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Abstract: Breast cancer is one of most serious malignant tumors that affect women’s health. To carry
out the early screening of breast cancer, mammography provides breast cancer images for doctors’
efficient diagnosis. However, breast cancer lumps can vary in size and shape, bringing difficulties for
the accurate recognition of both humans and machines. Moreover, the annotation of such images
requires expert medical knowledge, which increases the cost of collecting datasets to boost the
performance of deep learning methods. To alleviate these problems, we propose an attention-based
active learning framework for breast cancer segmentation in mammograms; the framework consists
of a basic breast cancer segmentation model, an attention-based sampling scheme and an active
learning strategy for labelling. The basic segmentation model performs multi-scale feature fusion and
enhancement on the basis of UNet, thus improving the distinguishing representation capability of
the extracted features for further segmentation. Afterwards, the proposed attention-based sampling
scheme assigns different weights for unlabeled breast cancer images by evaluating their uncertainty
with the basic segmentation model. Finally, the active learning strategy selects unlabeled images with
the highest weights for manual labeling, thus boosting the performance of the basic segmentation
model via retraining with new labeled samples. Testing on four datasets, experimental results show
that the proposed framework could greatly improve segmentation accuracy by about 15% compared
with an existing method, while largely decreasing the cost of data annotation.

Keywords: breast cancer; image segmentation; active learning; deep learning

1. Introduction

Breast cancer is one of the most serious malignant tumors that threatens the health
of women. It is reported that about 12.5 percent of women are affected by breast cancer
worldwide [1]. In China, the incidence of breast cancer is increasing by 0.5% per year [2],
which has become one of the most dangerous and deadly diseases for women’s health.
Early-stage breast cancer screening can aid in detecting disease early, thus largely increas-
ing the chances of recovery [3]. These screenings are conducted by experienced doctors,
who check the existence of malignant lesions in mammograms for further diagnosis and
evaluation. However, such operations are not only annoying and time-consuming, but
also carry the risk of wrong or missed detections with manual examinations [4], which is
reported to be as high as 30% in breast cancer screening [5]. Since the advent of artificial
intelligence (AI), researchers have adopted computer-aided detection (CAD) technologies
to considerably reduce the amount of work involved in breast cancer screening. In the
early stages of this application, CAD systems with traditional image processing algorithms
were applied to aid in breast cancer diagnosis (masses, microcalcification etc.) [6]. With
the rapid development of deep learning, the accuracy of medical image segmentation,
regarded as a subfield of image segmentation, has been significantly improved. For ex-
ample, Wang et al. [7] proposed a breast tumor semantic segmentation method based on a

Appl. Sci. 2023, 13, 852. https://doi.org/10.3390/app13020852 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13020852
https://doi.org/10.3390/app13020852
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5625-0402
https://doi.org/10.3390/app13020852
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13020852?type=check_update&version=2


Appl. Sci. 2023, 13, 852 2 of 14

convolutional neural network (CNN), which provided accurate results with the extracted
biomarkers in radiology imaging. Later, Hann et al. [8] utilized a multiple UNet network
to generate multiple segmentations for fusion, which were further thresholded to generate
the final segmentation result.

However, these impressive achievements of deep learning in breast cancer screening
were built on a large amount of labeled data, and accuracy would greatly drop without it [9].
Due to privacy issues, it is difficult to obtain sufficient breast cancer images for labeling.
Moreover, labeling generally requires medical experts with professional knowledge and
experience, making it time-consuming and costly to acquire enough labeled data. Achieving
desirable segmentation results with fewer samples has thus recently become a research
focus.

Benefiting from its ability to achieve high performance with few labeled samples, active
learning has become a feasible approach for less-thoroughly labeled breast cancer data [10].
Several successful applications have been implemented to show the remarkable power of
active learning in medical image analysis. For example, Vishwesh et al. [11] combined an
active learning framework with deep learning for medical image segmentation, where new
active learning strategies guided the segmentation model to learn the diversity of uncertain
and unlabeled data, thus greatly achieving convergence in accuracy with less labelling.
Later, Li et al. [12] proposed a novel active learning framework for histopathology image
analysis, where two groups of unlabeled data were selected in each training iteration, one
annotated by experts and the other selected from high-confidence unlabeled samples to
assign pseudo-labels. Both manual labeling and pseudo-label generation Were able to
largely alleviate the problem of scarce labeled samples.

Based on the advantages of using deep learning and active learning for automatic
screening tasks, we propose an attention-based active breast cancer segmentation model
which is capable of achieving desirable segmentation results without a high quantity of
labeled images. The proposed model consists of a basic segmentation model, an attention-
based sampling scheme and an active learning based labeling strategy. Specifically, a
multi-scale fusion and enhancement module based on UNet is first adopted for segmenta-
tion. Afterwards, a novel attention mechanism is used to evaluate the similarity between
the unlabeled and segmented samples, thus offering weights as criteria to measure the
uncertainty or informativeness of unlabeled samples with respect to the trained and basic
segmentation model. Finally, an active learning strategy is used to sort unlabeled samples
with weights, thus determining selections that need to be further manually labelled. We
observed that these selected samples often contained appearance or shape features which
were unacknowledged by the basic segmentation model subjected to the current training
dataset. With iterations of retraining with the most informative unlabeled samples, the
proposed model stably approached the upper bound of segmentation performance for high
accuracy.

The contributions of this paper are summarized as follows:

• We propose an attention-based active breast cancer segmentation framework which
effectively improved the accuracy of segmentation with few training samples, thus
alleviating the high cost of labeling breast cancer images.

• A novel attention-based sampling scheme is proposed which measures the most
informative unlabeled samples via calculating similarity weights.

• We adopt an active learning strategy for the global optimization of accuracy perfor-
mance, which iteratively selects appropriate unlabeled samples to first manually label
and then retrain the model to boost performance.

The rest of this paper is organized as follows. Section 2 reviews related work on the
segmentation of breast cancer images. Section 3 presents an overview of the proposed
method. Details of the basic segmentation model, attention-based sampling scheme and
active-learning-based labeling strategy are also discussed in Section 3. Section 4 presents
and discusses the experimental results. Finally, Section 5 concludes the paper.
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2. Related Work

In this section, we give a brief literature review, including prior works on traditional
segmentation methods for breast cancer images, deep-learning-based segmentation meth-
ods for breast cancer images, as well as active learning methods.

2.1. Traditional Segmentation Methods for Breast Cancer Images

Traditional segmentation methods usually apply image processing technologies for
segmentation. However, they generally suffer from the drawbacks of low accuracy and are
sensitive to the quality of sampled images.

For example, Cheng et al. [13] proposed a near-automatic ultrasound image segmen-
tation algorithm which builds a solid foundation of computer-aided diagnosis for breast
cancer. Later, Eziddin et al. [14] proposed the segmentation of mammograms using an
iterative fusion process of information obtained from multiple knowledge sources, in-
cluding context information, image processing algorithms, prior knowledge and so on.
Gnonnou et al. [15] proposed a structural method to separate breast margins at pixel-level,
thus accurately extracting tumor regions. Later, Kaushal et al. [16] proposed an automated
segmentation technique followed by self-driven post-processing operations to detect cancer-
ous cells effectively. Recently, Jing et al. [17] proposed a simple but effective segmentation
method with the concept of global thresholding, which successfully segmented tumor
regions in breast histopathology images. During the process, partial contrast stretching and
median filtering are specially designed to improve image quality for segmentation.

2.2. Deep-Learning-Based Segmentation Methods for Breast Cancer Images

Inspired by the remarkable performance of deep learning methods in image classi-
fication and segmentation tasks [18,19], researchers have proposed several works on the
segmentation of breast cancer images with various kinds of networks.

For example, Su et al. [20] proposed a fast scanning deep convolutional neural network
(FCNN) to achieve pixel-wise region segmentation, successfully eliminating the redundant
computation of the original CNN without sacrificing performance. Later, Simin et al. [21]
proposed the combination of deep learning with traditional features for medical image
classification, where a CNN model is first used to extract image features, and then support
vector machines are used for feature learning and classification. Then, Roy et al. [22]
used a dropout strategy to generate different Monte Carlo segmentations, where they
computed the dissimilarity of these segmentations to measure the structural uncertainty of
the image. In such way, they could confidently choose the best matching segmentations
from candidates for output.

Despite their strengths, the shortage of sufficient training data affects the performance
of deep learning methods, and researchers have focused on active learning to improve the
effectiveness of deep learning. For example, Shen et al. [23] proposed a novel deep active
learning model for the image segmentation of breast cancer on immunohistochemistry
images. They not only achieved significant performance improvements in the segmentation
of breast cancer images, but the system also showed promise for implementation as a
real-world application.

Recently, difference comparisons between multiple candidate segmentation maps has
become an effective method for sampling in active learning. For example, Wang et al. [24]
believe that easy samples tend to obtain similar segmentations in K models, where they use
K different models to segment images and measure the similarity of outputs, thus building
connections between different models for further comparisons. Recently, Zhang et al. [25]
generated two segmentation maps before and after processing of their proposed attention
module, thus calculating the similarity coefficient of maps to guide sampling of their active
learning framework.
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2.3. Active Learning Methods

To reduce the cost of labeling, active learning selects the most valuable and informative
samples from unlabeled samples for the labeling task, which relieves the dependence of
deep learning models on large training datasets. Due to its ideal function in achieving
desirable performance with few labelled samples, researchers in the medical image analysis
community have proposed several methods for CAD.

For example, Ayerdi et al. [26] proposed an interactive image segmentation system
using active learning, which allows rapid segmentation without the requirement of manual
intervention. Later, Sharma et al. [27] adopted active learning to perform biomedical
image segmentation with limited labeled data, where they combined UNet and an active
learning query strategy to select additional samples for annotation, thus capturing the most
uncertain and representative samples. Then, Li et al. [28] proposed a deep active learning
framework which combines an attention-gated fully convolutional network (ag-FCN) and
a distributional difference-based active learning algorithm (dd-AL) to iteratively annotate
samples. Later, Lai et al. [29] proposed a semi-supervised active learning framework with
region-based selection criteria which iteratively selects regions for annotation queries to
rapidly expand the diversity and number of marker sets.

Most recently, Gaillochet et al. [30] proposed a test-time augmentation method for
active learning in medical image segmentation, which exploits the power of uncertain
information provided by data transformation. Bai et al. [31] proposed a difference-based
active learning (DEAL) method for bleed segmentation, which successfully bridged the
gap between class activation maps (CAMs) and ground truth with few annotations.

3. Method

To deal with the high labeling cost of breast cancer images, we propose an attention-
based deep active learning framework for segmentation in mammograms. First, the overall
structure is given, offering a global view of how the proposed framework works. Then, we
present the basic breast cancer segmentation model with multi-scale feature fusion and en-
hancement. Afterwards, we describe an attention-based sampling scheme to assign weights
for unlabeled samples under uncertainty. Finally, we describe an active-learning-based
labelling strategy to choose the unlabeled samples for manually labeling and retraining,
thus reducing the cost of manually labeling a large quantity of unlabeled samples.

3.1. Overall Structure

The existing segmentation models based on deep learning generally require a large
number of labeled images for training at substantial cost. Thus, it is crucial to achieve as
high an accuracy as possible for segmentation with few labeled samples. To achieve this
goal, we propose the overall framework as shown in Figure 1, which consists of three steps,
i.e., the basic segmentation model, attention-based sampling and active-learning-based
labelling.

During Step A, a labeled set of breast cancer images are first used to train the basic
segmentation model, which obtains distinguished feature maps via multi-scale feature
fusion and enhancement. In Step B, uncertainty sampling is first adopted to classify
good and bad segmentation results for breast cancer in mammograms. Then, a novel
attention mechanism is built to calculate weights for samples of the unlabeled breast
cancer set. During Step C, unlabeled samples with higher weights, implying that they
are more informative for learning, are selected to be manually labeled by professional
medical experts. All these samples can then be further used to retrain the breast cancer
segmentation model, thus boosting performance in an iterative manner.
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Figure 1. Framework of the proposed framework, which consists of (A) Basic Segmentation Model,
(B) Attention-based Sampling, and (C) Active-Learning-based Labeling.

On the basis of structure design, we propose a loss function to involve the traditional
IoU loss LossI and binary cross-entropy loss LossB, i.e., Loss = LossI + LossB. Specifically,
IoU loss LossI can be calculated via

LossI = 1− ∑i∈I pi p̂i

∑i∈I pi + p̂i − pi p̂i
, (1)

where I refers to the input breast cancer image, i represents each pixel in the image, and p̂i
and pi represent the predicted and true labeled values for each pixel, respectively. Moreover,
the binary cross-entropy loss LossB can be calculated via

LossB = −∑
i∈I

pi log( p̂i) + (1− pi) log(1− p̂i), (2)

Note that LossI and LossB are calculated in each iteration stage to achieve convergence of
the training process.

3.2. Basic Segmentation Model for Breast Cancer

Although skip connections in UNet could avoid the loss of detailed information caused
by continuous down-sampling, they cannot capture multi-scale information with strong
restrictions on locality. To obtain multi-scale feature maps, we cascade the feature maps
at multiple layers with different receptive fields, where skip connections are used across
different layers.

On the basis of the UNet segmentation model, the proposed basic model further
involves the strength of the promotion feature module (PFM) [32] for the features of
each output layer, which fuses multi-scale feature maps to enhance their representation
capability. Note that the PFM works as a feature fusion and enhanced block in our former
work, which not only fuses the features from multiple scales, but also selectively forgets
useless information and enhances informative information, thus constructing more effective
feature representation.

Specifically, an input image I in the labeled breast cancer set is sent to the proposed
basic segmentation model for feature extraction:

Fi = Segi
t(I), (3)

where Fi refers to feature maps corresponding to the ith output layer of the UNet model, and
the function Segt() refers to the segmentation model during the tth iteration of retraining.
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Then, feature maps of multiple layers are sent to different PFMs for fusion and en-
hancement:

Fi
E = Gi

e(G
i
f (Fi)), where i = 1, 2, ..., n (4)

where Fi
E represents the output feature map after processing of the ith PFM, functions Ge

and G f represent enhance and forget operations in PFM, and n is the total number of layers
in the segmentation model.

In the later fusion step, the original feature map Fi corresponding to the i-th layer is
fused with its enhanced version Fi

E via skip connections:

Fi−1 = Fi
E ⊕ XUP(Fi), where i = 1, 2, ..., n (5)

where Fi−1 refers to the output feature map of the i− 1th layer, and the function XUP() is
an up-sampling operation.

Finally, the generated feature map F1
P combines the high-layer semantic features with

shallow features, thus enhancing representation capability for segmentation via multi-scale
feature extraction fusion. We set n = 5 for all experiments in this paper.

3.3. Attention-Based Sampling Scheme

To obtain more segmentation related knowledge with as few labeled samples as
possible, it is essential to obtain more distinguished feature representation from the training
stage. We thus judge the informativeness for one specific sample based on its segmentation
result with the following equation:

In f oi =

{
1, i f Ui ≥ α
0, otherwise

(6)

where In f oi implies whether the ith sample is useful for learning knowledge or not, α is a
pre-set parameter based on segmentation performance of experiments, and Ui calculates
similarity coefficient with the following equation:

Ui =
Si,q ∩ Si,g

Si,q ∪ Si,g
, (7)

where Sq and Sg respectively represent the predicted and ground-truth feature maps of the
ith breast cancer image, which is used to represent the uncertainty and guides the selection
of unlabeled breast cancer images. We consider the segmentation result of the i-th breast
cancer image as good only if In f oi = 1; otherwise, it is considered bad.

With such criteria for judging informativeness, we choose samples from an unlabeled
breast cancer set, which are either dissimilar to good segmentation samples or similar to bad
segmentation samples, thus greatly improving the learning capability of the segmentation
model for the features of difficult samples. Essentially, a soft attention model is generally
formed as a dimension of interpretability into internal representations by selectively focus-
ing on specific information. The core procedure of soft attention model [33] can calculate
weights based on similarity between an input signal and pre-trained weights. Therefore,
we propose a novel attention mechanism which assigns weights based on similarity calcu-
lations between unlabeled and labeled samples. In other words, the proposed attention
mechanism assigns smaller weights if the unlabeled samples are more similar to the good
segmentation samples. On the contrary, it would give higher weights to unlabeled samples
with greater similarity to bad samples.

Defining the input unlabeled breast cancer image as query Q and the set of labeled seg-
mentation samples as W, a multi-layer perceptron(MLP) is utilized to calculate the similarity or
correlation between Q and one of the pre-trained samples Wi as sim(Q, Wi) = MLP(Q, Wi).
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Afterwards, we adopt the Softmax function to perform normalization on the calculated
similarity and emphasize the informative parts based on their inherent ability:

αi = so f tmax(sim(Q, Wi)) =
esim(Q,Wi)

∑L
j=1 esim(Q,Wi)

; (8)

where L refers to the number of samples in the labeled segmentation results.

3.4. Active Labeling Strategy

Essentially, we believe that unlabeled samples with larger attention weight could
contribute to the classification capability of the segmentation model, thus boosting the
segmentation performance of the model by using these samples for retraining. Therefore,
we propose a labeling strategy for breast cancer samples based on an active learning
method, as described in Algorithm 1.

Specifically, we sort the unlabeled samples by weights and choose the unlabeled
samples with higher weights for manual labeling, represented as Step 8 in the algorithm.
The specific processes of sample calculation, selection and manual labeling and retraining
are shown in Figure 2. We use both similarity and dissimilarity weights to select unlabeled
images. Then, these samples are first roughly labeled by automatic labeling software and
then manually adjusted by experts. Afterwards, they are added as labeled samples into
the set of labeled breast cancer images. Meanwhile, these samples are deleted from the
unlabeled image set, which can be represented as{

Ut+1 = Ut − It
Lt+1 = Lt + It

(9)

where t refers to the iteration time of training, and Lt ∩Ut = ∅ to ensure the consistent
processing of different iterations.

Figure 2. Key steps, i.e., Calculation, Selection, and Manual Labeling, in the proposed active-learning-
based labeling strategy.

Finally, the newly constructed labeled set Lt+1 is used to retrain the basic segmentation
model. With all these steps, an active learning iteration process is completed, where the
performance of the breast cancer segmentation model could be improved step by step.
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Algorithm 1 Labeling strategy of breast cancer samples based on active learning.

Require: Unlabeled sample set U, labeled sample set L
Ensure: Labeled dataset Lt

1: While:
2: if L 6= ∅ then
3: Train the breast cancer segmentation model
4: Use the updated segmentation model to infer the labeled breast cancer images in the

labeled sample set L, and output the feature maps FP
5: Calculate the similarity of the i-th image
6: Calculate the attention weights
7: end if
8: Sort the breast cancer images in the unlabeled sample set according to attention weights

9: Manually label the selected images which are assigned with higher weights
10: Update Ut+1 and Lt+1
11: Retrain the segmentation model for breast cancer images
12: EndWhile

4. Experimental Results

This section first introduces the datasets and measurements. Then, it describes the
ablation experiments constructed to verify the effectiveness of the proposed modules.
Afterwards, we demonstrate the performance of the segmentation models on four datasets
to verify the effectiveness of the proposed framework. We also qualitatively compare
the proposed active learning framework with existing methods. Finally, we offer the
implementation details for readers’ convenience.

4.1. Datasets and Measurements

We collected breast cancer images from a cooperating hospital, which are not released
due to privacy reasons. The dataset includes 1462 labeled breast cancer images, with
resolution 6781 × 3676 pixels . Since images were acquired by different scanners, we
divided all our samples into four parts based on the type of scanner, i.e., Breast-A, Breast-B,
Breast-C and Breast-D.

Various measurements were used to verify the effectiveness of the breast cancer image
segmentation results, i.e., the mean Dice similarity coefficient (mDice), the mean intersection
ratio (mIoU), and the mean absolute error (MAE). Where TP, FP and FN indicate true
positive, false positive and false negative samples, mDice can be calculated as:

mDice =
2TP

FP + 2TP + FN
. (10)

Note that a higher mDice implies a greater similarity between two samples.
IoU is defined as the area of the intersection divided by the area of the union of the

predicted bounding box, which can be evaluated by

IoU =
area

(
Bp ∩ Bgt

)
area

(
Bp ∪ Bgt

) , (11)

where Bp and Bgt are the predicted and ground-truth segmentation results, respectively.
By calculating the Euclidean distance between the predicted and the ground-truth

results, MAE can be defined as:

MAE =
1
n

n

∑
i=1
|Yi − Ŷi|, (12)

where n refers to the total number of samples, and Yi and Ŷi are the predicted and ground-
truth labels, respectively. Note that a lower MAE implies a better segmentation result.
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4.2. Ablation Experiments

To evaluate the effectiveness of the attention-based sampling mechanism and the active
labeling strategy, we designed several ablation experiments as shown in Table 1. Note that
PFMs represent multiple promotion feature modules used in the basic segmentation model,
Att refers to the proposed attention-based sampling scheme, and Act is the proposed active
labeling strategy.

After adding PFMs, Att and Act, the segmentation performance on breast cancer
images gradually improved on our four breast cancer image datasets, proving the effective-
ness of these three modules. Specifically, we found that UNet+PFMs could achieve more
precise boundaries of polyp regions and performed accurate segmentation when compared
with the basic network (i.e., UNet). However, the shallow usage of boundary information
without multi-scale refinement for boundary regions leads to uncompact performance
towards larger and more regularized-shape polyp regions. In contrast, due to the usage
of PFMs to extract a more distinguishing feature map by fusing multi-scale information,
boundaries achieved by the proposed method were much more obvious with clear contour
lines, thus providing better segmentation performance.

The ablation experiment on Att proved that the attention-based sampling scheme
improved segmentation performance on all datasets. The attention-based design helped in
effectively selecting more valuable samples for the further manual labeling process. It is
beneficial to focus on the most informative unlabeled samples, which brings the feature
information required by the current model for performance improvement with the fewest
updating iterations.

Act, representing the active labeling strategy, enlarges size of the labeled breast cancer
set, thereby improving the effect of tumor segmentation. Due to the guidance of optimized
selection on unlabeled samples, we observed that informative samples for the current
trained model were added to the labeled samples set for further retraining.

Table 1. Ablation experiments with different network structure designs on Breast-A, Breast-B, Breast-
C and Breast-D datasets, where PFMs, Att and Act represent multiple promotion feature modules
used in the basic segmentation model, the proposed attention-based sampling scheme and the
proposed active labeling strategy, respectively.

Dataset Method mDice IoU MAE

Breast-A

UNet 0.356 0.266 0.018
UNet+PFMs 0.412 0.332 0.013

UNet+PFMs+Att 0.431 0.361 0.013
UNet+PFMs+Att+Act 0.462 0.394 0.009

Breast-B

UNet 0.403 0.29 0.013
UNet+PFMs 0.492 0.371 0.009

UNet+PFMs+Att 0.515 0.382 0.112
UNet+PFMs+Att+Act 0.543 0.401 0.006

Breast-C

UNet 0.553 0.429 0.033
UNet+PFMs 0.677 0.512 0.026

UNet+PFMs+Att 0.693 0.518 0.029
UNet+PFMs+Att+Act 0.725 0.533 0.023

Breast-D

UNet 0.369 0.261 0.040
UNet+PFMs 0.451 0.382 0.311

UNet+PFMs+Att 0.478 0.396 0.335
UNet+PFMs+Att+Act 0.512 0.422 0.027

4.3. Comparative Experiments

In this subsection, we describe our comparative experiments and present heatmap
visualizations, segmentation results and the effectiveness of active learning.
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Figure 3 shows the generated heatmap of breast cancer segmentation achieved by the
proposed framework, the comparative method and the ground truth on four datasets. We
used UNet in comparisons of heatmap visualization and segmentation results. The last
layer of the network can generate a heatmap for each input breast cancer image, which
can be used to generate segmentation results. Comparison of heatmaps shows that the
proposed framework could more accurately identify the breast cancer region, and thus
obtained a better performance in the segmentation task. Even in the case of a blurred image
boundary, the heatmap implies that further segmentation results would maintain high
accuracy by focusing on the dominant parts of cancer regions.

Figure 3. Heatmaps of breast cancer segmentation achieved by the proposed framework, the compar-
ative method and the ground truth results. (A–D) refer to Breast-A, Breast-B, Breast-C and Breast-D
datasets, respectively.

Figure 4 shows the qualitative comparison results of the breast cancer segmentation.
Compared with the comparative segmentation model, i.e., UNet, the proposed frame-
work achieved better segmentation results that were similar to the ground-truth results.
Moreover, the proposed active learning strategy could refine the distinguished feature
information of breast cancer using unlabeled samples, achieving more accurate pixel-level
classification results. In addition, the proposed framework generates and refines the bound-
ary region through an effective iterative update strategy, thus achieving global optimization
progressively.

To verify that the active learning strategy can effectively reduce the cost of labeling,
we conducted comparative experiments by selecting random sampling and CoreSet [34]
as the comparison methods. Figure 5 shows plots of mean Dice for each iteration during
the active learning. It is worth noting that the proposed active learning strategy not only
had a higher mean Dice value, but also converged in fewer iterations. This proves that the
proposed strategy selected more informative samples in each iteration, thus reducing the
cost of labeling samples. Without measuring the uncertainty of sample labeling, other com-
parison methods might suffer from unstable convergence with increasing iterations because
they adopt samples without helpful information, or even containing noisy information.
Although all methods converged eventually, the compared methods tended to have lower
mean Dice values due to the influence of noisy samples.
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Figure 4. Qualitative comparisons between the segmentation results achieved by the proposed
framework, the comparative method, and the ground truth. (A–D) refer to Breast-A, Breast-B,
Breast-C and Breast-D datasets, respectively.

  

     

Figure 5. Plots of mean Dice coefficients, comparing different sampling strategies. It’s noted that RS
and CS refer to random selecting sampling and CoreSet sampling [34], respectively.

4.4. Implementation Details

Due to the scarcity of training samples, we used various data-enhancement methods to
expand the training samples so that they met the requirements of model training. The size
of input breast images was first adjusted to 352× 352 pixels in the training and inference
process. Then, we used image flipping to expand the number of training samples, in both
horizontal and vertical directions. Finally, we not only randomly adjusted the contrast,
brightness and sharpness of breast cancer images, but also randomly dilated and eroded
image labels. All these operations were designed for data enhancement.

All experiments were carried out under the Linux Ubuntu operating system with a
single Titan V GPU. We use Adaptive Moment Estimation (Adam) as the optimizer, while
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the initial learning rate was set to 0.0001 and the learning rate was adjusted using learning
rate decay. In the active learning strategy experiment , we used 100 unlabeled breast cancer
images for initialization, and set the number of iterations to 10 for training of the basic
segmentation model. Afterwards, we added the selected unlabeled samples to the labeled
dataset, and trained 25 epochs for retraining in each iteration.

5. Conclusions

Due to the high cost of labeling training samples, herein we propose an attention-
based active learning framework for the segmentation of breast cancer in mammograms.
Specifically, we propose an attention sampling scheme to assign weights for unlabeled
samples by evaluating their uncertainty. We also propose an active labeling strategy to
select valuable unlabeled samples for manual labeling, thus enlarging the scale of the
training set and improving the performance of the segmentation model. Testing on four
datasets, experimental results showed that the proposed framework could greatly improve
segmentation accuracy. The active learning scheme and attention strategy we adopted can
be easily applied to other models and effectively reduce the data size required for model
training.

In the future, we will try to introduce semi-supervised learning and unsupervised
learning in active learning to further improve the generalization ability of the segmentation
model on different datasets. Moreover, we will design specific algorithms to solve problems
in breast cancer segmentation such as microcalcification and architectural distortion, thus
improving the segmentation accuracy.
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