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Featured Application: This study applies to object capture of traditional live streaming scene frames
to help the live e-commerce field to obtain more data to provide more marketing strategies.

Abstract: Nowadays, the commercial potential of live e-commerce is being continuously explored,
and machine vision algorithms are gradually attracting the attention of marketers and researchers.
During live streaming, the visuals can be effectively captured by algorithms, thereby providing
additional data support. This paper aims to consider the diversity of live streaming devices and
proposes an extremely lightweight and high-precision model to meet different requirements in live
streaming scenarios. Building upon yolov5s, we incorporate the MobileNetV3 module and the
CA attention mechanism to optimize the model. Furthermore, we construct a multi-object dataset
specific to live streaming scenarios, including anchor facial expressions and commodities. A series of
experiments have demonstrated that our model realized a 0.4% improvement in accuracy compared
to the original model, while reducing its weight to 10.52%.

Keywords: model optimization; object detection; attention mechanism; live streaming

1. Introduction

Live e-commerce has emerged as a prominent marketing trend, with its role as a
powerful sales-boosting tool being widely embraced globally [1]. Since 2019, leading global
retailers like Amazon and QVC have established their own live video shopping platforms.
In particular, China has witnessed a significant surge in the user base of live e-commerce,
reaching a staggering 469 million in 2022, indicating its immense commercial potential. The
utilization of real-time marketing strategies in live streaming scenarios effectively conveys
sensory cues to viewers, thereby stimulating consumer purchases [2]. Consequently, the
ability to capture these sensory cues during live streaming has become increasingly crucial.

In live streaming, the primary focus of consumers’ visual attention is centered around
the anchor and the commodity, as these factors play a crucial role in influencing their
purchasing decisions. To extract such visual cues effectively, object detection algorithms in
machine vision have proven to be invaluable. Machine vision, a mainstream field within
deep learning, encompasses various subfields including scene recognition, object recog-
nition, object detection, and video tracking [3]. Among these subfields, object detection
models based on deep learning have undergone significant advancements since the oc-
currence of Region-based Convolutional Neural Networks (R-CNN), resulting in notable
improvements in both accuracy and speed [4]. Traditional object detection techniques can
be partitioned into two groups: single-stage and two-stage object detection. The former,
such as RCNN, Fast RCNN, etc., are lightweight and offer fast processing speeds. Con-
versely, the other techniques achieve higher accuracy but require significant computational
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resources. The YOLO algorithm, widely employed in practical applications, serves as an
excellent example of a single-stage object detection technique that achieves comparable
accuracy to two-stage methods [5].

The introduction of attention mechanisms into machine vision has been a great success.
The attentional mechanism in general is a dynamic selection process, adaptively weighting
the input features, resulting in significant performance and accuracy improvements in
object recognition, but with a relatively larger computation. Attention mechanisms, such as
Shuffle Attention (SA), Convolutional Block Attention Module (CBAM), and Coordinate At-
tention (CA), have been developed to achieve lightweight enhancements and can be easily
integrated into mobile network modules [6]. In recent years, researchers have been actively
exploring lightweight modules such as GhostNet, MobileNetV3, and BlazeFace [7,8]. Addi-
tionally, many scholars have been attempting to refine the backbone section of YOLOv5
with lightweight modules and incorporate attention mechanisms, aiming to strike a balance
between accuracy and computational efficiency.

Qi et al. [9] integrated the Squeeze and Excitation (SE) attention mechanism into
YOLOv5 for tomato virus disease identification, achieving higher accuracy. However, this
modification resulted in an increased inference time compared to the original model, and
the attention mechanism consumed a significant amount of computational resources. Xu
et al. [10] substituted the YOLOv5 backbone network with ShuffleNetV2 and integrated the
CA attention mechanism, achieving a favorable balance between the indicators for mask
detection. Li et al. [11] enhanced the backbone of the YOLOv5 model using GhostNet and
incorporated the CA attention mechanism to detect anchor expressions in live streaming
scenarios, yielding promising results. In live streaming scenes, relying solely on facial
expressions is insufficient to capture the rich visual cues. To address this, we advise utilizing
a new dataset that contains both anchor facial expressions and commodities. Furthermore,
we enhance the YOLOv5 architecture by fusing it with MobileNetV3 and incorporating the
CA attention mechanism, we replace the mobilenetv3 module in the backbone and neck
layers, and continuously adjust the corresponding parameters to achieve the best results,
meanwhile adding the CA attention mechanism to further improve the accuracy of the
model. Our experiments demonstrate that the fusion of MobileNetV3 and CA attention
mechanisms leads to improved performance in YOLOv5 models. The major contributions
of our research are the following:

1. Our improved MobileNetV3-CA network architecture overcomes the limitations
of YOLOv5, providing more possibilities for lightweight models and its weight has been
greatly reduced, accompanied by an increase in precision.

2. We evaluate multiple model variations on a self-built dataset and find that our
improved model achieves the best balance of metrics with extreme lightness.

3. The combined recognition of anchor expressions and commodity categories offers more
efficient technical support for enhancing marketing strategies in the live e-commerce industry.

2. Related Work
2.1. Deep Learning and Emotion Recognition in Live Streaming Scenarios

Emotions, as fundamental human behaviors, play a significant role in information
processing and can trigger corresponding actions [12]. The impact of emotions on human
behavior has been commonly demonstrated among various domains such as online comments,
advertising marketing, TV shopping, and live commerce [13–15]. The generation of emotions
in live streaming scenarios is complex, with sensory cues being important factors in emotional
arousal. As a result, sensory marketing has gained increasing attention [16]. Some researchers
have focused on manipulating emotions through sensory cues, such as smell and music [17,18].
The influence of rich sensory stimuli on consumer emotions can lead to impulsive buying,
and it has been confirmed that impulsive buying behavior is primarily driven by emotions [2].
Therefore, it remains an important topic to explore how to evoke consumer emotions through
sensory cues to promote sales in live streaming environments.
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Emotion recognition has been provided favorable technical support by the develop-
ment of deep learning. The emergence of Convolutional Neural Networks (CNNs) has
made significant strides in object detection models that recognize emotions from facial
expressions [19]. Real-time or near real-time speech emotion recognition algorithms have
also greatly improved with the development of deep learning, moving away from old-
fashioned frameworks such as Hidden Markov Models (HMMs) and Gaussian Mixture
Models (GMMs) [20]. In live streaming scenarios, viewers are often attracted by the anchors
in the broadcasting room, and visual cues, as the most intuitive influencing factor, should
be carefully considered. According to the theory of emotional contagion [21], the emotions
of the anchor will undoubtedly exert a significant influence on the emotions of the audience
to a certain extent.

2.2. Application of Yolov5 Algorithm for Object Detection

Traditionally, feature extraction in object detection heavily relied on manual feature
design, which often resulted in poor generalization. However, with the emergence of
deep learning, Convolutional Neural Networks (CNNs) have emerged as the mainstream
framework for machine learning in object detection, thanks to their remarkable performance
and excellent feature extraction capabilities, starting from the introduction of R-CNN. One-
stage and two-stage algorithms are the two main types of deep learning-based object
detection algorithms. Firstly, one-stage algorithms directly predict the object’s coordinates
and class through regression, offering faster recognition speeds. On the other hand, two-
stage algorithms employ region generation for target classification and calibration, leading
to higher accuracy. However, the two-stage approach comes with increased computational
overhead, reducing the model’s speed and hindering real-time monitoring [22,23]. Since
2015, the YOLO (You Only Look Once) family of single-stage deep learning algorithms
has undergone continuous improvements. YOLO utilizes a convolutional neural network
architecture to determine the location and type of objects in an image, enabling high-speed
recognition. The yolov5 deep learning algorithm further enhances efficiency by adopting a
more lightweight network architecture, significantly reducing the weight and improving
the speed. The yolov5 family comprises four different architectures (YOLOv5x, YOLOv5l,
YOLOv5m, and YOLOv5s), allowing flexibility in adapting to various object detection
requirements by adjusting the extracted features’ width and depth [24].

YOLOv5s, the lightest variant in the YOLOv5 series, boasts the fastest recognition
speed and finds widespread application in various scenarios. Wang et al. [25] utilized a
YOLOv5s model with channel pruning to achieve remarkable results in fast apple fruit
detection. Guo et al. [26] optimized the backbone network of the YOLOv5s and integrated
the SE attention mechanism, significantly improving the model’s accuracy compared to
YOLOv5s and YOLOv4. Li et al. [27] employed YOLOv5s in an industrial setting for forklift
monitoring, enhancing the backbone section with the GhostNet and incorporating the SE
attention mechanism. Li et al. [11] pioneered the application of YOLOv5 in a live streaming
scenario for real-time monitoring of anchor expressions. The improved YOLOv5s model
incorporates the GhostNet module and the CA attention mechanism, achieving a superior
balance between precision and speed.

The previous YOLOv5 model has found extensive applications in various commodity
environments. However, as the live streaming scene is still a nascent industry, there is
significant potential to explore more applications for YOLOv5 in this domain. While
Li et al. [11] achieved effective recognition of anchor expressions through an improved
model, our focus extends beyond expressions to encompass other elements within the
live streaming scene. Therefore, the re-application of the model for further improvements
becomes particularly crucial.

2.3. The Development and Application of Attention Mechanism in Deep Learning

Inspired by human perception, the attention mechanism is implemented. When
humans visually perceive objects, they tend to focus on specific parts that are relevant
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or important to them. This selective observation allows humans to efficiently extract
important information from a substantial quantity of visual data using limited cognitive
resources. The attention mechanism mimics this process, enhancing the efficiency and
accuracy of perceptual information processing. It serves as an effective solution to tackle
the challenge of information overload. By incorporating the attention mechanism into
computer vision tasks, the substantial computational workload can be effectively reduced.
As a result, the attention mechanism has gained significant traction in the realm of deep
learning, becoming a standard component in neural network architectures [28].

Currently, the two most common attention mechanisms applied to machine vision are
spatial attention and channel attention [6]. The emphasis on the former is on the location
of the object within the deep learning information and spatially transforms this location
information. The spatial transformer network (STN) [29] is an example of spatial attention.
Additionally, channel attention emphasizes the content information of the object. The SE
network, introduced by Hu et al. [30], is a notable channel attention mechanism. The SE
attention module enhances target recognition by adaptively calibrating channel weights,
filtering important features, and using global average pooled features for computations.

As deep learning neural networks continue to evolve, researchers have developed
hybrid attention mechanisms that combine both spatial and channel attention to improve the
precision and efficiency of feature recognition within large feature maps [31]. The CBAM is
capable of feature map recognition through both spatial and channel attention. It starts by
applying global pooling operations to the feature map, generating channel attention features.
Subsequently, spatial attention features are generated by concatenating and downsampling
the channels. Finally, the input features are combined with the final features [32].

The CA mechanism integrates spatial coordinate information by embedding loca-
tion details into channel attention, decomposing channel attention into two parallel one-
dimensional feature encodings. This approach differs from CBAM as it does not forcibly
compress the channels. The two one-dimensional feature encodings allow for more com-
prehensive extraction of spatial information and optimize feature extraction efficiency [33].

Another efficient replacement attention mechanism is SA. SA combines channel at-
tention and spatial attention using shuffling units. This lightweight and efficient attention
mechanism has demonstrated better performance and lower complexity compared to
CBAM and SE attention mechanisms on public datasets [34].

3. Method
3.1. Data Pre-Processing

To enhance machine vision applications in live streaming scenarios, we have con-
structed expression–commodity datasets. In this process, we referred to well-known
datasets including CK+ and MMI, which contain video sequences capturing facial expres-
sions and are suitable for facial expression recognition and detection in videos [35,36].
While Li et al. [11] developed their own data pool to address the lack of anchor facial
expressions data in live e-commerce and we observed that professional anchors tend to
convey positive emotions to enhance the ambiance of the broadcasting room and boost
consumers’ purchase intention [37]. Based on this, we categorized anchor expressions into
two main categories: emotional and normal.

Regarding the selection of goods, given the diverse range of commodities available
in live streaming rooms, it is challenging to establish a direct connection between goods
and anchor expressions across multiple categories. Therefore, we divided the goods into
two categories: utilitarian and hedonic. Research on the hedonic and utilitarian categories
of goods primarily focuses on scale development, as the same commodity can exhibit
variations in both dimensions based on marketing strategies and subjective consumer
factors. To ensure the dataset’s generalizability, we employed the classification criteria
proposed by Voss et al. [38] and classified the goods within our dataset accordingly. We
selected representative goods to include in the final dataset to enhance its applicability.
Table 1 illustrates the composition of our commodity data.
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Table 1. Examples of utilitarian and hedonic commodities.

Utilitarian Hedonic

Milk, bread, cookies, raw meat, socks, underwear. . . High-grade liquor, luxury goods, cosmetics, high-grade leather boots. . .

3.2. Improved Yolov5s Model

To achieve our goal of an extremely lightweight model, we chose yolov5s, the weight-
less version, as the base network for improvement, on which we made a series of improve-
ments to achieve our desired results.

In our study, the improved model framework consists of four main components. First,
the feature map is entered in the input section, Then, the Backbone component optimizes
different input image features to obtain a large amount of semantic and location information.
Secondly, in the Neck structure, FPN and PAN are included, and FPN can fuse the features
extracted from the Backbone to enhance the semantic features. And the feature pyramid
structure of PAN enhances the ability of the model to convey precise location features,
which helps the model to be able to perform target detection at different scales. Finally, the
Prediction part is able to map the corresponding information to the corresponding images.

In summary, by leveraging the lightweight YOLOv5s model as a foundation and
implementing enhancements, including the replacement of the Backbone and Neck layers
with MobileNetV3 modules, as well as the integration of the CA mechanism, we have
achieved the successful development of an exceptionally lightweight model. Remarkably,
this model retains a high level of performance in object detection. For a visual representation
of the network architecture, please refer to Figure 1.
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3.2.1. MobileNetV3 Modules

MobileNet model is a lightweight CNN introduced by Google in 2017 [39]. It revo-
lutionizes the computation of convolutional layers by introducing Depthwise Separable
Convolution. The technique significantly reduces the model’s number parameters without
compromising accuracy.

Building upon the successes of MobileNetV1 and MobileNetV2, MobileNetV3 in-
corporates depth-separable convolutions and a residual structure with linear bottlenecks.
Additionally, it introduces the SE channel attention mechanism, which assigns higher
weights to important feature channels. To optimize network layers, MobileNetV3 combines
the NAS (Network Architecture Search) algorithm [40] and the NetAdapt algorithm [41].
NAS optimizes individual network layers to explore the global structure, while NetAdapt
locally optimizes network layers to determine the optimal number of convolutions.

In terms of network structure, MobileNetV3 brings significant improvements to the
tail structure. It removes layers before average pooling and employs 1 × 1 convolutions to
compute feature maps. This modification reduces computational effort and latency while
preserving high-level features. Furthermore, MobileNetV3 replaces the original swish
activation function with a new hard-swish function, which enhances the quantization
process and speeds up model inference:

Hard − swish[x] = x
ReLU6(X + 3)

6
(1)

The SE attention module in MobileNetV3 performs channel-wise pooling of the output
feature matrix. To generate output vectors, the pooled values are passed through two fully
connected layers. The former has a number of vectors that is one quarter of the quantity
of channels, and it applies the ReLU activation function. As for another, it employs the
h-swish activation function and produces an output with the same amount of channels.
The structure of MobileNetV3, as illustrated in Figure 2, incorporates the aforementioned
SE attention module.
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3.2.2. CA Attentional Mechanisms

In order to maintain high accuracy even after extreme compression, we have opted
to incorporate the CA mechanism, which encompasses both spatial and channel attention.
This mechanism significantly aids in precise object localization and identification. It lever-
ages 1D global pooling to gather directional feature maps in both horizontal and vertical
directions. This enhances the representation of learned features within mobile networks by
capturing location coordinates. The CA attention mechanism has garnered considerable
attention in the realm of mobile networks. Its flexibility and lightweight nature mean
that it can be easily integrated into classic building blocks of mobile networks, such as
MobileNetV3 modules.
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The encoding process of the CA attention mechanism consists of two main processes:
information embedding and attention generation. Firstly, in the process of coordinate
information embedding, the global pool is decomposed to ensure the long-range interaction
capture, and the channels are encoded along two horizontal vertical coordinates from two
spatial ranges of (H,1) and (1,W), respectively, and the output between two directions is
given by:

zh
m(h) =

1
W ∑0≤i≤W xm(h, i) (2)

zw
m(h) =

1
H ∑0≤j≤H xm(j, w) (3)

Afterwards, a one-dimensional direction-aware feature map is generated. This trans-
formation captures the long-range dependencies in one spatial direction, while preserving
the precise position information in another. In the process of coordinate attention gener-
ation, the output results of both directions are first sent to a shared 1 × 1 convolutional
transform function:

f = RELU
(

Fconv1×1

[
zh, zw

])
(4)

After that, f is divided into two independent tensors along the spatial dimension, and
a tensor of the same channel count as the input X is obtained by a 1 × 1 convolutional
transformation to obtain:

gh = σ
(

Fconv1×1

(
f h
))

(5)

gw = σ(Fconv1×1( f w)) (6)

Finally, the output expansions are used as attention weights to obtain the final
weighted attentional feature map:

ym(i, j) = xm(i, j)× gh
m(i)× gw

m(j) (7)

The CA attention mechanism avoids the compression of the tensor channel bits com-
pared to CBAM and retains more features, which will enable the model to achieve further
improvements in accuracy.

4. Experience
4.1. Data Set and Experimental Environment

In our research, we utilized a self-assembled dataset to evaluate and train the enhanced
model. The dataset comprises a total of 1844 images, encompassing four distinct target
types: utilitarian, emotional, normal, and hedonic.

For model deployment and experimentation, we used the lab hardware system shown
in Table 2, which includes an NVIDIA GeForce RTX 3090 GPU, an Intel(R) Xeon(R) CPU
E5-2680 v4 @ 2.40GHz, the PyTorch deep learning framework, and CUDA 11.6 hardware
acceleration.

Table 2. The lab hardware system of the training environment.

Item Item Value

Operation system Windows 10
CPU Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40 GHz
GPU NVIDIA GeForce RTX 3090

Hardware acceleration CUDA11.6

4.2. Experimental Results

To evaluate the capabilities of our model, we conducted a sequence of experiments
using a self-assembled data set on the hardware devices mentioned above. In this paper,
we adopted the commonly used metrics of precision and recall, which are represented by
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mAP@0.5 and mAP@0.5:0.95 [42]. They serve as indicators of the precision of the model.
Furthermore, to describe the lightweight degree of our model, we applied parameters such
as weights, GFLOPs, and the number of parameters, which provide strong evidence on a
range of model performances. Additionally, we introduced another performance measure
called precision density [43]. It is defined as the precision divided by the parameters.
It can distinctly illustrate the equilibrium between model weights and precision. This
criterion was utilized to measure the overall performance of our model. The results of our
experiments are presented in the Table 3:

Table 3. Experimental results of the yolov5s and the Yolov5s-MobileNetV3-CA model.

Model mAP@0.5
(%)

mAP@0.5:0.95
(%)

Weights
(MB) GFLOPs Parameters

(M)
Accuracy
Density Time (ms)

Yolov5s 0.976 0.716 14.4 15.8 7020913 0.139 14.9
Yolov5s-MobileNetV3-CA 0.98 0.713 1.9 2.1 738619 1.32 22.2

From the table above, we can observe that our improved model achieved a 0.4% in-
crease in accuracy compared to the yolov5s’s mAP@0.5, and the accuracy density improved
significantly by 849.64%. Furthermore, the size of our model was reduced to only 10.52%
of the original model’s size. It is important to note that our model sacrifices detection
speed to some extent, but for the application scenarios we designed, the trade-off between
extreme lightweight design and higher accuracy is well justified. During the training
process, we recorded variations in the mAP for each epoch in Figure 3 and the accuracy of
the improved model stabilizes with the original model after about 90 epochs; although the
improved model does not converge as effectively as the original model, the final outcomes
consistently exhibit stability and demonstrate slight improvements over the original model.
Figure 4 provides a visual representation that effectively contrasts the values of mAP0.5
and accuracy density for the two models, serving as a clear manifestation of the heightened
performance achieved by the improved model. Furthermore, Figure 5 presents a detailed
depiction of our model’s losses, effectively highlighting the exemplary convergence that
our model has achieved.
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The experimental results demonstrate the significant weight reduction in our model
compared to the original model with a small amount of accuracy improvement, which is
of great help in the application of live streaming scenarios. In the live streaming scenario,
the anchor’s facial expression has continuity, and neither the product nor the expression
changes instantaneously, so it is acceptable for our model to sacrifice a certain amount of
speed, as using less resources to obtain accurate live streaming information is the main
purpose of our model improvement.

4.2.1. Ablation Experiments

To provide a clearer illustration of the role played by different modules in the Yolov5s-
MobileNetV3-CA model, we performed a sequence of ablation experiments to evaluate
individual modules. The evaluated models include the YOLOv5s model, the replaced
model with the MobileNetV3, the YOLOv5s model with CA, and the improved model with
both the MobileNetV3 module and the CA attention mechanism.

From Table 4, we can observe that the incorporation of the MobileNetV3 led to a
significant decline in parameters and GFLOPs, and the model weights reduced from
14.4 MB to 1.8 MB, and the number of parameters reduced to 10.11% of the original size. The
accuracy of both the YOLOv5s model and the improved MobileNetV3 model is improved by
adding the CA attention mechanism, while the size of the model remains almost unchanged.
This highlights the effectiveness of the CA in enhancing model performance.
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Table 4. Ablation experiment results of each module.

Model mAP@0.5 (%) mAP@0.5:0.95 (%) Weights (MB) GFLOPs Parameters
(M)

Accuracy
Density

Yolov5s 0.976 0.716 14.4 15.8 7.020913 0.139
Yolov5s-CA 0.98 0.716 14.4 15.8 7.045521 0.139

Yolov5s-MobileNetV3 0.978 0.718 1.8 1.9 0.709883 1.37
Yolov5s-MobileNetV3-CA 0.98 0.713 1.9 2.1 0.738619 1.32

4.2.2. Comparison Experiments

To prove the efficacy of the CA attention mechanism further, we incorporated ad-
ditional attention mechanisms, such as CBAM and SA, into our network structure and
conducted a series of comparative experiments.

The results of the attention mechanism comparison experiments are displayed in
Table 5. It revealed that the addition of the CA had a substantial positive impact on the
model’s accuracy improvement. Conversely, the inclusion of CBAM and SA attention
mechanisms resulted in a significant decrease in model accuracy. Specifically, the model
with the CA attention mechanism achieved a 0.82% and 0.92% higher mAP@0.5 compared
to the models with CBAM and SA attention mechanisms, respectively. Moreover, the model
with the CA attention mechanism exhibited faster detection speed.

These findings strongly illustrate the effectiveness of our utilization of the CA attention
mechanism and emphasize its superiority over alternative attention mechanisms, such as
CBAM and SA, regarding accuracy enhancement and detection speed.

Table 5. Comparison experiment results of each module.

Model mAP@0.5 (%) mAP@0.5:0.95
(%)

Weights
(MB) GFLOPs Parameters (M) Accuracy

Density Time (ms)

Yolov5s-MobileNetV3-SA 0.971 0.711 1.9 2.1 0.738619 1.314 22.4
Yolov5s-MobileNetV3-CBAM 0.972 0.708 1.9 2.1 0.737549 1.317 22.7

Yolov5s-MobileNetV3-CA 0.98 0.713 1.9 2.1 0.738619 1.326 22.2

In addition, we visualized the training results of the models with the three different
attention mechanisms using heatmaps, as shown in Figure 6. This visualization technique
enables us to validate if the models are overfitted and provides insights into whether the
predictions are primarily driven by image features or influenced by the background.
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Through the heatmaps, we can observe that the model is effective in recognizing all
three objects in the picture, but is different. We observed that the allocation of attention in
the SA was relatively scattered, and the recognition of the target objects was not sufficiently
focused. Moreover, compared to CBAM, the CA was able to effectively concentrate its
attention on the recognized target objects without causing excessive dispersion.

This analysis indicates that the CA performs better in terms of focusing on the identi-
fied target objects and avoiding unnecessary dispersion, as compared to SA and CBAM.

5. Conclusions and Future Research

In our research, we aimed to construct an object detection model that can achieve
a remarkable balance between precision and lightweight design and applied it to live
streaming scenarios. We have enhanced the yolov5s framework by incorporating the Mo-
bileNetV3 structure for the optimization of the Backbone and Neck layers. Additionally,
we have introduced the CA attention mechanism to create an extremely lightweight model.
Through a series of experiments, we have demonstrated that our model achieves significant
improvements in terms of parameter reduction and weight while further enhancing accu-
racy. As a result, our model offers greater flexibility for deployment in various devices and
occupies minimal space in this application scenario. These advancements provide robust
technical support for a wide range of marketing strategies in live marketing. The selection
of MobileNetV3 for this study, in comparison to our previous model enhancements [11],
enabled us to achieve advancements in both the Backbone and Neck layers. This choice
also provided us with a broader scope for parameter experimentation, and the results have
proven this approach to be highly beneficial. The former model significantly contributed to
balancing various parameters including accuracy, weight, and speed. Building upon previ-
ous work, our refined model further emphasizes the importance of reducing model weight
and parameter count, making it exceptionally fitting for our application’s live streaming
scenario.

In future research, we aim to further optimize our model to address its detection
speed limitations. Additionally, we will explore additional sensory cues, including but
not limited to visual and auditory inputs, in live marketing strategies. The integration of
multimodality is a research direction that deserves attention. Our goal is to build a more
comprehensive object detection network specifically designed for live streaming scenarios.
This will provide marketers and researchers in the field of live streaming with reliable
technical support that meets diverse requirements and needs.

Author Contributions: Conceptualization, Z.L. (Zhenyu Li) and Z.L. (Zongwei Li); methodology, Z.L.
(Zhenyu Li); software, Y.Z.; validation, J.C., K.Q. and Z.L. (Zongwei Li); formal analysis, Z.L. (Zhenyu
Li); investigation, K.Q.; resources, Y.Z.; data curation, J.C.; writing—original draft preparation,
K.Q.; writing—review and editing, K.Q.; visualization, K.Q.; supervision, Z.L. (Zhenyu Li); project
administration, Z.L. (Zongwei Li). All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, Study on
the mechanism and spatial and temporal effects of international learning on the internationalization
speed of manufacturing enterprises, grant number 71974130.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: All data are publicly available.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2023, 13, 10170 12 of 13

References
1. Zheng, S.; Chen, J.; Liao, J.; Hu, H.L. What motivates users’ viewing and purchasing behavior motivations in live streaming: A

stream-streamer-viewer perspective. J. Retail. Consum. Serv. 2023, 72, 103240. [CrossRef]
2. Zhang, X.; Cheng, X.; Huang, X. “Oh, My God, Buy It!” Investigating impulse buying behavior in live streaming commerce. Int. J.

Hum. Comput. Interact. 2022, 39, 2436–2449. [CrossRef]
3. Morris, T. Computer Vision and Image Processing; Palgrave Macmillan Ltd.: London, UK, 2004; pp. 1–320.
4. Aziz, L.; Salam, M.S.B.H.; Sheikh, U.U.; Ayub, S. Exploring deep learning-based architecture, strategies, applications and current

trends in generic object detection: A comprehensive review. IEEE Access 2020, 8, 170461–170495. [CrossRef]
5. Diwan, T.; Anirudh, G.; Tembhurne, J.V. Object detection using YOLO: Challenges, architectural successors, datasets and

applications. Multimed. Tools Appl. 2023, 82, 9243–9275. [CrossRef] [PubMed]
6. Guo, M.H.; Xu, T.X.; Liu, J.J.; Liu, Z.N.; Jiang, P.T.; Mu, T.J.; Zhang, S.H.; Martin, R.R.; Cheng, M.M.; Hu, S.M. Attention

mechanisms in computer vision: A survey. Comput. Vis. Media 2022, 8, 331–368. [CrossRef]
7. Bazarevsky, V.; Kartynnik, Y.; Vakunov, A.; Raveendran, K.; Grundmann, M. Blazeface: Sub-millisecond neural face detection on

mobile gpus. arXiv 2019, arXiv:1907.05047.
8. Jin, R.; Xu, Y.; Xue, W.; Li, B.; Yang, Y.; Chen, W. An Improved Mobilenetv3-Yolov5 Infrared Target Detection Algorithm Based on

Attention Distillation. In International Conference on Advanced Hybrid Information Processing; Springer International Publishing:
Cham, Switzerland, 2021; pp. 266–279.

9. Qi, J.; Liu, X.; Liu, K.; Xu, F.; Guo, H.; Tian, X.; Li, M.; Bao, Z.; Li, Y. An improved YOLOv5 model based on visual attention
mechanism: Application to recognition of tomato virus disease. Comput. Electron. Agric. 2022, 194, 106780. [CrossRef]

10. Xu, S.; Guo, Z.; Liu, Y.; Fan, J.; Liu, X. An improved lightweight yolov5 model based on attention mechanism for face mask
detection. In Artificial Neural Networks and Machine Learning–ICANN 2022, Proceedings of the 31st International Conference on Artificial
Neural Networks, Bristol, UK, 6–9 September 2022, Part III; Springer Nature: Cham, Switzerland, 2022; pp. 531–543.

11. Li, Z.; Song, J.; Qiao, K.; Li, C.; Zhang, Y.; Li, Z. Research on efficient feature extraction: Improving YOLOv5 backbone for facial
expression detection in live streaming scenes. Front. Comput. Neurosci. 2022, 16, 980063. [CrossRef]

12. Clore, G.L.; Schwarz, N.; Conway, M. Affective causes and consequences of social information processing. Handb. Soc. Cogn. 1994,
1, 323–417.

13. Deng, B.; Chau, M. The effect of the expressed anger and sadness on online news believability. J. Manag. Inf. Syst. 2021, 38,
959–988. [CrossRef]

14. Bharadwaj, N.; Ballings, M.; Naik, P.A.; Moore, M.; Arat, M.M. A new livestream retail analytics framework to assess the sales
impact of emotional displays. J. Mark. 2022, 86, 27–47. [CrossRef]

15. Lin, Y.; Yao, D.; Chen, X. Happiness begets money: Emotion and engagement in live streaming. J. Mark. Res. 2021, 58, 417–438.
[CrossRef]

16. Krishna, A. An integrative review of sensory marketing: Engaging the senses to affect perception, judgment and behavior. J.
Consum. Psychol. 2012, 22, 332–351. [CrossRef]

17. Gardner, M.P. Mood states and consumer behavior: A critical review. J. Consum. Res. 1985, 12, 281–300. [CrossRef]
18. Kahn, B.E.; Isen, A.M. The influence of positive affect on variety seeking among safe, enjoyable products. J. Consum. Res. 1993, 20,

257–270. [CrossRef]
19. Ng, H.W.; Nguyen, V.D.; Vonikakis, V.; Winkler, S. Deep learning for emotion recognition on small datasets using transfer learning.

In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, Seattle, WA, USA, 9–13 November 2015;
pp. 443–449.

20. Abbaschian, B.J.; Sierra-Sosa, D.; Elmaghraby, A. Deep learning techniques for speech emotion recognition, from databases to
models. Sensors 2021, 21, 1249. [CrossRef]

21. Barsade, S.G. The ripple effect: Emotional contagion and its influence on group behavior. Adm. Sci. Q. 2002, 47, 644–675.
[CrossRef]

22. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In
Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
IEEE: Columbus, OH, USA, 2014; pp. 580–587. [CrossRef]

23. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE T.
Pattern Anal. 2017, 39, 1137–1149. [CrossRef]

24. Glenn, J. yolov5. Git Code. 2020. Available online: https://github.com/ultralytics/yolov5 (accessed on 4 March 2023).
25. Wang, D.; He, D. Channel pruned YOLO V5s-based deep learning approach for rapid and accurate apple fruitlet detection before

fruit thinning. Biosyst. Eng. 2021, 210, 271–281. [CrossRef]
26. Guo, K.; He, C.; Yang, M.; Wang, S. A pavement distresses identification method optimized for YOLOv5s. Sci. Rep. 2022, 12, 3542.

[CrossRef]
27. Li, Z.; Lu, K.; Zhang, Y.; Li, Z.; Liu, J.B. Research on Energy Efficiency Management of Forklift Based on Improved YOLOv5

Algorithm. J. Math. 2021, 2021, 5808221. [CrossRef]
28. Niu, Z.; Zhong, G.; Yu, H. A review on the attention mechanism of deep learning. Neurocomputing 2021, 452, 48–62. [CrossRef]

https://doi.org/10.1016/j.jretconser.2022.103240
https://doi.org/10.1080/10447318.2022.2076773
https://doi.org/10.1109/ACCESS.2020.3021508
https://doi.org/10.1007/s11042-022-13644-y
https://www.ncbi.nlm.nih.gov/pubmed/35968414
https://doi.org/10.1007/s41095-022-0271-y
https://doi.org/10.1016/j.compag.2022.106780
https://doi.org/10.3389/fncom.2022.980063
https://doi.org/10.1080/07421222.2021.1990607
https://doi.org/10.1177/00222429211013042
https://doi.org/10.1177/00222437211002477
https://doi.org/10.1016/j.jcps.2011.08.003
https://doi.org/10.1086/208516
https://doi.org/10.1086/209347
https://doi.org/10.3390/s21041249
https://doi.org/10.2307/3094912
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/TPAMI.2016.2577031
https://github.com/ultralytics/yolov5
https://doi.org/10.1016/j.biosystemseng.2021.08.015
https://doi.org/10.1038/s41598-022-07527-3
https://doi.org/10.1155/2021/5808221
https://doi.org/10.1016/j.neucom.2021.03.091


Appl. Sci. 2023, 13, 10170 13 of 13

29. Jaderberg, M.; Simonyan, K.; Zisserman, A.; Kavukcuoglu, K. Spatial transformer networks. In Proceedings of the 28th
International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; Volume 2, pp.
2017–2025.

30. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

31. Hu, H.; Li, Q.; Zhao, Y.; Zhang, Y. Parallel deep learning algorithms with hybrid attention mechanism for image segmentation of
lung tumors. IEEE Trans. Ind. Inform. 2020, 17, 2880–2889. [CrossRef]

32. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

33. Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13713–13722.

34. Zhang, Q.L.; Yang, Y.B. Sa-net: Shuffle attention for deep convolutional neural networks. In Proceedings of the ICASSP 2021–2021
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; IEEE:
Piscataway, NJ, USA, 2021; pp. 2235–2239.

35. Pantic, M.; Valstar, M.; Rademaker, R.; Maat, L. Web-based database for facial expression analysis. In Proceedings of the IEEE
International Conference on Multimedia and Expo, Amsterdam, The Netherlands, 6–8 July 2005; IEEE: Piscataway, NJ, USA, 2005;
p. 5.

36. Lucey, P.; Cohn, J.F.; Kanade, T.; Saragih, J.; Ambadar, Z.; Matthews, I. The extended Cohn–Kanade dataset (ck+): A complete
dataset for action unit and emotion-specified expression. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition-Workshops, San Francisco, CA, USA, 13–18 June 2010; pp. 94–101. [CrossRef]

37. Guo, J.; Wang, X.; Wu, Y. Positive emotion bias: Role of emotional content from online customer reviews in purchase decisions. J.
Retail. Consum. Serv. 2020, 52, 101891. [CrossRef]

38. Voss, K.E.; Spangenberg, E.R.; Grohmann, B. Measuring the hedonic and utilitarian dimensions of consumer attitude. J. Mark. Res.
2003, 40, 310–320. [CrossRef]

39. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

40. Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching
for MobileNetV3. In Proceedings of the IEEE/CVF international conference on computer vision, Seoul, Republic of Korea, 10
October–2 November 2019; pp. 1314–1324.

41. Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.; Howard, A.; Le, Q.V. Mnasnet: Platform-aware neural architecture search
for mobile. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
15–20 June 2019; pp. 2820–2828.

42. Borisyuk, F.; Gordo, A.; Sivakumar, V. Rosetta: Large scale system for text detection and recognition in images. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018;
pp. 71–79.

43. Bianco, S.; Cadene, R.; Celona, L.; Napoletano, P. Benchmark analysis of representative deep neural network architectures. IEEE
Access 2018, 6, 64270–64277. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TII.2020.3022912
https://doi.org/10.1109/CVPRW.2010.5543262
https://doi.org/10.1016/j.jretconser.2019.101891
https://doi.org/10.1509/jmkr.40.3.310.19238
https://doi.org/10.1109/ACCESS.2018.2877890

	Introduction 
	Related Work 
	Deep Learning and Emotion Recognition in Live Streaming Scenarios 
	Application of Yolov5 Algorithm for Object Detection 
	The Development and Application of Attention Mechanism in Deep Learning 

	Method 
	Data Pre-Processing 
	Improved Yolov5s Model 
	MobileNetV3 Modules 
	CA Attentional Mechanisms 


	Experience 
	Data Set and Experimental Environment 
	Experimental Results 
	Ablation Experiments 
	Comparison Experiments 


	Conclusions and Future Research 
	References

