The AE characteristics generated by the gas leak were investigated as a functions
of gas pressure (py), axial distance (1), and angle (¢) to the LS position (for convenience,
the experimental test is presented as DaPbrcdd, where a, b, c and d denote the diameter
of LS (mm), internal pressure (bar), axial distance from the PS (cm), and the tangential
angle (degree), respectively). The cylinder internal pressure was kept at a given b bar. The
AE signals were measured as waveforms. From observed signals, we evaluated several
useful AE parameters such as count, maximum amplitude, duration, signal RMS, rise time,
signal energy, peak frequency, etc. Figure 3a,c show two typical AE signal waveforms
captured at D0.2P2n190 and D1.2P4n180, respectively. To reveal the resonant frequency
of the AE signal transmitted through the surface of the cylinder, the time-domain spectra
were converted to the frequency-domain spectra by applying FFT. After applying the
Savitzky—Golay smoothing method, the amplitude FFT spectra were resolved by fitting
with a Gaussian function. As shown in Figure 3b, the FFT spectrum of the AE signal
of D0.2P2n190 consists of a strong peak at 173.4 kHz with several weak peaks in the
30-340 kHz region. Among them, the shortest and the longest frequencies appeared at
70.2 kHz and 284.5 kHz, respectively. The 173.4 kHz and the 145.6 kHz bands have weights
of 45% and 18%, respectively, while the remaining bands have weights of less than 10%. In
contrast, for the AE of D1.2P4n190, the main band at 108.1 kHz appeared with a weight
of 43%, and the 171.2 kHz band appeared as the second peak with 19 wt.% (Figure 3d). It
is important to note that the 108.1 kHz band appeared as an additional band for the AE
signal from D0.2P2n190.

0.008
0.10 (b)
s- —
T 0.05 E
] 1]
g 0.00 3 00047
S =
€ -0.05
£-0.05 5
40 0.000
00 02 04 06 08 1.0 0 100 200 300 400
Time (ms) Frequency (kHz)
15 (c) 1.0

-
[=]

H (d)

124

Amplitude (mV)
< o

Amplitude (mV)
o
2]

'
=
o

00 02 04 06 08 1.0 0 100 200 300 400
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L}
—
(7]

e
o

Figure 3. Typical AE signals (a,c) and their resolved FFT spectra (c,d) observed by D0.2P21190
(a,b) and D1.2P4n190 (c,d), respectively.
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The distribution of the mean frequency for the AE signals from D0.2P2n190 and
D1.2P4n190 is illustrated in Figure 4. Except for the signals from D1.2P4n190, all the
acquired AE signals show the peak frequencies in the range of 170-175 kHz. For D1.2
with ¢ # 0, the peak frequencies in the range of 60-70 kHz were seen with weights less
than 40%.

[ J242, [ ]170~175,[ | 144 kHz (a) [ 170~175,[_] 107 kHz] (b)
100 mm mm = == @ = | 100 B A s
80 80| | |
£ 60 £ 60/
ES ES
40 40
20+ | 20
1 2 3 4 5 6 7 1 2 3 4 5 6 7

Sensor position

Sensor position

Figure 4. Two types of peak-frequency distributions, observed in (a) most tests, and (b) only D1.2P4.

4.2. Angular and Axial Dependence

The properties of AE signals were investigated as a function of tangential angle at
1n =1 cm. Seven AE sensors were mounted at a 30° interval from & = 0° to 180°. The mean
value of the amplitude was calculated from over 70 k hits. Figure 5a shows the mean
amplitudes with o values generated from D0.2P4n180 and D1.2P4n180. For D0.2P4n190,
the amplitude of the AE signals is 0.58 (o = 0.087) mV atd = 0°. As the angle increased,
the amplitude decreased, reaching a minimum between 60° and 90°. Above this angle, the
amplitude increased, reaching a maximum at ~120° and a second minimum at ~150°. At
Po = 2 bar, similar angular-dependence features were observed for D0.2-D0.5, while differ-
ent features showing the minimum at ~120° were found for D0.5 and D1.2 (Figure A2).

o
[=-]
2]
o

(=]
D
L J

—

(a)

140

130

0.4

e—c

(b)

0.2 110
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Figure 5. Mean amplitudes (circles) and os (bars) of AE signals generated from: (a) D0.2P4n1 (black)
and D1.2P4n1 (red) at 8 = 0 — 180, and (b) D0.2P490 (black) and D1.2P490 (red) atn = 1 — 70 cm.

The axial dependence of the AE amplitude was also investigated using D0.2-D1.2 LSs
atd = 0°. Seven AE sensors were mounted at downstream locations aligned with the LS
along the z axis on the cylinder surface. Figure 5b shows the observed results for D0.2P490
and D1.2P490. For D0.2P4d0 LS, the baseline subtracted (BS) amplitude was 0.27 mV at
1n =1cm. As 1 increased to 3 cm, the BS amplitude decreased sharply to 0.124 mV. Above
1 =3 cm, the BS amplitude slowly decreased with increasing 7. It can be seen that the mean
amplitudes of the AE signals generated from D0.2P490 LS clearly exhibit exponential-decay
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characteristics. For D1.2P480 LS, some of the data fluctuated to some extent; however, it is
satisfied the exponential-decay characteristics within the standard deviation.

4.3. Verification of CFIP Model

A stainless steel cylindrical structure (p = 7.80 x 10° kg/m3, ¢, = 5.98 km/s,
¢s = 3.30 km/s) was used for the simulation.

4.3.1. Determination of k,

Before simulating the displacement field, the relation between k; and x, was deter-
mined from Equation (61). As shown in Figure A3, as the value of x, increased, the value
of k; gradually decreased until k.= 15, while above x; = 15, the value of k; is almost inde-
pendent of the «k, value. The angular-dependence of the simulated displacement field is
very effective in determining the x, value. The angular dependence of the observed AE
amplitudes appears to be related to the Bessel function Jy(x.¢), which is involved in the
Green’s function in Equation (20). The Bessel function goes to zero at a certain value of ¢,
depending on the value of x,. As shown in Figure A4, no minimum appears until x, = 2.
Above this value, a single minimum appears at ¢ = 176° for x, = 3, ¢ = 141° for x, = 5,
and ¢ = 87° for x, = 8. Above k, = 8, a well of multiple minima appears: for x, = 9, there
are two minima position at ¢ = 78° and 164°. In the simulation, we set x, = 9, and set
FRS =91 N/m? for po =2 bar and 250 N/m? for po =4 bar.

4.3.2. Multi-Frequency AE

The observed angular dependency led us to conclude that the displacement fields
generated by a gas leakage in the cylindrical geometry is 2n-periodic: m = 0. Therefore,
Equation (64) is rewritten as

udf = Pf {(t — Tp) <A0de1f + F:llf(sdr> (68)
+(f - Ts) (BOngf + COngf + Fgfédé’)} eil“‘;t,

The displacement field, expressed by Equation (68), indicates that the AE wave is
active if Ffilf is nonzero. From Equations (40), (42), (45), (49), (53) and (57), it can be found

that F, F* and Fj, are nonzero, but ng, Ffe and F2 are zero. Considering that the nonzero
F;Lf terms are proportional to 1/w?, Equation (68) can be rewritten for multi-frequency
waves as

ap(wi, -+ wn) = Y Wittag(w;), (69)
2
w?

W, = L, 70

= T (70)

Equation (70) obtains contributions with equal weights at the configured frequen-
cies. Therefore, the observed weight of the i component (wemp,) is compensated to
Equation (70). The final formula of the AE wave is

2

n w;

ugp(w, -+, wWn) =Y | Wemp,i sugf(wi), (71)

n
L w;
where u,;, u,, and ugg are active and the others are inactive. Among these active displace-
ments, U, is dominant (hereafter, referred to as u;).

4.3.3. Simulation

The AE wave shown in Figure 3a was chosen as the model for the simulation. The
frequency components and their observed weights are listed in Table 1. In the simulation,
these data were introduced into Equation (71). Figure 6a shows the simulated u, displace-
ment and corresponding FFT spectrum for D0.2P41180.001 (FRS =250 N/ m?) using the
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eight frequencies listed in Table 1. Since g(¢, ¢,7) diverges to infinity at 9 = 0, we set the
minimum angle to 0.001° in the simulation. As shown in Figure 6b, the FFT spectrum of
the simulated AE wave is in good agreement with the observed spectrum (Table 1).

Table 1. Frequency components and their weights used in the simulation.

v;/kHz 70.2 102.3 120.8 145.6 173.4 2445 270.3 2845
Wemp 0.091 0.045 0.069 0.18 0.45 0.097 0015  0.058
1.0 04
(a) (b)

0.5-
E
£ 0.0
=N

- | _,L_A_WLAJ
1.0 0:0:

00 02 04 06 08 10 50 100 150 200 250

Time (ms) Frequency (kHz)

Figure 6. (a) Displacement field, ., simulated with FRS = 250 N/m? and «, =9, and (b) corresponding
FFT spectrum.

Here, we demonstrated the validity of our approach by evaluating the multi-frequency
1, as a function of ¢ for angular dependence and a function of 1 for axial dependence.
The maximum value was taken from the simulated u, displacements. For the angular
dependency, both experimental values and calculated values (after baseline correction)
were converted to relative values for a value of ¢ = 120°. A baseline correction to the ex-
perimental values was necessary to match the two values, because the calculated minimum
was nearly zero (Figure A4). As shown in Figure 7, the results for the angular dependency
show good agreement between the observed and simulated values.

5
o aD (a) 83_00 (b)
3 S
£471¢ =
2 3
53 7 2]
c c
© @
] 7]
£ 21 £
2 21
g1 5
e 2
0 30 60 90 120 150 180 0 30 60 90 120 150 180
Angle (°) Angle (°)

Figure 7. Relative values of observed mean amplitudes (solid circles) and os (bars) of simulated
maximum u, displacements (lines): (a) D0.2P4n1 (black) and D0.3P4n1 (red), (b) D0.5P4n1 (black),
D0.8P4n1 (red) and D1.2P4n1 (green). In the simulation, x, = 9 and FRS =250 N/ m?.

For the axial dependence, the simulation was also performed at ¢ = 0.001 instead of
¢ = 0. Simulated values given in meter were converted to those given in mV by multiplying
the appropriate factor. The results for D0.2 and D1.2 are shown in Figure 8, and the others
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are shown in Figure A5. When 1 approaches zero, there is a sudden increase in the observed
AE amplitude. The experimental results show that the AE signal increases abnormally
when approaching the leakage point.

20
06 (a) 1.2- = (b)
$ 0.6 s
E E10 19
3 8
g 0.4 3 0.8 110
= B5.0.6-
: ¥ ls
g 0.2 g 0.4-
% § x g 0.2 0
0.0 - o
00 02 04 06 08 00 02 04 06 0.8
Axial distance (n/m) Axial distance (n/m)

Figure 8. Observed mean amplitudes (solid circles) and os (bars) of simulated maximum u, displace-
ments (lines): (a) D0.2P2 90 (black) and D0.2P490 (red), (b) D1.2P280 (black) and D1.2P440 (red).
In the simulation, x, = 9, and FRS = 250 N/m? for P4 and 91 N/m? for P2. The simulated values
were multiplied by 7.32 x 107 mV/m for D0.2P2 and D0.2P4, and 5.69 x 108 mV/m for D1.2P2 and
3.60 x 10° mV/m for D1.2P4.

5. Conclusions

In this paper, we provided a mathematical model for AE due to leakage in a cylindrical
vessel. As in an internal crack, the leakage generates CFIPs for P, SH, and SV waves. The
fluctuating Reynolds stress caused by pinhole leakage in a gas reservoir was introduced
as a point source into the NL equation, and the solutions for radial, tangential, and axial
displacements were obtained. In addition, the angular and axial dependencies of the AE
signals generated by pinhole leakage sources of different diameters were investigated to
reveal their characteristic features. The main advantage of this study is that it provides an
accurate solution for the AE characteristics caused by leakage in cylindrical geometries. In
the near future, this mathematical model will be used to locate leakage sources with more
experimental data.
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Appendix A
For a transversely isotropic cylinder, the three stresses are given as
_ 9uyf g | 1 9Uer Oty f

Orrf Cll(a )+C12<§ +§819)+C13< 3,72 (A1)

= Pf ullfAmf + Illszmf + a13mef + blf e Wt

_ (en—ci) (Mer _ Hep | 19y

Uref_%(aig_?_"f ae) (A2)

= Pf (azlfAmf + “22mef + leg,mef + b2f>€_lwt,

ou ou
— I72f rf

O’er—C44< oy ) » (A3)

= Pf (a31fAmf + Ll32mef + a33mef + b3f>€_lw ,

where f = z or 6. Substituting Equation (32) into Equations (A1)-(A3) gives the elements

aijf and blf (l,] = 1—3)

oF F JF] aF/
_ 'f of o 1976f 2f
ajjf = 11 P +c12 g +Clzg FY) +C13( o |’

] ] j
Doir — (c11 — c12) [ Py _ E + }aFrf
2if 2 o8 ¢ 'gov |

OFEL,  OF)
a3jz = C44< ag.z + a;f)'

oF? 4 oF?
bif = Clng + Clzéf + C1387;f,

(c11 —c12) (E)Fgf B Féf N 1aF;1f>

by = >

o¢ ¢ ¢ ot
ori. or!
b3f_C44<agf+ a}f)

For the P, CF,

. 2 Im 92 m
anz = (iky) [(Clz% + Clsk%)]m(lxé)l— c12¢ ’a(é"g) —cn ]a;zag)}
x cos(m®)e*u,

(Note: this corrects the erratum in Equation (77) for a1, in Ref. [18].)

ap; = a13; =0,

11— ¢ . —2m 2m O (« . .
a1, = (en —cn) 5 12) (iky) = Jm(a8) + = ]ma(c ¢) sin(md)e iy
Az = az3; =0,
az1, = —Zk%c44a]";)%x€)cos(ml9)e_ik'7’7,

(A4)

(A5)

(A6)

(A7)
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az, = az3; =0,

kz aG az m Z G m Z
e = () g [ G ) 1 et
PGy
+c13 P ]m(Kz‘:) ’

bZZ = 0/

e jz 2 92G1 9Jm(k:8)
3z = —Ca4 0?2 2 af %

For the Py CF,

o , .
A11p = M (gTzcll + 1+57"315612 + Clsk%)]m(ﬂéé‘) + (5%011 - (:17612) ]a(gg)

—zcn azjgg(zag) } ,
A9 = m _(:12(2011 —c12)Jm(BS) — %(011 - Clz)a]ma(égg)}sm(mﬁ)eik"”r

ata = (iky)a{ &5 [~2en + era (1= m?) —e1a (1 — m2)] Jun(BE)
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Appendix B
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Figure A1. Plot of Reynold stress quantity (REQ) vs. distance from wall (y/6) [20].
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Figure A2. Relative mean amplitudes (circles) and os (bars) of AE signals generated from (a) D0.2P2n1

(black), D0.3P2n1 (red) and DO0.5P2n1 (green), and (b) D0.8P2n1 (black) and D1.2P2n1 (red).

Figure A3. First three roots (first: black, second: red, third: green solid circles) of Equation (66)
evaluated at some «; values and polynomial fitting (sold lines). For the first roots, k;, = 1.555 —
0.076x; +7.09 x 10~2k2 — 4.20 x 1032 when ; < 15,and k;, = 0.652 —9.95 x 103 x; when ; > 15.
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Figure A5. Observed mean amplitudes (solid circles) and simulated maximum u, displace-
ments (lines): (a) D0.3P2n1 (black) and D0.3P4n1 (red), (b) D0.5P2n1 (black), D0.5P4n1 (red) and
(c) D0.8P2n1 (black) and D0.8P4n1 (red). In the simulation, x, = 9, and FRS = 250 N/m? for P4 and
91 N/m? for P2. The simulated values were multiplied by 8.77 x 107 mV/m for D0.3P2 and D0.3P4,
2.70 x 108 mV/m for D0.5P2 and D0.5P2, and 4.05 x 10® mV /m for D0.8P2 and 1.47 x 10° mV/m

for D1.2P4.
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