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Abstract: It is generally known that the two most crucial elements of concrete that depend on the
slump value of the mixture are workability and compressive strength. In addition, slump retention is
more delicate than the commonly used slump value since it reflects the concrete mixture’s durability
for usage in civil engineering applications. In this study, the effect of three water-reducer additives
was tested on concrete’s workability and compressive strength from 1 day to 28 days of curing. The
slump of the concrete was measured at the time of adding water to the mix and after 30 min of adding
water. This study employed 0–1.5% (%wt) water-reducer additives. The original ratio between water
and cement (wc) was 0.65, 0.6, and 0.56 for mixtures incorporating 300, 350, and 400 kg of cement.
It was lowered to 0.3 by adding water-reducer additives based on the additives type and cement
content. Depending on the kind and amount of water-reducer additives, w/c, gravel content, sand
content, crushed content, and curing age, adding water-reducer additives to the concrete increased
its compressive strength by 8% to 186%. When polymers were added to the concrete, they formed a
fiber net (netting) that reduced the space between the cement particles. As a result, joining the cement
particles quickly enhanced the fresh concrete’s viscosity and the hardened concrete’s compressive
strength. The study aims to establish mathematical models (nonlinear and M5P models) to predict
the concrete compressive strength when containing water-reducer additives for construction projects
without theoretical restrictions and investigate the impact of mix proportion on concrete compressive
strength. A total of 483 concrete samples modified with 3 water-reducer additives were examined,
evaluated, and modeled for this study.

Keywords: concrete; water-reducer contents; workability; compressive strength; slump retention

1. Introduction

Cement, fine, and coarse aggregates are combined with water to make a composite
material called concrete [1]. Concrete is a flexible material in a fresh condition that can be
quickly blended to fit a range of particular demands and molded into almost any shape.
Ordinary portland cement is the most often used cement for manufacturing concrete [2].
The study of concrete characteristics and their practical applications are covered by concrete
technology [3]. Floors, columns, beams, slabs, and other load-bearing components are
made of concrete in building construction [4–6].
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Chemical admixtures known as water-reducer additives are added to concrete mix-
tures to lower the water content or slow the concrete setting rate while preserving the
mixture flowability. Several liquid and powdered water reduction additives are avail-
able [7,8]. Chemically, water-reducer additives fall into three groups. First, Sulfonate
Naphthalene Formaldehyde (SNF); then, Formaldehyde Sulfonate (SMF); and finally, sul-
fonate and carboxylic copolymers [9–11]. Polycarboxylate ether (PCE) (high-scale water
reduction) is one of the most common water-reducer additive types [12]. Through the
adsorption and dispersion of cement components, water-reducer additives are active in the
cement waterways network [13–15]. Water-reducer additives improve concrete flowability
by dispersing agglomerated cement particles [16].

Concrete compressive strength, a significant mechanical characteristic, is often mea-
sured using concrete specimens after a standard curing period of 28 days. Various factors
affect the strength of concrete, including cement strength, water content, w/c, and aggre-
gate quality. The conventional method for modeling the impact of these factors on the
concrete compressive strength begins with an assumed form of an analytical equation
and is followed by a regression analysis utilizing experimental data to identify the equa-
tion’s parameters [17]. Polymers are one of the chemical admixtures used to improve the
properties of fresh and hardened concrete [15–18]. Polymers affect cement setting times,
hydration, flowability, and strength. Many types of polymers are present in liquid and
powder forms. Polycarboxylate (PCE) (high-scale water reduction) is one of the most
common polymer types [19]. The currently available superplasticizers can be divided into
three categories according to the chemical compound. The first is condensed with Sulfonate
Naphthalene Formaldehyde (SNF), the second Formaldehyde Sulfonate (SMF), and the
last is made up of sulfonate and carboxylic copolymers, for example, Polycarboxylate
Superplasticizers (PC) in the Sulphonate group. Concrete quality and durability can be
significantly enhanced with PC superplasticizers [20]. Superplasticizers are activated in
the cement waterways network by adsorption and dispersion of cement parts. The main
way in which polymers increase the flowability of concrete is to disperse agglomerated
cement particles. The fluidity of superplasticizers depends mainly on their adsorption
on concrete surfaces [21–27]. The effects of polymers (Polycarboxylate–Superplasticizer)
in liquid form have been studied to enhance concrete’s mechanical properties, such as
compressive strength [12]. There are several methods for modeling the properties of ma-
terials, including computational modeling, statistical techniques, and recently developed
tools such as regression analyses and Artificial Neural Networks (ANN) [33]. Multilinear
regression analysis, M5P-tree, and ANN are techniques widely used to solve problems in
construction project applications [18–22].

Nonlinear regression, multilinear regression analysis, and M5P-tree are construction
problem-solving methodologies [28–30]. M5P-tree was initially introduced by [31]. This
tree technique adapts to each sub-location by classifying or dividing data into various
spaces. Error is estimated using each node’s M5P-tree tree division criterion. Variance
measures class mistakes. Any node function uses the attribute that minimizes errors. The
M5P-tree tree division criterion is the error computations per node. Node-class standard
deviation calculates M5P error. Node division reduces errors by evaluating each node’s
characteristics. Parent nodes have more StDev than child nodes (more significant nodes).
Choose the structure with the best error-reduction potential. This split is tree-like. Second,
linear regression functions replace the clipped sub-trees. Thus, the effect of numerous
parameters such as water-reducer content, w/c, and curing duration of 1 day to 28 days was
quantified using nonlinear regressions, multi-regression, and M5P-tree-based approaches
to forecast concrete compressive strength, utilizing 483 tested samples for each model.

Research Significance

The main objective of this study is to propose two systematic multiscale equations
to estimate the maximum stress of concrete modified with polymers. Thus, experimental
data of 483 tested samples using three different types of liquid polymer with polymer
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contents, mix proportion, curing period, and the water-to-cement ratio was considered
with different analysis approaches. (i) The effect of polymers on the slump retention
and compression strength of concrete is investigated and quantified in the early curing
period (ii) to guarantee the construction industry to use the proposed models without any
experimental work, and (iii) to quantify and propose a systematic multiscale model to
predict the compression strength of concrete containing small amounts of polymers (up to
1.5%) with various water-to-cement ratios and curing time up to 28 days.

2. Materials and Methods
2.1. Ordinary Portland Cement

This investigation used ordinary portland cement (OPC) from the Gasin Cement Com-
pany in Sulaimani, Iraq. Table 1 summarizes the chemical and mineralogical constitution
of the OPC.

Table 1. Composition of the ordinary portland cement.

Chemical composition

CaO 63.9%
SiO2 20.1%

Al2O3 4.08%
Fe2O3 5.10%
MgO 1.48%
SO3 2.20%
LOI 3.41%

Mineralogical composition

Ca3SiO5 66.3%
Ca2SiO4 7.67%

Ca3Al2O6 2.19%
Ca4Al2Fe2O10 15.5%

2.2. Aggregate

In this study, natural sand was used. Crushed stone was used as fine aggregate, and
gravel passing a sieve of 20 mm was used as coarse aggregate.

2.3. Additives

In this study, three additives were used to enhance the compressive strength of concrete.
SP62 is a liquid brown Polycarboxylic ether. It is a highly concentrated fluidizing admixture.
An admixture can obtain a homogeneous mixture with minimized frictional forces between
the mixed components. RC897 is a superplasticizer that produces high-quality ready-
mix and precast concrete with reduced water needs and high workability retention. This
water-reducer extends processing time and meets industry requirements. PC180 is a high-
performance superplasticizer that was purposefully designed for concretes having high
consistencies and low w/c ratios in precast applications. In this study, up to 1.5% of the
additives were used. The properties of the three types of additives are summarized in
Table 2.

Table 2. Properties of the additives.

Additives SP62 RC897 PC180

Color Brown Light yellow Amber

State Liquid Liquid Liquid

Density, (gm/cm3) 1.1 1.08 ± 0.02 1.07 ± 0.02

pH - 4.5 ± 1.0 5 ± 1

Chloride content 0.1% <0.10 mass-% <0.10 mass.-%

Alkali content
(Na2O equivalent) <8.5 mass-% <8.5 mass-% <8.5 mass-%
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2.4. Slump

In this study, the additives’ consistency and effectiveness on the concrete mixes’
flowability according to ASTM C143 and EN-12350 were assessed using a concrete slump
test (Figure 1a,b). The slump values of the modified concrete with additives and the control
sample ranged from 200 to 220 mm. In order to assess the effectiveness of the additives on
the workability of the concrete to the control sample, slump retention was also carried out.
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Figure 1. Experimental work (a) concrete mixer, (b) slump test, (c) cubic molds, (d) compressive
strength test.

2.5. Compressive Strength

For this investigation, a cube sample (150 × 150 × 150 mm) was employed (Figure 1c).
There was a (0.5 MPa)/sec loading speed. Based on EN-12390-3 [8], the three-sample
average was chosen as the concrete strength for the analysis during a specific curing period
(Figure 1d).

2.6. Concrete Mix

The range of additive content was 0% to 1.5%. Due to the addition of the additives,
less water was used to make the mixture, and the w/c ratio was gradually lowered so that
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the slump value remained between 200 and 220 mm. The specimens were kept in water
with a humidity level of 95 percent and a temperature of 25 ◦C for the appropriate curing
age. Table 3 provides a summary of the concrete mixtures. The slumps were controlled
between 200 to 220 mm, and 0, 0.5, 0.75, 1, 1.25, and 1.5% of the three additives, such as
SP62, PC180, and RC897, were used (Table 4).

Table 3. Concrete mix design.

Materials Mix 1 Mix 2 Mix 3

Cement, kg 300 350 400
Coarse aggregate, kg 788 669 557

Crushed stone, kg 98 96 186
Sand, kg 1083 1145 1115
Water, kg 195.73 221 225.3

Table 4. Impact of the additives on the workability of concrete.

Slump Retention, mm

Cement, kg Additive, %
SP62 PC180 RC897

10 min. 30 min. 10 min. 30 min. 10 min. 30 min.

300

0 210 208 200 190 210 210
0.5 200 80 200 80 200 60

0.75 210 100 210 90 210 80
1 200 85 200 80 210 80

1.25 200 120 215 100 210 90
1.5 200 90 210 95 210 90

350

0 210 215 210 215 210 215
0.5 200 90 200 90 200 90

0.75 200 0 200 100 210 100
1 220 90 210 110 200 90

1.25 210 130 210 80 200 100
1.5 200 100 220 130 210 110

400

0 200 100 200 100 200 100
0.5 210 80 200 80 210 70

0.75 205 90 210 90 220 90
1 220 100 210 120 210 100

1.25 210 110 210 50 210 115
1.5 200 90 215 70 220 80

2.7. Modelling

A total of 483 datasets (161 samples for each polymer) containing tested results for
each modification were examined. The water–cement ratio (w/c), curing age (t, days),
cement content (C, kg), gravel content (G, kg), sand content (S, kg), crushed stone content
(CRS, kg), curing time (t, days), and the additives’ content (Add.,%) are all included in the
set of input data, with the tested compressive strength (MPa) of the concrete provided as
the target value.

2.7.1. Nonlinear Regression Model

To develop a nonlinear regression model, the following formula (Equation (1)) can be
considered a general form [2,8,12]. Equation (1) represents the interrelation between the
variables to estimate the compressive strength of the conventional and concrete components.

σc = β1 × w/cβ2 + β3 × Cβ4 + β5 × Sβ6 + β7 × CRSβ8 + β9 × Gβ10 + β11 × tβ12 + β13Pβ14 (1)
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2.7.2. M5P Model

One of the most significant advantages of model trees is their ability to efficiently
solve problems, dealing with many data sets with a substantial number of attributes and
dimensions. They are also noted for being powerful while dealing with missing data [31].
The M5P-tree approach establishes a linear regression at the terminal node by classifying or
partitioning diverse data areas into numerous separate spaces. It fits on each sub-location in
a multivariate linear regression model. The error is estimated based on the default variance
value inserted into the node. The general formula for the M5P-tree model is shown in
Equation (2).

σc = β1 ×
(w

c

)
+ β2 × (C) + β3 × (S) + β4 × (CRS) + β5 × (G) + β6 × (C.T) + β7 × (P) + β8 (2)

w/c: ratio of water-to-cement content
C: cement content
S: sand content
CRS: crushed stone content
G: gravel content
t: curing time
P.: additive (SP62 or PC180 or RC897) ranged from 0% to 1.5 and β1 to β14 are modeli

paramters (Tables 5 and 6).

Table 5. NLR model paramters.

Additive

Model Parameter SP62 RC897 PC180

β1 52.60 282.2 303.8
β2 −0.491 −0.13 −0.116
β3 652.5 298 273
β4 0.006 0.029 0.051
β5 2.018 2.017 2.01
β6 −1.33 −1.33 −1.36
β7 −33.1 69.07 124.8
β8 −0.125 0.008 −0.248
β9 1.297 1.467 1.467
β10 0.303 −0.37 −0.377
β11 −720 −712 −715
β12 −0.008 −0.009 −0.01
β13 0.209 2.229 2.120
β14 2.00 0.574 0.634

R2 0.89 0.92 0.94

RMSE (MPa) 4.220 3.867 3.556

Table 6. M5P-tree model paramters.

Additive
σc=β1×( w

c )+β2×(C)+β3×(S)+β4×(CRS)+β5×(G)+β6×(C.T)+β7×(P)+β8

LM
Number β1 β2 β3 β4 β5 β6 β7 β8 R2 RMSE

(MPa)

SP62

1 78.4 0.0051 0 0 0 0.3114 5.491 −15.22

0.91 3.784

2 74.03 0.0051 0 0 0 0.3114 5.491 −13.45
3 51.98 0.0051 0 0 0 0.3114 5.967 −9.737
4 38.08 0.0127 0 0 0 0.888 5.499 0.2689
5 −7.795 −0.0006 0 0 0 0.331 3.6161 36.01
6 −7.795 −0.006 0 0 0 0.29 3.174 36.02
7 −58.81 0.0122 −0.0153 0 0 0.2877 0.4122 65.65
8 −50.1 0.0122 −0.0153 0 0 0.2877 0.4122 61.94
9 −61.61 0.0122 0 0 0 0.2877 0.4122 49.89
10 −77.31 0.0227 0 0 0 0.4121 0.4122 61.9
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Table 6. Cont.

Additive
σc=β1×( w

c )+β2×(C)+β3×(S)+β4×(CRS)+β5×(G)+β6×(C.T)+β7×(P)+β8

LM
Number β1 β2 β3 β4 β5 β6 β7 β8 R2 RMSE

(MPa)

PC180

1 −77.311 0.0227 0 0 0 0.4121 0.4122 61.9

0.92 4.00
2 −98.45 0.052 0 0 0 0.278 0 61.51
3 −112.6 0.0261 0 0 0 0.3861 0 84.71
4 −93.21 0.0326 0 0 0 0.3681 0 64.14
5 −106.8 0.0335 0 0 0 0.4932 0 76.37

RC897

1 −60.77 0 0.0374 0 0 2.654 1.353 9.7022

0.96 2.846

2 −50.87 0 0.041 0 0 2.654 1.125 2.481
3 −49.95 0 0.0257 0 0 2.654 1.584 21.82
4 −60.34 0 0.0257 0 0 2.654 1.743 26.2
5 −73.07 0 0.0228 0 0 4.13 0.8277 31.23
6 −37.81 0 0.0629 0 0 0.4122 3.87 −20.7

2.8. Performance Evaluation and Model Criteria

To assess the accuracy and efficacy of the model predictions, the coefficient of determi-
nation (R2), root mean squared error (RMSE), and mean absolute error (MAE) were used.
The reliability of the suggested models and the effect of mix proportions on the concrete
compressive strength were investigated using the nonlinear and M5P models, which were
evaluated using several common assessment criteria. Their equations are as follows:

R2 =

 ∑
p
p=1(yi − y)(xi − x)√[

∑n
n=1(yi − y)2

][
∑

p
p=1(xi − x)2

]


2

(3)

RMSE =

√
∑n

n=1(yi − xi)
2

n
(4)

MAE =
∑

p
p=1|(yi − xi)|

n
(5)

yi = laboratory-tested values; xi = estimated value; y = average of yi; x = average of xi,
and n is the number of datasets.

3. Results and Analysis
3.1. Water-Reducing Additives

In this research paper, three types of additives (SP62, PC180, and RC897) were used
to enhance the performance of the concrete. The additives content ranged from 0 to
1.5%. Adding the additives reduced the water in the mixture, and the w/c ratio gradually
decreased, thus keeping the slump value in the range of 200–220 mm. Regarding the
concrete mixture, which contains 300 kg of cement, an addition of 0.5% of SP62 reduced
the mixture’s water content by 12.6%, while it was reduced by 17.6% and 9.1% when
modified with 0.5% of PC180 and RC 897, respectively. Compared with 300 kg and 400
kg cement content in the mixture, the percentage of water-content reduction was higher
for the mixture containing 350 kg of cement for the three types of additives, as shown in
Figure 2. By increasing the content of the additive, the water-content reduction gradually
increased (Figure 2). Modified the concrete with the SP62, PC180, and RC897 decreased the
water content required to achieve the desired workability by 9.1% to 46.7%, based on the
types and content of additives and based on the cement content, as shown in Figure 2.
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3.2. Slump Retention (ASTM C 143-90)

Fresh concrete loses its workability due to stiffening with time—a well-known phe-
nomenon called “slump loss”. The consistency changes because chemical and physical
factors brought about by early hydration gradually reduce the system’s free water and
build up the inner skeleton structure. It is well known that the workability of concrete in
the concrete industry faces slump loss, which is different for various grades of concrete.
Slump loss also varies with time. A study must determine the factors affecting slump loss
in the concrete mix. Factors such as cement content, water content, admixtures, weather,
and concrete volume influence the workability loss rate. The main objectives of this project
are to study the variation of a slump with the time of transportation, which is dependent
on the slump value of the concrete mixture.

Moreover, slump retention is the most sensitive compared to a well-known slump
value because it represents the durability of the concrete mixture for its applications in
civil engineering. Slump loss is the rapid stiffening of fresh concrete. Slump loss becomes
significant when polymers are used with cement. The stiffening of concrete becomes
accelerated under hot climates. This is due to the evaporation of mixing water, hydration of
cement, and even water absorption by the aggregates. Retarders lower the rate of hydration
of cement. The concrete compressive strength linearly increases with a mixing time of up
to 180 min. This increase was 10% after mixing for 180 min [3]. The dispersant remaining
in the aqueous phase can influence slump retention. Rapidly adsorbed dispersant from the
aqueous phase has a higher rate of slump loss than that was absorbed more slowly from
the aqueous phase [7]. The slump loss in the field can be regained by redosing the polymer
in the concrete. Besides enhancing the concrete compressive strength, monitoring the
slump retention of the fresh concrete modified with water-reducer additives is necessary.
In this study, slump retention of the fresh concrete modified with SP62, PC180, and RC897
was monitored when adding water to the mixture and after 30 min of adding water, as
summarized in Table 4. The slump of the fresh concrete with and without water-reducer
additives was controlled between 200 mm and 220 mm. After 30 min, the concrete modified
with water-reducer additives lost its workability (Table 4). Workability loss is affected
by cement, water, admixtures, weather, concrete volume, and other factors. The rapid
stiffening of fresh concrete is known as slump loss. A hot environment accelerates concrete
stiffening due to the evaporation of mixing water, cement hydration, and aggregate water
absorption [32]. There were many ways to control the slump loss of fresh concrete. One of
the methods was by adding retarder admixture to the mix. By slowing the cement’s rate of
hydration, retarding admixtures delay the setting. As a result, the water combined with
cement decreases due to the decreased hydration rate throughout a particular period. The
slump loss in such a mix for a specific period will be significantly lower than that without a
retarder [32,33].

Modifying the concrete with water-reducer additives enhances the concrete compres-
sive strength from 1 day up to 28 days of curing for 3 different contents of cement (300, 350,
and 400 kg), as shown in Figures 3–5. For the mixture containing 300 kg of cement at 1 day
of curing, the compressive strength was 11.41 MPa, while it was 16.52 MPa and 20.17 MPa
for 350 and 400 kg of cement, respectively. Regarding the mixture containing 300 kg of
cement, adding 1% of SP62, PC180, and RC897 enhanced the concrete compressive strength
by 104%, 150%, and 129%, respectively, as shown in Figure 2. While it was 97%, 141%, and
150%, the mixture contained 350 kg of cement (Figure 3). The growth percentage decreased
when the mixture contained 400 kg of cement modified with 1% water-reducer additives
(Figure 4).
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3.3. Compressive Strength

After 28 days of curing, the concrete compressive strength was enhanced up to 74 MPa,
depending on the content of cement and the types and content of water-reducer additives.
In the case of polycarboxylate-based superplasticizers and naphthalene- or melamine-based
superplasticizers, electrostatic and steric repulsion mechanisms work together to weaken
the cohesiveness of the cement particles.

The compressive strength of concrete was predicted using nonlinear and M5P models
based on data from 483 tests using three distinct mixtures and three different water-reducer
additives, as shown in Figure 6. Additionally, it explores how mixed proportions affect
concrete compressive strength.
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3.4. Predicted and Measured Compressive Strength Relationships
3.4.1. The Nonlinear Regression Model (NLR)

The connection between the anticipated and actual compressive strengths of normal
concrete, including polymer content, is shown in Figure 6a. The most significant parameters
affecting compressive strength were curing time and cement content. The following formula
was derived for the NLR model with numerous changeable parameters (Table 5).

3.4.2. M5P-Tree Model

In this study, the M5P-tree model tree is utilized to forecast the compressive strength of
conventional concrete using 483 mix-design data. The coefficient of determination (R2), root
mean square error (RMSE), and goal were all employed to assess the suggested performance
of the model in this research. The M5P-tree technique, as seen in Figure 6b, divides the
input space (independent variables) into linear tree regression functions (marked LM1
through LM8). Y = bo + b1 × X1 + b2 × X2, where bo, b1, and b2 are linear regression
constants representing the model parameters. The model parameters are listed in Table 6.
The study dataset has a 25% and 35% error line, indicating that all measured values fall
within the 20% and −15% error line. The coefficient of determination R2 for this model
indicates that the model performance is better than the NLR.

Therefore, from the result of slump retention and compressive strength, SP62 (FM) can
be used to produce a precast concrete member. The admixture should maintain a liquid
consistency and good workability when used with concrete that has a low w/c and a high
quantity of mineral additives. High early strength developments are made possible by
the PCE-based superplasticizer even at low ambient temperatures and without additional
external heat. This might make it possible to shorten the stripping periods, which could
lead to a more effective production process. The compaction energy used to compact
concrete may be lessened with concrete admixture. Therefore, concrete producers, builders,
and installers may profit economically and technically. The three types of water-reducer
additives can be used to produce the precast concrete member.

A similar study was also conducted on the effect of two water-reducer polymers with
smooth and rough surfaces on the workability and the compression strength of concrete
from an early age (1 day) up to 28 days of curing. The polymer contents used in this study
varied from 0 to 0.25% (%wt.). The initial ratio between water and cement was 60%, and
it slowly reduced to 0.46 by increasing the polymer contents. The compression strength
of concrete was increased significantly by increasing the polymer contents by 24% to 95%
depending on the polymer type, polymer content, w/c, and curing age. Because of a fiber
net (netting) in the concrete when the polymers were added, which led to a decreased
void between the particles, binding the cement particles increased the viscosity of the
fresh concrete and the compression strength of the hardened concrete rapidly. This study
also aims to establish systematic multiscale models to predict the compression strength of
concrete containing polymers and to be used by construction projects with no theoretical
restrictions. For that purpose, 88 concrete samples modified with two types of polymer
(44 samples for each modification) have been tested, analyzed, and modeled. Linear and
nonlinear regression, M5P-tree, and Artificial Neural Network (ANN) approaches were
used for the qualifications. In the modeling process, the most relevant parameters affecting
the strength of concrete were polymer incorporation ratio (0–0.25% of cement’s mass), water-
to-cement ratio (0.46–0.6), and curing ages (1 to 28 days). Among the used approaches and
based on the training data set, the model made based on the nonlinear regression, ANN,
and M5P-tree models seem to be the most reliable. The sensitivity investigation concludes
that the curing time is the most dominating parameter for predicting concrete’s maximum
stress (compression strength) with this dataset [12].
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4. Conclusions

The following conclusions are drawn based on the tested data and the simulation
of the compression strength of concrete at 483 different ratios between the water and the
cement, polymer content, and curing ages.

1. The compression strength of cement increased from 84% to 250%, depending on the
mix proportion. Based on NLR parameters, polymer RC897 had the highest impact
on increasing the compression strength of concrete as compared to polymer SP62
and PC180. This improvement in compression strength was due to the dispersion of
cement particles and increasing the friction between the particles, reducing the void
ratio and increasing the density of concrete.

2. With a cement content of 300 kg, the polymer PC180 had the highest effect on reducing
the water content of the other two types of the polymer by 43.5%, while, at a cement
content of 400 kg, the polymer RC 897 had the highest effect on reduction in water
content compared with the other two polymers, by 46.7%.

3. The compressive strength of the concrete mixes was calculated using NLR and M5P-
tree models. The correlation of the coefficient (R2) and the root mean square error
(RMSE) are used as assessment criteria. The order of the models was M5P-tree and
NLR; the M5P-tree was the best model offered in this study, based on data obtained
from the experimental work, and provided a higher R2 and a lower MAE and RMSE.
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