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Abstract: Current construction codes require detailed analyses for structural retrofitting, which must
consider performance during seismic events. Therefore, the computational models used to evaluate
existing infrastructure require nonlinear structural analysis and damage estimates. For structural
retrofitting, nonlinear computational modeling must represent the connectivity between existing and
new elements. This study proposes recommendations on structural modeling based on fiber elements
to represent reinforced concrete (RC) moment frames retrofitted with mortar walls reinforced with
steel wire mesh. For this purpose, capacity curves of moment frames retrofitted with mortar walls
were calculated by hand with the Bernoulli–Euler beam theory, moment–curvature analyses, and
a plastic hinge model. Then, these capacity curves were used to calibrate the connectivity and
constraint conditions in fiber models between the existing frame and the new wall required to capture
the performance of the retrofitted structure. The study found that, for a single wall connected
with top and bottom frame border elements, the capacity curves from fiber models underestimate
stiffness, maximum strength, and residual strength. These estimation issues are reduced by including
intermediate connectivity nodes between the top and bottom frame where rigid link constraints
connect the existing frame with the new wall.

Keywords: fiber modeling; capacity curve; moment frame retrofit; mortar wall; steel wire mesh

1. Introduction

RC moment frames are a typical lateral load-resisting system widely used for decades.
Modern codes allow the use of RC moment frames in high seismic regions as long as they
implement special design detailing (for example, beam–column joint design) to achieve
adequate lateral resistance during a seismic event [1]. Moreover, existing infrastructure
was designed with previous codes that do not meet current design requirements. Existing
structures that use RC moment frame systems are very flexible, so they tend to exceed
current code drift limits. Furthermore, the structural response of these flexible structures
is highly influenced by masonry division panels, which increase the overall lateral frame
strength and may induce local failures [2].

On the other hand, RC shear walls perform better than RC moment frames [3,4]. In a
dual system (shear walls and moment frames), shear walls may prevent building damage,
even though the frame elements are insufficient to support lateral loads [5]. Furthermore,
shear walls reduce drifts and increase structural redundancy, but they must have sufficient
strength, stiffness, and deformation capacity [6].

In addition to conventional shear walls, some variations of this system have been de-
veloped. For example, thin lightly reinforced concrete walls have been used in the last two
decades to brace mid-to-high-rise buildings in some Latin American countries [7–9]. This
alternative system uses walls between 80 to 100 mm thick with a single steel reinforcement
layer of welded wire mesh.
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Similarly to the lightly reinforced concrete walls system, an approach has been used
to retrofit moment frame structures by jacketing the masonry infill panels between the
frames with thin mortar walls. Some studies of moment frame systems filled with confined
masonry and retrofitted mortar walls have been carried out to characterize the performance
of this approach [10–13]. It has been observed that the jacketing of confined masonry
with mortar walls reinforced with steel wire mesh is an effective technique for improving
structural performance [10,11].

For practical applications in structural design, the retrofit of existing structures requires
predictions made with nonlinear structural models that must address the connectivity
between existing and new elements. Moreover, mortar walls have different material
properties than frame border elements made with concrete and reinforcing steel. The new
transverse wall section of the border frame columns connected by a mortar wall web, will
need to consider the new material properties to reach equilibrium. Therefore, calibrating
the nonlinear computational model used in the structural analysis of moment frames
retrofitted with mortar walls requires a verification of the connectivity and equilibrium of
the system.

This study proposes connectivity and constraint conditions for moment frame systems
retrofitted with mortar walls and modeled with fiber elements with different material
properties for existing and new elements. The connectivity and constraint conditions are
calibrated based on benchmark capacity curves obtained by Bernoulli–Euler beam theory,
moment–curvature analysis, and the plastic hinge model proposed by Priestley et al. [14].
The structural program SeismoStruct was used to develop fiber models [15], including wall
aspect ratios (H/Lw) of 1, 2, and 3.

The study found that using a single wall element to connect the top and bottom frame
border elements with a rigid link constraint condition underestimates maximum strength,
stiffness, and residual strength. A solution was proposed to improve the capacity prediction
by including at least one intermediate connectivity node at the wall at mid-height, where
the lateral columns are connected to the wall with rigid links. This approach improves
the prediction of the capacity curve because it better represents the Bernoulli–Euler beam
theory that plane sections must remain plain. Finally, the calibration made in this study
gives guidance for nonlinear models of RC moment frames retrofitted with mortar walls,
which are required for evaluating and retrofitting existing infrastructure.

Research Significance

This study proposes an improved method for modeling the connectivity and constraint
conditions for nonlinear fiber elements of RC moment frames retrofitted with mortar walls
reinforced with steel wire mesh. The modeling results are important as they show that the
capacity curves of the retrofitted wall system underestimate the maximum strength, initial
stiffness, and residual strength. The underestimation of the capacity curves from the model
is caused by insufficient connectivity and constraint conditions between the border frame
and the mortar wall elements.

2. Materials and Methods
2.1. Overview

Capacity curves obtained by hand calculation were carried out with moment–curvature
analyses and the plastic hinge model proposed by Priestley et al. [14]. The moment–
curvature considers a composite section made of border columns (existing elements) con-
nected to a mortar wall web (new element), so different constitutive materials are used
for concrete and steel of each type of element. Moreover, the border columns with the
mortar wall work together like a shear wall made of different materials. The capacity
curves obtained by this approach were used as a benchmark to calibrate the required
connectivity and constraint conditions of nonlinear fiber elements to represent RC moment
frame systems retrofitted with mortar walls. The computational models were developed
with SeismoStruct [15], and H/Lws of 1, 2, and 3 were evaluated. For each H/Lw, a



Appl. Sci. 2023, 13, 9973 3 of 23

different discretization in the wall height was considered. For example, the wall height was
discretized in 2, 3, and 4 elements by including additional connectivity nodes at the border
columns and the mortar wall web for each location where the wall height was divided.
Moreover, the additional connectivity nodes were used to connect the border columns and
the mortar wall web by including rigid links at the different sections generated by the
discretization of the wall height. Finally, the computational capacity curves were compared
with the benchmarks regarding strength, stiffness, strength degradation, and convergence
issues.

2.2. Retrofit Description

The retrofit of moment frames with mortar walls is applied to frames with masonry
infill panels. The masonry between the frame is used to attach layers of steel wire mesh
on both sides, and a thin layer of mortar (3 to 5 cm) covers the steel wire mesh, as shown
in Figure 1. This approach is not just a jacketing of the masonry, so the mortar wall must
ensure the connection with all the frame elements by steel rods with sufficient development
length. Since the existing elements (moment frame) and the new elements (mortar walls)
provide a good connection, the system result is a shear wall made of different constitutive
materials. The shear wall requires special detailing at its base because the foundation
beneath also requires retrofitting to support the new conditions (shear wall instead of
moment frame). This study assumes that the moment frame and mortar wall interface has
sufficient steel rods to ensure connectivity (steel–concrete interface is considered perfect).
Moreover, it is also assumed that the shear strength of the wall is larger than the flexural
strength to prevent shear failure.
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Figure 1. Retrofit of moment frame with mortar wall. 
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Figure 1. Retrofit of moment frame with mortar wall.

2.3. Transverse Section Geometry

The analyzed shear wall is 2.6 m in length, and three different heights were considered
(2.6 m, 5.2 m, and 7.8 m). Thus, this study evaluates three different H/Lws (1, 2, and
3). The frame has 0.25 m square columns with eight No.12 longitudinal reinforcing bars.
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Additionally, the columns have one No.10 stirrup every 0.1 m. The masonry infill panel
was disregarded because it does not provide structural capacity; this masonry keeps the
steel wire mesh in place before the mortar is cast. The influence of the masonry infill
panel was evaluated by comparing cases with and without the masonry for three masonry
compression strengths (f’m = 1 MPa, f’m = 10 Mpa, and f’m = 30 MPa). Structural masonry
has values of f’m between 10 Mpa and 30 Mpa [16], but the masonry used for partition
purposes has small f’m values of around 1 Mpa [17]. This study focuses on non–structural
masonry utilized for partition purposes. Based on the findings on the influence of masonry,
which are presented in the results section of this document, the masonry infill panels were
excluded from the analysis. The mortar covers a 30 mm layer at each side of the masonry, so
a mortar wall of 60 mm is built between the frame elements. A steel wire mesh of 6 mm bars
is spaced every 0.1 m for transverse and longitudinal reinforcement. Figure 2 summarizes
the geometry for the shear wall obtained after the retrofit.
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Figure 2. Transverse section geometry.

2.4. Material Properties

Frame elements connected by mortar wall elements work as a shear wall with different
constitutive materials. For example, Figure 3 presents two constitutive materials used for
steel in the composite section. The reinforcing steel used in the border frame elements is
characterized by a yield stress of 420 Mpa and a rupture strain of 10% (standard parameters
for Grade 60 steel). On the other hand, the steel wire mesh used as reinforcement in the
mortar wall has a larger yield stress of 470 Mpa, but the rupture strain reduces ten times
to 1%. The characteristic values presented in Figure 3 were obtained experimentally for
typical steel materials available commercially. The experimental constitutive steel materials
were approximated with bilinear functions as presented in Figure 3 for simplicity.
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Figure 3. Steel constitutive models.

Similarly, the concrete material differs for frame elements and the mortar wall (see
Figure 4). The concrete material for the border frame elements has a higher maximum com-
pression stress (f’c) than the mortar wall web; a typical value of 20.6 MPa was considered
in this study. Due to the construction process, the concrete used to cover the masonry infill
panels cannot have coarse aggregates. Thus, the material is more mortar-like than typical
concrete and results in lower f’c values (an f’c of 13.7 MPa was used in this study). The
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concrete elastic modulus (Ec) also differs depending on the f’c. For example, in this study,
the Ec was 19,185 MPa for the frame elements and 14,504 MPa for the mortar walls.
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2.5. Moment–Curvature Analysis

The moment–curvature analysis considers the transverse section presented in Figure 2.
The constitutive materials shown in Figure 3 are used for steel. Additionally, the concrete
has an elastic response before steel yielding (see Figure 4). On the other hand, after steel
yielding, the concrete stress is represented by Whitney’s compression block. The values of
f’c and Ec for concrete and mortar were outlined in the previous section.

The moment–curvature relationship is obtained by hand calculations. The neutral
axis depth (c) is determined iteratively by reaching the equilibrium of internal forces for
different levels of strain demand. In the moment–curvature analysis, the strain distribution
of the transverse section follows the Bernoulli–Euler beam theory (the plain sections remain
plain). For the calculations, three damage levels were considered that corresponded to
longitudinal steel reinforcement strain demand [14]: yield, serviceability, and damage
control. Moreover, two additional strains are included to soften the moment–curvature plot.
The first (Control Strain 1) is an intermediate strain between yield and serviceability, and
the second (Control Strain 2) is an intermediate strain between serviceability and damage
control.

The calculation procedure for curvature includes the following steps: (1) a strain
demand is considered; (2) a neutral axis depth (c) is assumed; (3) the strain distribution, as
shown in Figure 5, is calculated with

εi =
εLS

d − c
(xi − c) (1)

where xi is a specific location in the transverse section from the edge with the maximum
compression, εi is the section strain at xi, εLS is the strain limit state, d is the section’s
effective height (distance from the most compressed fiber to the further steel layer in
tension), c is the neutral axis depth; (4) the internal forces (concrete compression (Cc), steel
compression (Cs), steel tension (Ts), and axial compression reaction (P)) are calculated
based on strain distribution and constitutive material properties; (5) the equilibrium of
internal forces is verified (Cc + Cs ≈ Ts + P); (6) the calculation from step 2 through step 5
is repeated until the equilibrium is satisfied; and (7) the curvature is calculated as the strain
distribution rate with

∅LS =
εLS

d − c
(2)

where ∅LS is the curvature at a specific damage state or limit state.
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As presented in Figures 6 and 7, the internal forces are calculated with elastic material
properties before steel yielding and with plastic material properties afterward. Moreover,
Figure 6 describes the cases when the neutral axis at steel yielding (cy) is larger or smaller
than the column section’s height (tf). Similarly, Figure 7 indicates the two possible stress
distributions in the transverse composite section for materials in the plastic range depend-
ing on the length of c. Once the equilibrium of internal forces is achieved by iterations, the
distribution of stresses and forces presented in Figures 6 and 7 is used to determine the
internal moment of the composite wall section.
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2.6. Calculation of Benchmarks Capacity Curves

With the information of the curvature (∅) at different damage states (yield (∅y),
serviceability(∅S), and damage control(∅DC)), this study uses the plastic hinge model
proposed by Priestley et al. [14] (see Figure 8) to calculate benchmark capacity curves. The
curvature for a specific damage state (∅LS) corresponds to the curvature at the wall base,
and it has an elastic component known as the yield curvature (∅y) and a plastic component
(∅p). Priestley et al. [14] simplified the actual curvature distribution to a triangle elastic
and a rectangle plastic curvature distribution, as presented in Figure 8. The rectangular
curvature distribution corresponds to a plastic hinge model with a plastic hinge length (Lp)
calculated with

Lp = k ∗ He + 0.1 ∗ Lw + Lsp (3)

k = 0.2 ∗
(

fu

fy
− 1

)
≤ 0.08 (4)

Lsp = 0.022 ∗ fye ∗ dbl (5)

He = 0.75 ∗ H (6)

where Lp is the plastic hinge length, He is the effective wall height, Lw is the wall length,
Lsp is the length of strain penetration into the foundation, fu is the steel ultimate strength,
fy is the steel yield strength, dbl is the steel reinforcing diameter, and H is the wall height.
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Using the simplified curvature distribution and Mohr’s second theorem, the lateral
displacement at the top of the wall is calculated with

∆LS = ∆y + ∆p (7)

∆y =
∅y ∗

(
H + Lsp

)2

3
(8)

∆p = Lp ∗ ∅p ∗ H (9)

where ∆LS is the lateral displacement corresponding to a limit state, ∆y is the elastic
displacement at the top of the wall, and ∆p is the plastic displacement at the top of the wall.

The plastic hinge model proposed by Priestley et al. [14] does not consider shear
deformations. As presented in Figure 8, this model considers bending deformations based
on curvature distribution. The current study covers mortar walls with shear strength larger
than flexural strength, so shear failure is prevented (it is assumed that shear deformations
are elastic at the mortar wall web). Therefore, after forming the plastic hinge at the wall base,
the shear contribution is reduced gradually compared with the bending contribution. The
influence of bending and shear deformations was evaluated for different aspect ratios and
different displacement ductilities (µd) to assess their contribution to the wall displacement
at the top (∆). This displacement, which considers bending and shear deformations, was
calculated with

∆ = ∆b + ∆s (10)

∆b = ∆LS = ∆y + ∆p (11)

∆s =
6
5

∗ H
G ∗ A

∗ F (12)

where ∆ is the wall displacement at the top (includes bending and shear contributions); ∆b
is the bending contribution, which is the same as ∆LS; ∆s is the elastic shear displacement
contribution; G is the shear modulus; A is the mortar wall web transverse section; and F is
the lateral strength.

The mortar wall web is the only element considered in the shear deformation contri-
bution since this study assumes this element has sufficient shear strength to prevent shear
failure. On the other hand, the masonry in the web is not considered because it has a shear
failure at small drift values. For example, low-strength lightweight masonry infill panels
would reach shear failure at story drifts around 0.005 [14].
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Since the shear deformation is assumed elastic for this study (see Equation (12)), this
component would be constant for benchmark and computational capacity curves. There-
fore, in the following sections, the comparisons exclude the influence of shear deformations
and only focus on the bending contribution.

2.7. Validation of Benchmark Capacity Curves with Experimental Results

The plastic hinge model proposed by Priestley et al. [14] is an analytical model cali-
brated with experimental data for standard cases such as shear walls, columns, beams, and
bridge piles. However, the shear wall of this study is the result of a concrete moment frame
retrofit, which has different materials for the border elements and the wall web. Therefore,
the reliability of this analytical model is evaluated with an experimental test developed by
Albuja and Pantoja [18] at Centro de Investigación de la Vivienda from Escuela Politécnica
Nacional (CIV-EPN). Figure 9 presents the experimental test construction made by Albuja
and Pantoja [18].
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columns. (b) Wire mesh covered with mortar.

The experimental test provided by Albuja and Pantoja [18] uses the retrofit described
in this study. Still, the moment frame and the wall web connectivity was made just at
the column–wall interface (there are steel rods just at the column–wall interface). Despite
this test having steel wire mesh with horizontal and vertical wires, the vertical wires
do not contribute to the transverse section (see Figure 10a). For example, the absence
of steel rods at the base and top of the retrofit does not provide enough development
length to produce vertical wire tension. Therefore, the longitudinal steel reinforcement
contributing to the wall’s flexural strength is at the border columns (see Figure 10a). Finally,
the benchmark and the experimental capacity curves are compared based on the maximum
strength, stiffness, and residual strength. This comparison supports utilizing the analytical
benchmark capacity curves without experimental data for computational model calibration.

2.8. Computational Fiber Models

SeismoStruct, a finite element package capable of predicting the behavior of large
displacements, was used for mathematical modeling. Large displacements produce dam-
age concentration in the spatial frames under a static or dynamic load. Additionally,
SeismoStruct considers both geometric nonlinearities and material inelasticity [15].
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2.8.1. Materials

A uniaxial nonlinear model with constant confinement has been considered for the
concrete constitutive model, which follows the constitutive relationship proposed by Man-
der et al. [19] and cyclic rules proposed by Martinez-Rueda and Elnashai [20]. The confining
effects provided by lateral transverse reinforcement are incorporated using rules proposed
by Mander et al. [19]. These rules assume a constant confining pressure throughout the
stress–strain range [15].

Five parameters are required to define the concrete constitutive model in SeismoStruct.
These parameters are compressive strength (f’c), tensile strength (ft), modulus of elasticity
(Ec), strain at peak stress (
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For the steel constitutive material, SeismoStruct includes the Menegotto–Pinto
model [21]. Table 2 includes the parameters used in SeismoStruct to define the steel
constitutive model. These parameters are modulus of elasticity (Es), yield stress (fy), strain
hardening parameter (u), initial shape parameter of the transition curve (R0), calibration
coefficients of the shape of the transition curve (a1; a2), calibration coefficients of isotropic
hardening (a3; a4), fracture/buckling strain (
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2.8.2. Elements

The inelastic force-based plastic hinge frame element type (infrmFBPH), available in
SeismoStruct, was considered. This force-based 3D beam–column element is capable of
modeling space frame members with geometric and material nonlinearities. Moreover, this
element includes Gauss–Lobatto integration sections throughout its length to distribute
the inelastic response (see Figure 11). The integration sections are discretized in fibers that
have a uniaxial response based on the constitutive materials considered in the analysis.
For example, the sectional stress–strain state of beam–column elements is obtained by
integrating the nonlinear uniaxial material response of the individual fibers at each section.
Furthermore, the infrmFBPH element concentrates the inelasticity within a fixed length
at each end of the element, so this element type reduces analysis time and convergence
issues [15].
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2.8.3. Fiber Transverse Sections

SeismoStruct has no composite section option to define different material properties
in a wall fiber transverse section. Therefore, the border element (frame) and the web
(mortar wall) sections are defined individually, as presented in Figure 12. The geometry,
concrete materials, and steel reinforcement materials (transverse and longitudinal) used
in the computational model sections are the same as in the benchmark capacity curve
calculation (Figure 2). For example, Figure 12a shows that the border columns consider a
cover (unconfined concrete), core (confined concrete), and steel reinforcement. On the other
hand, Figure 12b indicates that the wall has mortar (unconfined concrete) and steel wire
mesh. The number of fibers used in the integration sections was 58 for the border columns
and 98 for the web mortar wall (program default discretization).
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2.8.4. Plastic Hinge Length

As mentioned before, infrmFBPH elements concentrate the inelastic response at the
ends of the element. Therefore, this type of element has plastic curvature concentration
at the locations of the element’s highest demands, and the plastic curvature distribution
length can be calculated with the plastic hinge length model proposed by Priestley et al.
model [14]. In SeismoStruct, this length is specified as a percentage of the wall height and
was calculated with Equation (3). Table 3 summarizes the calculation of plastic hinge length
for the three H/Lws utilized in this study.

Table 3. Plastic hinge length.

Parameter Unit H/Lw=1 H/Lw=2 H/Lw=3

H m 2.600 5.200 7.800
He m 1.950 3.900 5.850
fye MPa 420.000 420.000 420.000
fu MPa 570.000 570.000 570.000

dbl m 0.012 0.012 0.012
Lsp m 0.111 0.111 0.111

k - 0.071 0.071 0.071
Lw m 2.600 2.600 2.600
Lp m 0.510 0.649 0.789
Lp % 19.622 12.489 10.112

2.8.5. Constraints

Since border columns and the web mortar wall become one element, which works as a
shear wall after retrofitting, the computational model must represent the inelastic response
of the composite section of the new element (shear wall). In computational programs,
the walls and the border columns are connected by rigid link constraints. For example,



Appl. Sci. 2023, 13, 9973 13 of 23

the SeismoStruct default connection option uses one rigid link constraint at the top of
the elements. Additional constraint conditions are included for calibration purposes to
improve capacity curve estimations.

For this matter, the elements are discretized throughout the height to include additional
connectivity nodes for defining intermediate rigid link constraints between the top and
bottom of the wall. For example, Figure 13 presents discretization 1, corresponding to one
intermediate rigid link constraint. For discretization 1, the border columns and the web
mortar wall are discretized in the middle to provide connectivity nodes for the constraint
definitions. As presented in Figure 13, the nodes at mid-height are used to define an
additional rigid link constraint. The wall nodes are master nodes, and the nodes at the
border columns are slave nodes (Figure 13). Similarly, two other discretization methods,
discretization 2 (two intermediate rigid links) and discretization 3 (three intermediate rigid
links), were evaluated in this study as presented in Figure 14.
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3. Results
3.1. Moment–Curvature Diagram

Table 4 summarizes the five moment–curvature coordinates (M,∅) used to plot the
moment–curvature diagram for the transverse section described in Figure 2. Each coor-
dinate has a corresponding damage state, tension steel strain, neutral axis depth, and
internal force equilibrium. Two intermediate analysis points (control strains) were included
between limit states to soften the moment–curvature diagram. Figure 15 presents the
moment–curvature diagram obtained by plotting the five (M,∅) coordinates presented in
Table 4.
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Table 4. Results from the moment–curvature analysis.

Strain Demand

Steel Strain Neutral Axis
Depth

Compression
Forces Tension Forces Curvature Moment

(
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The shear wall (the border columns combined with the mortar wall) reaches a maxi-
mum strength between the steel yielding and serviceability limit state, and the serviceability
limit state occurs at the initiation of strength degradation. This behavior is unlike that of
conventional RC shear walls (walls with the same material at the border and web sections).
In the case of RC moment frames retrofitted with mortar walls and steel wire mesh, the
mortar will crush first, and the steel wire mesh will fracture first. However, the frame
elements can sustain larger strains before being damaged, and they are the primary sup-
porting system. Moreover, the mortar wall is an element that can be replaced easily, so the
limit states in this study correspond to the materials used in the moment frame system.

Since the steel wire mesh fractures ten times earlier than the steel reinforcement, the
strength degradation initiates with the fracture of the steel wire mesh (longitudinal wires).
However, the strength stabilizes after the fracture of most of the longitudinal wires located
close to the border columns. After this condition, the strength is sustained mainly by the
steel reinforcement of the border columns. Figure 15 shows that the damage control limit
state may be reached after strength stabilizes. Still, this behavior is possible only if the
mortar wall reinforced with steel wire mesh does not experience shear failure.

3.2. Benchmarks Capacity Curves

The benchmark capacity curves were calculated with the moment–curvature dia-
gram presented in Figure 15 and the plastic hinge model proposed by Priestley et al. [14].
Figure 15 is the same for all the H/Lws considered in this study, but the capacity curves
differ for each case. For example, Figure 16 shows the benchmark capacity curves for each
H/Lw. It can be seen that a higher H/Lw (flexible walls) corresponds to lower lateral
strength and initial stiffness but has a larger displacement capacity. On the other hand,
short walls (H/Lw = 1) have the largest strength and initial stiffness, but the displacement
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capacity reduces. Additionally, the wall with H/Lw = 1 has the largest drop from the maxi-
mum strength to residual strength, while the wall with H/Lw = 3 has a softer transition
from the maximum strength to residual strength. As mentioned, the capacity curves can
reach a lateral displacement corresponding to the damage control limit state only if the
wall does not experience shear failure. Thus, a detailed capacity design of the wall must be
carried out to avoid undesirable failure modes like shear failure.
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3.2.1. Shear Deformation Influence

Figure 17 compares capacity curves with and without the influence of shear deforma-
tions. The case of H/Lw = 1 is the most sensitive, and the case of H/Lw = 3 is the least
sensitive. As mentioned, the mortar wall web is the only element considered in verifying
shear deformation influence since this study assumes that this element has sufficient shear
strength to prevent shear failure.
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This study addresses cases where shear failure does not occur (shear strength > flexural
strength), and the shear deformation is assumed elastic. Figure 18 compares the bending
and shear deformation contributions in the wall top displacement for different µd and
H/Lw values from short to tall walls. As expected, the displacement in short walls has a
larger shear deformation contribution (especially for small displacements). For example,
Figure 18 shows that shear deformation contributes 41% of the total displacement for the
wall with H/Lw = 1 (short wall) and µd = 1 (small displacements), and this percentage
reduces to 15% and 7% for H/Lw = 2 and H/Lw = 3, respectively.
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Moreover, shear displacement components reduce with the increment of µd. For
example, Figure 18 shows that the short wall reduces the shear deformation contribution in
the wall displacement from 41% to 5%. Similarly, the walls with H/Lw = 2 and H/Lw = 3
reduce the shear contribution from 15% to 2% and 7% to 1%, respectively. Once the
displacement includes a plastic component from the plastic hinge at the wall base, the
flexural contribution increases its influence (see Figure 18).

3.2.2. Masonry Infill Panels Contribution

The benchmark capacity curves presented in Figure 19 include cases with and without
the influence of masonry. The masonry was implemented in calculating the benchmark
capacity curves by including an effective additional area in the wall web with three different
f’m values (1 MPa, 10 MPa, and 30 MPa). The masonry may contribute to the flexural
strength of the wall. However, the masonry has a shear failure at small displacements, and
this study focuses on large displacements where the plastic hinge is developed at the wall
base. Therefore, it is assumed that the masonry does not contribute to shear deformations
for µd > 1, but the influence on the flexural strength may be evaluated.
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Figure 19. Infill panel masonry contribution in benchmark capacity curves.

Figure 19 presents the benchmark capacity curves with and without masonry, and
it is observed that masonry does not influence the capacity curve for short and tall walls
(capacity curves coincide with each other). While performing the moment–curvature
analysis for the wall, the neutral axis depth is observed to be larger than the column
height (c > tf) for the yielding limit state. Therefore, for small displacements, the masonry
contributes to flexural strength (see Figure 20a). On the other hand, for large displacements,
the neutral axis depth is smaller than the column height (c < tf), so masonry does not
contribute (see Figure 20b). Table 5 presents numerical values of this variation, and it is
observed that the influence is insignificant for maximum flexural strength, stiffness, and
residual strength. Therefore, it is recommended to disregard the masonry when modeling.
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Table 5. Infill panel masonry contribution based on maximum strength, stiffness, and residual
strength.

Case of Study
Maximum
Strength Error Stiffness Error Residual

Strength Error

(kN) (%) (kN/m) (%) (kN) (%)

H
/

Lw
=

1

Capacity curve (without
considering the masonry)

558.927 - 166,181.778 - 450.876 -

Capacity curve (considering
masonry with f’m = 1 MPa)

558.932 0.00 166,221.205 0.024 450.880 0.00

Capacity curve (considering
masonry with f’m = 10 MPa)

558.932 0.00 166,552.874 0.223 450.880 0.00

Capacity curve (considering
masonry with f’m = 30 MPa)

558.932 0.00 167,171.707 0.596 450.880 0.00

H
/

Lw
=

3

Capacity curve (without
considering the masonry)

186.309 - 6504.788 - 150.292 -

Capacity curve (considering
masonry with f’m = 1 MPa)

186.311 0.00 6506.331 0.024 150.293 0.00

Capacity curve (considering
masonry with f’m = 10 MPa)

186.311 0.00 6519.314 0.223 150.293 0.00

Capacity curve (considering
masonry with f’m = 30 MPa)

186.311 0.00 6543.536 0.596 150.293 0.00

3.2.3. Benchmark Capacity Curves vs. Experimental Tests

The benchmark capacity curves obtained with the assumptions and procedures de-
scribed in this document should be compared against experimental data. For this matter,
the tests developed by Albuja and Pantoja [18] were used to verify the reliability of this
study’s analytical benchmark capacity curves. Figure 21 presents the comparison between
the experimental and benchmark capacity curves. Different limit states such as yielding,
serviceability, and damage control are included in Figure 21 to compare the estimations of
the benchmark capacity curves based on the magnitude of the lateral displacement.
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Figure 21. Benchmark and experimental capacity curves comparison.

In Figure 21, it is observed that the benchmark capacity curve may address displace-
ments that are smaller than the damage control limit state. Nevertheless, the difference in
the capacity curves for displacements beyond damage control may occur for failure modes
other than flexural failure. For example, Albuja and Pantoja [18] describe the occurrence
of torsional displacement at the ultimate stages of the test. Thus, more experimental tests
are required to understand the limitations of the benchmark capacity curves of this study.
Table 6 presents the difference in percentage between the experimental results and the
benchmark capacity curves in terms of maximum strength and stiffness. The variations
presented in Table 6 indicate that the benchmark capacity curves may be used to calibrate
computational models without additional experimental data.

Table 6. Summary of comparison between benchmark capacity curve and experimental capacity
curve.

Case of Study
Stiffness Error

Maximum
Strength at

Serviceability
Error

Maximum
Strength at

Control Strain 2
Error

(kN/m) (%) (kN) (%) (kN) (%)

Benchmark capacity curve 122,116.13
0.20

313.57
3.13

332.94
5.85Experimental capacity curve 121,876.04 304.06 314.53

3.3. Model Calibration

Figure 22 compares the capacity curves obtained from computational models versus
benchmark capacity curves (for the different wall height discretizations and H/Lw val-
ues). In all the cases, the wall without discretization presents the worst prediction, and
discretized walls with intermediate rigid links improve the estimation. For example, walls
without discretization underestimate maximum strength, stiffness, and residual strength.
As presented in Figure 22, these prediction issues are reduced by discretizing and including
intermediate rigid links throughout the wall height.
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Figure 22. Capacity curves for each H/Lw.
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For walls with H/Lw = 2 and 3, Figure 22 shows qualitatively that discretization
1, 2, and 3 present similar improvements. On the other hand, short walls (H/Lw = 1)
may improve the estimation only for discretizations 1 and 2. Discretization 3 can have
convergence issues, which cause jumps in the capacity curve. The short wall (H/Lw = 1)
with discretization 3 has wall elements of 0.65 m in height and 2.1 m in length, resulting in
a small aspect ratio of 0.3. Therefore, discretizing elements with a small aspect ratio can
produce convergence issues.

In addition, Table 7 presents a quantitative summary of differences in relative per-
centage between the benchmark and computational capacity curves for parameters like
maximum strength, initial stiffness, and residual strength. The maximum relative errors
are 24.01%, 59.6%, and 55.09%, respectively. After including the intermediate rigid links,
the initial stiffness parameter, which had the largest error, improved from 59.6% to 6.49%.
On the other hand, the maximum strength, which had the smallest error range, improved
from 24.01% to 0.32%. In general, the wall with H/Lw= 1 had larger errors compared
to the wall with H/Lw = 3, which had the smallest errors. Based on the relative errors
presented in Table 7, there were significant improvements in the prediction by adding one
intermediate rigid link. Additionally, Table 7 shows that discretizations 2 and 3, in most
cases, can slightly improve the predictions made with discretization 1.

Table 7. Summary of differences in relative percentage between the benchmark and computational
capacity curves.

Case of Study
Maximum
Strength Error Stiffness Error Residual

Strength Error

(kN) (%) (kN/m) (%) (kN) (%)

H
/

Lw
=

1 Benchmark capacity curve 558.93 - 166,185.41 - 450.88 -
Model without discretization 439.73 21.33 67,138.20 59.60 227.91 49.45
Model with discretization 1 507.27 9.24 90,077.46 45.80 409.85 9.10
Model with discretization 2 543.22 2.81 97,038.72 41.61 422.50 6.29
Model with discretization 3 560.69 0.32 112,138.88 32.52 432.04 4.18

H
/

Lw
=

2 Benchmark capacity curve 279.46 - 21,649.63 - 225.44 -
Model without discretization 212.37 24.01 11,829.18 45.36 111.83 50.40
Model with discretization 1 261.79 6.33 15,737.77 27.31 207.48 7.97
Model with discretization 2 271.65 2.80 16,025.25 25.98 213.24 5.41
Model with discretization 3 271.12 2.99 15,707.89 27.45 211.96 5.98

H
/

Lw
=

3 Benchmark capacity curve 186.31 - 6504.93 - 150.29 -
Model without discretization 145.64 21.83 4378.05 32.70 67.49 55.09
Model with discretization 1 173.54 6.85 5973.42 8.17 139.72 7.04
Model with discretization 2 187.44 0.61 6082.98 6.49 144.08 4.13
Model with discretization 3 188.11 0.97 5821.39 10.51 143.44 4.56

4. Discussion

Current construction codes require detailed analyses for structural retrofitting consid-
ering the performance during seismic events. Therefore, the computational models used to
evaluate existing infrastructure require nonlinear structural analysis and damage estimates.
For structural retrofitting, nonlinear computational modeling is a widely used tool, but it
must represent the connectivity between existing and new elements. This study proposes
recommendations on the structural modeling of fiber elements to represent reinforced
concrete (RC) moment frames retrofitted with mortar walls reinforced with steel wire mesh.

A key finding of this study was that modeling these retrofitted moment frames with
insufficient connectivity nodes and constraint conditions leads to the inaccurate estimation
of capacity curves. SeismoStruct computational models do not have the option to define
shear wall transverse sections with different materials for border and web sections, so the
retrofitted shear wall was defined with individual border and web elements, which are
connected by default program options. This study found that insufficient connectivity and
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constraint conditions produce issues in the capacity curve prediction, like underestimating
maximum strength, initial stiffness, and residual strength. Improving the modeling of these
systems was required to better evaluate the performance of the existing moment frames
retrofitted with mortar walls reinforced with steel wire mesh.

Since the capacity curves are a primary tool for performance-based design and assess-
ment, accurate predictions using computational models are critical for implementation.
In general, there are standard procedures and models that work well for typical systems
(moment frames and shear walls), but new systems (like the one presented in this study)
cannot use the same procedure for standard systems. Therefore, the computational models
for nonstandard systems must be calibrated to achieve accurate and reliable results.

This study identifies an easy solution to reduce issues in capacity curve predictions
for fiber computational models of moment frame systems retrofitted with mortar walls
reinforced with steel wire mesh. By including at least one intermediate rigid link constraint
at mid-height on the shear wall, the capacity curves improve in terms of maximum strength,
initial stiffness, and residual strength (for quantitative improvement values, see Table 7).
By applying the recommendations of this study, more complex models like 3D structures
may estimate better capacity curves, and the data obtained from those analyses will be
reliable. However, it is also recommended that the results obtained in this study may be
validated with future experimental studies.

This study is limited to the following assumptions: the integrity between moment
frame and mortar wall is accomplished with sufficient steel rods, the shear strength of
mortar wall web is larger than the retrofit wall flexural strength (shear failure is pre-vented),
the masonry shear deformations do not contribute to large displacements, and the mortar
wall shear displacements are elastic. Therefore, the estimations made with this study’s
benchmark capacity curves and computational fiber models require additional verifications
with further experimental data to improve assessments of real failure modes observed after
strong earthquakes. Future research should address failure modes like wall shear failure,
mortar wall web concrete crushing, reinforcement buckling, steel rod slip at connectivity
interfaces, and wall out-of-plane displacements.

5. Conclusions

For structural retrofitting, nonlinear computational modeling is a widely used tool,
but it needs to represent the connectivity between exiting and new elements. Therefore, the
computational models for moment frames retrofitted with mortar walls reinforced with
steel wire mesh require calibration to obtain reliable capacity curves.

This study found that using a single wall element connecting top and bottom frame
border elements with rigid link constraint conditions underestimates maximum strength,
stiffness, and residual strength in the capacity curve of this type of retrofit.

It is proposed to include at least one intermediate connectivity node at the wall
mid-height, where the lateral columns are connected to the wall with rigid links. This
approach improves the prediction of the capacity curve because it better represents the
Bernoulli–Euler beam theory (the plane sections remain plain).

The calibrated wall with H/Lw = 1 is the one with larger errors, and the wall with
H/Lw = 3 has smaller errors. Based on the relative errors obtained in this study, significant
improvements in the capacity curve predictions were observed by just adding one interme-
diate rigid link. Moreover, by including more than one intermediate rigid link, it results in
slight improvement from the previous prediction.

Applying the procedure presented in this study for wall discretizations corresponding
to elements with an aspect ratio close to 0.3 will produce convergence issues.
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