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Abstract: The Poisson multi-Bernoulli Mixture (PMBM) filter, as well as its variants, is a popular
and practical multitarget tracking algorithm. There are some pending problems for the standard
PMBM filter, such as unknown detection probability, random target newborn distribution, and
high energy consumption for limited computational and processing capacity in sensor networks.
For the sake of accommodating these existing problems, an improved multitarget tracking method
based on a PMBM filter with adaptive detection probability and adaptive newborn distribution is
proposed, accompanied by an associated distributed fusion strategy to reduce the computational
complexities. Firstly, gamma (GAM) distribution is introduced to present the augmented state of
unknown and changing target detection probability. Secondly, the intensity of newborn targets is
adaptively derived from the inverse gamma (IG) distribution based on this augmented state. Then,
the measurement likelihood is presented as a gamma distribution for the augmented state. On these
bases, the detailed recursion and closed-form solutions to the proposed filter are derived by means
of approximating the intensity of target birth and potential targets to an inverse gamma Gaussian
mixture (IGGM) form and the density of existing Bernoulli components to a single IGGM form.
Moreover, the associated distributed fusion strategy generalized covariance intersection (GCI), whose
target states are measured by multiple sensors according to their respective fusion weights, is applied
to a large-scale aquaculture tracking network. Comprehensive experiments are presented to verify
the effectiveness of this IGGM–PMBM method, and comparisons with other multitarget tracking
filters also demonstrate that tracking behaviors are largely improved; in particular, tracking energy
consumption is reduced sharply, and tracking accuracy is relatively enhanced.

Keywords: multitarget point tracking; PMBM filter; GCI fusion; IGGM implementation; aquaculture

1. Introduction

Multiple-target tracking (MTT) can generally be defined as a process in which states
and a number of spatiotemporally varying targets can be jointly determined by adopting
a sequence of discrete measurements under the condition of uncertain data association,
uncertain detection, uncertain process and measurement noise, random clutters, and even
random newborn distribution [1,2]. Point target MTT is generally defined as tracking
targets which produce at most one measurement originating from one target at each time
step [3,4], while extended target MTT is generally defined as a target which can potentially
occupy multiple resolution cells of one sensor, where a single extended target may produce
multiple measurements in each scan step [5,6].

In this work, an improved PMBM filter is proposed to track multiple point targets.
The PMBM filter provides an acceptable suboptimal approximation solution for joint
estimation for the states of multiple targets, in addition to facing enormous technical
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challenges [7]. Implementation of PMBM recursion mainly includes an analytic solution of
a Gaussian mixture (GM) [8] and a particle solution of sequential Monte Carlo (SMC) [9,10].
SMC-based implementation does not require any assumptions about target distributions,
denoting the PMBM by a sequence of random weighted particles. Nevertheless, GM-based
implementation can provide a closed-form solution, which is a preferable distributed
implementation for a sensor network equipped with limited processing capabilities and
communication capabilities. PMBM can adopt Bayesian recursion to largely eliminate
the clutter or noise originated from measurements. Furthermore, the PMBM density is
a conjugate prior to both the prediction and the update processing that can preserve the
PMBM form of the density, which is handy for target state density and cardinality during
iterations. As a result, the PMBM filter has been increasingly adopted in many target
tracking applications.

Three main contributions are presented in this paper:

1. GAM distribution is introduced to present the augmented state of unknown and
changing target detection probability. The intensity of newborn targets is adaptively
derived presented by IG distribution on the basis of this augmented state.

2. The measurement likelihood is presented as a gamma distribution for the augmented
state. Closed-form solutions are derived on these bases by means of approximating
the intensity of target birth and potential targets to an IGGM form and the density
of existing Bernoulli components to a single IGGM form. Furthermore, the target
cardinality distribution is estimated in the proposed filter, which is a rare solution in
most PMBM filters.

3. A distributed fusion strategy GCI is applied to a large-scale aquaculture tracking network.

The remainder of this paper is structured as follows: Section 2 gives a summary of
related works and the analysis premise of our model. The original PMBM filter, gamma
distribution, and IG distribution, accompanied by the GCI fusion algorithm are briefly
described after presenting the target dynamic model in Section 3. A novel algorithm
IGGM–PMBM filter with a fusion strategy is proposed in Section 4, along with performance
analysis models of IGGM–PMBM with an initialization strategy. In Section 5, accurate
analyses and validations of tracking error, cardinality, and consumption are presented, and
performance comparisons of the GCI–IGGM–PMBM filter with other multitarget tracking
schemes are also proposed. Lastly, conclusions and discussions are presented in Section 6.

2. Related Works

The Poisson multi-Bernoulli mixture (PMBM) conjugate priors for MTT were studied
comprehensively by Xia [11], considering the problems of both point target tracking and
extended target tracking, and considering the problem of sets of objects to sets of trajectories.
Some summarized studies from this thesis can be found in [6–8,10,12–14]. A derivation
of the PMBM filter for multitarget tracking with the standard point target measurements
without using probability generating functionals or functional derivatives was proposed
in [12]. The conjugate prior of PMBM consisted of the union of a Poisson process and a multi-
Bernoulli mixture (MBM), in which the MBM considered all the data association hypotheses;
it could be implemented efficiently using a track-oriented multiple hypothesis tracking
(MHT) formulation, while the Poisson part considered all targets that were never detected
and enabled an efficient management of the number of hypotheses covering potential
targets. A PMBM conjugate prior for multiple extended object filtering was proposed in [13],
where a Poisson point process was used to describe the existence of yet undetected targets,
while a multi-Bernoulli mixture described the distribution of the targets that were detected.
The PMBM density was a conjugate prior for both the prediction and the update, which
could preserve the PMBM form of the density, and a GGIW implementation was presented
to approximate the unknown data associations. A new local hypothesis representation
was presented in [14] to create a new Bernoulli component for each measurement, which
considered computationally lighter alternatives to the extended object PMBM filter through
two approximation methods. One was based on the track-oriented MB approximation, and
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the other was based on the variational MB approximation via KL divergence minimization.
A novel consensus-based labeled MB (LMB) filter was proposed in [15] to tackle MTT in a
communication resource-sensitive distributed sensor network (DSN). Two event-triggered
strategies were proposed and incorporated into the consensus-based LMB: the integral-
triggering strategy (ITS) and KL divergence. A PMBM filter was proposed in [5] for
coexisting point and extended targets, which was updated for a generalized measurement
model including measurements originated from point and extended targets. A single-
target space accommodated both point and extended targets, and then derived the filtering
recursion propagating Gaussian densities for point targets and GGIW densities for extended
targets. Considering the above, the PMBM filter can be adopted in multitarget tracking
filters, which can provide relatively optimal solutions for point targets or extended targets.

A robust PMBM filter using adaptive birth distributions for the tracking of multiple
targets was proposed in [16], which presented a novel measurement-driven adaptive birth
distribution robust to the random locations where new targets are located. Beta distribu-
tion was employed to describe unknown detection probability to improve the method
practicability. The detailed recursion and closed-form solutions were derived through two
approximations: one approximating the target birth intensity and potential target inten-
sity to the beta GGIW (BGGIW) mixture form, and the other approximating the existing
Bernoulli component density to a single BGGIW form. The Gibbs sampler was adopted to
resolve the problem of the computational bottleneck caused by data associations. A novel
fusion framework for the Poisson MB (PMB) filter was proposed in [17], which integrated
both the advantages of the TOMB/P filter in dealing with missed detection and the ad-
vantages of the MOMB/P filter in dealing with coalescence. The Bernoulli components in
different MB distributions were associated with each other by KLD minimization to fuse
the different PMB distributions.

A standard PMBM or PHD (CPHD) filter assumes that the target birth intensity is
known a priori, but newborn targets (including spontaneous newborns and spawned
newborns) may be randomly located in the coverage range with adaptive newborn density
in actual applications, which leads to primitive missed detection and inaccurate estimation.
An improved GM–CPHD filter was developed in [18] to estimate target cardinality distri-
bution of the time-varying newborns at each processing step adopting a discrete kernel
estimator in conjunction with an exponential weighted moving average scheme. Target
birth intensity could be updated according to the outputting estimated birth cardinality
distribution, and predicted birth intensity and cardinality distribution could be adopted
by a tracker based on GM–CPHD to adjust its filtering strength for target tracking. Novel
extensions were derived to distinguish between the persistent and the newborn targets in
both the prediction and the update step in [19], allowing the PHD/CPHD filter to adapt
the target birth intensity at each processing step using the received measurements. This
measurement-driven birth intensity is practical because it removes the need for the prior
specification of birth intensities and eliminates the restriction of target appearance volumes
within state space. As described in [16], BGGIW was adopted to approximate target birth
intensity and potential target intensity.

The target detection probability depends on the sensor, target, environment, and
features used for detection. A priori knowledge of target detection probability is of critical
importance in a PMBM or PHD (CPHD) filter, while the detection probability is always
time-varying and space-varying. Target amplitude and SNR information were exploited to
present the detection probability in [20], and the IGGM distribution was used to implement
the PHD and CPHD filters to address the limitation of nonnegativity of the target amplitude
and SNR and non-Gaussian noise. A variational Bayesian approximation method was
brought into the trajectory PHD (VB–TPHD) filter to obtain measurement noise covariance
adaptively in [21]. The random matrix, following the IW distribution, was introduced to
model the unknown measurement covariance in this filter. The VB–TPHD filter minimized
the KLD and estimated the series of states for multiple targets, taking noise covariance
matrices into account simultaneously. An R-PMBM recursion that estimates the unknown
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detection probability was proposed in [4], in which the state of each object was coupled
with a variable representing the detection probability such that the standard PMBM filtering
process evolved into an R-PMBM filter which could jointly estimate the state of objects and
detection probability. A beta function was proposed to represent the detection probability
for a computationally feasible implementation of the R-PMBM filter. The beta function was
also adopted to describe the unknown detection probability in [16].

Other tracking methods exist, such as energy-based autoregressive neural network [22,23],
deep learning method [24–26], visual method [27,28], and genetic algorithm [29]. A novel
transfer learning algorithm with an SMC–PHD filter and GM–PHD filter was proposed
in [30] to automatically adapt the YOLO network with unlabeled target sequences. The
frames of the unlabeled target sequences were automatically labeled. The detection proba-
bility and clutter density of the SMC–PHD filter and GM–PHD were applied to retrain the
YOLO network for occluded targets and clutter. A novel likelihood density with the confi-
dence probability of the YOLO detector and visual context indications was implemented to
choose target samples. A simple resampling strategy was proposed for SMC–PHD YOLO
to address the weight degeneracy problem.

A novel consensus CPHD filter based on GM implementation was presented for
distributed MTT over a sensor network [31]. A fusion robust fusion method was proposed
to perform fusion via fully distributed means. Tracking information (including location
and other tracking information) of multiple targets measured by separate nodes was fused
for the practically more relevant case of unknown correlations between nodes. The fusion
method was implemented on only two agents or sensors; one fusion weight was w and
the other was 1− w. A sequential GCI fusion means was proposed in [32] after applying
a GGIW–CPHD filter to each sensor, which also assumed that there were two agents or
sensors to be fused. A pairwise means was adopted if there were more than two sensors;
hence, if there were more than two sensors, every two sensors were coupled to one pairwise
function to fuse the tracking information using the fusion means of [19]. This pairwise
fusion could substantially decrease the computational burden compared to the batch fusion,
as well as bring about some problems. One is that it needed to establish location correlations
before coupling these sensors, which consumed much energy for the uncertainty location
of mobile sensors. The other is that one residual sensor could not be coupled with any
other sensor after coupling with its corresponding sensor.

As described above, a Bayesian recursion adopted PMBM filter can largely improve
the tracking behaviors by eliminating the clutter or noise originating from measurements,
but there remain several challenging tasks. Firstly, a standard PMBM filter assumes that
the birth density is a priori known density or homogenous density [19], while new targets
can birth or die at arbitrary positions or at random process period in real-world application
scenarios, leading to PMBM becoming inapplicable. Secondly, the PMBM filter assumes
that target detection probability is a priori known, while detection probability can arise
with uncertain spatial and uncertain temporal distribution, leading to PMBM becoming
incomplete and inaccurate. Thirdly, many measurements detected by a mass of sensors can
bring about a sharp increase in computation and processing burden, which is a pending
problem for sensor networks. Lastly, tracking initialization is not included in most PMBM
filters, leading to tracking error and increased energy consumption in tracking, or leading
to increased cumulative tracking errors in subsequent steps. In order to solve these existing
problems of the standard PMBM filter, an improved multitarget tracking method based on
a GCI–IGGM–PMBM filter is proposed in this work for our aquaculture tracking sensor
network. Firstly, a GAM distribution is introduced to present the augmented state of
unknown and changing target detection probability. Secondly, the intensity of newborn
targets is adaptively derived presented using the IG distribution based on this augmented
state. Then, the measurement likelihood is presented as a gamma distribution for the
augmented state. On these bases, the detailed recursion and closed-form solutions to the
proposed filter are derived by means of approximating the intensity of target birth and
potential targets to an IGGM form and the density of existing Bernoulli components to
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a single IGGM form. Moreover, the associated distributed fusion strategy GCI, whose
target states are measured by multiple sensors according to their respective fusion weights,
is applied to a large-scale aquaculture tracking network. Lastly, the target states are
initialized by adopting the hidden terminal couple (HTC) scheme [33] in the proposed
system. Furthermore, comprehensive experiments are presented to verify the effectiveness
of the GCI–IGGM–PMBM tracking method. Moreover, comparisons with other multitarget
tracking schemes also demonstrate that the tracking behavior is largely improved; in
particular, the tracking energy consumption is reduced sharply, and the tracking accuracy
is relatively enhanced.

3. System Models

Figure 1 shows the physical nodes in our aquaculture network, detecting the multi-
target location and other tracking information. Sensors (including normal sensing nodes
and anchors in charge of information processing and fusion) are randomly located in a
(−500, 500)× (−500, 500) m2 area, according to a two-dimensional Poisson distribution
with a density of λ0, in which the ratio of anchors is γ0, i.e., NA(1− hop) = πγ0λ0. Multi-
ple targets, Chinese crabs in this study, move along with maneuvering trajectories in the
sensor deployment area and are detected by the sensor nodes (normal sensors or anchors)
implementing the IGGM–PMBM tracking strategy.
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Figure 1. The nodes in the aquaculture network of tracking targets adopted in the environment for
our aquaculture sensor network. (a) Schematic diagram of the structural representation of nodes.
(b) Buoys equipped with sensors in this network. (c) Layout representation of tracking system in this
aquaculture network.

Multiple targets, equipped with recognizable sensors, can also communicate with
other sensors in this sensor network. Each node can establish its one-hop and two-hop
neighbor lists through an HTC scheme. In each timestep, nodes including targets can
perform the HTC scheme to obtain its one-hop and two-hop neighbors, before initializing
the filter. Each HTC request packet contains the node ID, location, and current moment.
Receiving this request packet, nodes (including targets) can obtain distance information of
their one-hop and two-hop neighbors. Consecutive position information detected from the
request packet of specific targets is used to obtain the targets’ velocity. Location and velocity
information can be used for the iterative IGGM–PMBM filter to obtain target tracking.

3.1. Multitarget Bayes Filter

For limited-energy large-scale sensor networks, a method with less computational cost
and less complexity for target tracking is anticipated. The target state is Xk (matrices are
denoted in italic uppercase nonbold letters in this study) at timestep k within the state space
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X (sets are denoted in uppercase bold letters), which contains kinematic states (position,
velocity, turn rate, orientation, etc.). Measurements at timestep k are represented as Mk
within the measurement space M, which denotes all measurement sets from time t = 1
to k, including time t = k. The state and measurement set of the targets are represented
by Xk ∈ F(X) and Mk ∈ F(M), which are the finite subsets of X and M, respectively. The
system model and measurement model can be generally described as follows [4]:

Xk =
{

x1
k , x2

k , . . . , xNk
k

}
∈ F(X), (1)

Mk =
{

m1
k , m2

k , . . . , mZk
k

}
∈ F(M), (2)

where Nk and Zk are the number of targets and the number of measurements at timestep k,
respectively. Target state xk at time k contains three parts, which are targets surviving from
the previous timestep k− 1, newborn targets spawned from targets at the previous timestep
k− 1, and spontaneous newborn targets at the timestep k, which are indicated as Sk|k−1,
SPk|k−1, and Bk, respectively; Xk = Sk|k−1 ∪ SPk|k−1 ∪ Bk. It is worth noting that newborn
targets spawned from targets at the previous timestep k− 1 can be considered as newborn
targets for classification and modeling simplicity, which is denoted as Xk = Sk|k−1 ∪ Bk.

The multitarget state posterior density at time can be denoted as pk|k(Xk|M1:k ). Ac-
cording to Bayesian estimation theory, multitarget state posterior density can be obtained
by optimal Bayes recursion as follows:

pk|k−1(Xk|M1:k−1 ) =
∫

fk|k−1(Xk|Xk−1, M1:k−1 )pk−1|k−1(Xk−1|M1:k−1 )dXk−1, (3)

pk|k(Xk|M1:k ) =
lk(Mk|Xk )pk|k−1(Xk|M1:k−1 )∫

lk(Mk|Xk )pk|k−1(Xk|M1:k−1 )dXk
, (4)

where fk|k−1(Xk|Xk−1, M1:k ) is the state transition density function based on all measure-
ment sets M1:k from M1 at time t = 1 up to Mk at time t = k and target state Xk−1 at previous
time t = k− 1, and lk(Mk|Xk ) denotes the target measurement likelihood function.

3.2. PMBM RFS

The PMBM filter is a combination of two disjointed parts, the Poisson point process
(PPP) and the multi-Bernoulli mixture (MBM). The PPP describes the distribution of the
targets that exist but are not detected, which is expressed by Xu. The MBM describes the
mixture distribution of the targets that have been detected at least once, represented by a
series of weighted multi-Bernoulli density, expressed as Xd.

Xu ∪ Xd = X, Xu ∩ Xd = ∅, (5)

pk(Xu) = e−〈Dk(x);1〉 ∏
X∈Xu

Dk(X) = e−λ ∏
X∈Xu

λ fk(X), (6)

pk(Xd) = ∑
∪i∈IXi=Xd

∏
i∈I

pi
k(Xi), (7)

pi
k(Xi) =


1− ri

k Xi = ∅
ri

k pi
k(x) Xi = {x}

0
∣∣Xi
∣∣ ≥ 2

, (8)

pk(Xk) = ∑
Xu∪Xd=X

pk(Xu
k )∑

j∈J
wj

k pj
k(Xd

k ) = ∑
Xu∪Xd=X

e−
∫

Dk(Xu)dx ∏
x∈Xu

Dk(X
u)∑

j∈J
∑

∪i∈IXi=Xd
∏
i∈Ij

wj,i
k rj,i

k pj,i
k (X j,i

k ), (9)

where pj,i
k (X j,i

k ) represents the density of the ith Bernoulli in the jth MB, I is an index set of
independent Bernoulli components, and J is an index set for the MBs in the MBM or com-
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ponents of the MBM. wj,i
k is the probability of the ith Bernoulli component density in the jth

global hypothesis. Then, the density of PMBM can be presented as shown in Equation (9),
which is represented entirely by the parameters of Dk(Xu),

{
wj

k,
{

rj,i
k , pj,i

k (X j,i)
}

i∈Ij

}
j∈J

. Be-

cause the density of PMBM is a prior MTT conjugate, the PMBM density is a prior conjugate
with both the prediction and the update, preserving the PMBM form of the density.

3.3. PMBM Recursion

The recursion of PMBM consists of the prediction and updating step.
Prediction Step: Given a posterior PMBM density of pk(Xk) at timestep k, as shown in

Equation (9) with the parameters of Dk(Xu
k ),
{

wj
k,
{

rj,i
k , pj,i

k (X j,i
k )
}

i∈Ij
k

}
j∈Jk

and the standard

dynamic model, the predicted density is the PMBM density expressed in Equation (10).

pk+1(Xk+1) = ∑
Xu∪Xd=X

e−
∫

Dk+1(Xu)dX ∏
x∈Xu

Dk+1(Xu) ∑
j∈Jk+1

wj
k+1 ∑
∪i∈Ik+1

Xi=Xd
∏

i∈Ij
k+1

rj,i
k+1 pj,i

k+1(X j,i). (10)

Dk+1(Xu) = Db
k+1(X) +

∫
Dk(Xu)ps fk+1|k(X)dX. (11)

rj,i
k+1 = rj,i

k

∫
ps pj,i

k (X)dX. (12)

pj,i
k+1(X j,i) =

∫
pj,i

k (X)ps fk+1|k(X)dX∫
ps pj,i

k (X)dX
. (13)

wj
k+1 = ∑

i∈Ij

wj,i
k . (14)

Updating Step: Given a prior PMBM density of pk+1(Xk+1) at timestep k+ 1, as shown

in Equation (10) with the parameters of Dk+1(Xu
k+1),

{
wj

k+1,
{

rj,i
k+1, pj,i

k+1(X j,i
k+1)

}
i∈Ij

k+1

}
j∈Jk+1

and a set of measurements M, the updated density is the PMBM density expressed in
Equation (15).

pk+1(Xk+1|Mk ) = ∑
Xu∪Xd=X

pu
k (Xu

k ) ∑
j∈Jk+1

∑
A∈Aj

wj
A,k pj

A,k(Xd
k ), (15)

pu
k (Xu

k ) = e−
∫

Dk(Xu)dX ∏
x∈Xu

Dk(Xu), (16)

pj
A,k(Xd

k ) = ∑
∪C∈AXC=Xd

∏
C∈A

rj
C,k pj

C,k(XC), (17)

wj
A,k =

wj
k+1∏C∈A LC

∑
j∈Jk+1

∑
A∈Aj

wj
k+1 ∏

C∈A
LC

, (18)

Dk(Xu) = qD(Xu)Dk+1(Xu), (19)

LC =


κCC +

∫
lCC Du

k+1(X)dX if C ∩ Ij = ∅, |CC| = 1∫
lCC Du

k+1(X)dX if C ∩ Ij = ∅, |CC| > 1

1− rj,iC
k+1 + rj,iC

k+1

∫
qD pj,iC

k+1(X)dX if C ∩ Ij 6= ∅, |CC| = ∅
rj,iC

k+1

∫
lCC pj,iC

k+1(X)dX if C ∩ Ij 6= ∅, |CC| 6= ∅

, (20)
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rj
C,k =



∫
Du

k+1(X)lCC
dX

κCC
+
∫

Du
k+1(X)lCC

dX if C ∩ Ij = ∅, |CC| = 1

1 if C ∩ Ij = ∅, |CC| > 1∫
Du

k+1(X)lCC
dX

1−r
j,iC
k+1+r

j,iC
k+1

∫
qD p

j,iC
k+1(X)dX

if C ∩ Ij 6= ∅, CC = ∅

1 if C ∩ Ij = ∅, CC 6= ∅

, (21)

pj
C,k(XC) =



Du
k+1(X)lCC∫

Du
k+1(X)lCC

dX if C ∩ Ij = ∅
qD(X)p

j,iC
k+1(X)∫

qD(X)p
j,iC
k+1(X)dX

if C ∩ Ij 6= ∅, CC = ∅

lCC
(X)p

j,iC
k+1(X)∫

lCC
p

j,iC
k+1(X)dX

if C ∩ Ij 6= ∅, CC 6= ∅

, (22)

where qD is the probability of missed detection, and LC is the likelihood function of data
association C. Aj represents all data associations A for the predicted global hypothesis of
the jth MB, and C ∈ A represents an assignment of each measurement cell MC in M to an
existing target, either to a new target or to a clutter.

3.4. The Inverse Gamma Distribution and Gamma Distribution

Gamma: The probability density of the Gamma distribution G(x; α, β) is presented as

GAM(ζ; α, β) =
βα

Γ(α)
ζα−1e−βζ , (23)

where shape parameter α > 0 and rate parameter β > 0, and Γ(α) denotes the gamma
function. Its mode and mean are (α−1)/β and α/β, respectively.

Inverse Gamma: The probability density of the inverse gamma distribution IG(x; α, β)
is defined over the support x >0 as

IG(η; α, β) =
βα

−(α)η−α−1 exp(− β

η
), (24)

where shape parameter α > 0 and rate parameter β > 0. The mode in which the probability
density function is the maximum is β/(α+1), and the mean value is β/(α−1). The variance
of the IG distribution is β2/[(α−1)2(α−2)].

3.5. GCI Fusion

In our aquaculture sensor network, multiple sensors (including normal nodes and
anchors) are sensing, exchanging, and processing location, state, and other tracking infor-
mation from targets and their neighbors. Suitable information fusion strategies are taken
into account in such an energy-limited system with limited sensing capabilities, limited pro-
cessing capabilities, and limited computation capabilities. The centralized fusion methods
cannot be adopted for such large-scale sensors and large monitoring areas. The pairwise
fusion means cannot be adopted; although it can substantially decrease the computational
burden, it brings about some problems. One is that it needs to establish location correlations
before coupling these sensors, which consumes great energy for the uncertainty location
of mobile sensors. The other is that one residual sensor cannot couple with any other
sensor after coupling with its corresponding sensor, leading to missed detection. Thus, a
distributed fusion method based on GCI, a multitarget fusion strategy, is proposed in this
sensor network to iterate local fusion among neighboring nodes for scalability requirement.
The GCI fusion process is briefly described below [31]. Given estimates x̂k of the state x
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from multiple estimators with relative covariances Pk and unknown correlations, the GCI
fusion can be presented as

GCI(x) = ∏k[pk(x)]wk∫
∏k [pk(x)]wk dx

, (25)

where pk(x) ∼ N(x; x̂k, Pk) is the Gaussian PDF with mean x̂k and covariance Pk, and wk is
the weight of xk. Of course, the fusion of PDF in Equation (25) can be used for an arbitrary
PDF, not only for a Gaussian PDF.

Given that the target RFS set follows an independent and identically distributed cluster
process [30], the sensor multitarget densities to be fused to take the following form:

GCIk(X) = |X|!pk(X)∏
x∈X

Dk(x), (26)

GCIk(X) = |X|!pk(X)∏
x∈X

Dk(x). (27)

As related above, Dk(x) and Nk(x, n) are considered the state density and cardinality
density of multiple targets, respectively. The GCI fusion of Dk(x) and Nk(x, n) of the
multiple targets adopting Equations (25) and (26) can be obtained as follows:

D(x) =
∏NA

i=1 [Dk(x)]
wi∫

∏NA
i=1 [Dk(x)]

wi dx
, (28)

N(x, n) =
∏NA

i=1 [Ni(n)]
wi
{∫

∏NA
i=1 [Dk(x)]wi dx

}n

∞
∑

j=1
∏NA

i=1 [Nk(j)]wi
{∫

∏NA
i=1 [Dk(x)]

wi dx
}j . (29)

GCI fusion of D(x) expressed in Equation (28) describes that the target state density
D(x) at time k is the weighted geometric mean of target state densities D(x), and the
fusion cardinality N(x, n) expressed in Equation (29) is an interconnected mean not only
with the target state density but also with the target cardinality density. For practical
implementation, GCI fusions of D(x) and N(x, n) can be considered as finite dimensional
parameters, such as the target number of nmax = Nk in N(x, n). Two finite parameterized
methods are most commonly adopted to process the infinite dimensional problem of
target state density, SMC and GM. For our computation-limited and process-limited sensor
network, the GM approach is adopted, which promises to be more applicable. Generally,
the order of magnitude of the involved number of Gaussian components is lower than the
number of particles of the SMC, which is required for applicable tracking performance.

During GM implementation for the fusion of Equation (28), the GM state densities can
be obtained as

D(x) =
NA

∑
u=1

wuN(x; x̂u, Pu), (30)

Dk(x) =
NA,k

∑
u=1

(wk
u)N(x; x̂u

k , Pu
k ), (31)

where wu is the measured state weight by the uth anchor, and NA is the number of anchors
which are responsible for sensing, processing, and fusing state information. Then, the target
state fusion can be obtained using Equation (31). It is worth noting that our aquaculture
sensor network is composed of more than two sensors. The sequential pairwise fusion
method described in [31] can be modified to multiple sensors via associated distributed
fusion. Associated fusion refers to the associative fusion of target states measured by
multiple sensors according to their respective weights wu and ∑NA

u=1 wu = 1. Sensors can
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obtain their own neighbor lists at the beginning of each timestep k, and the relationship of
measured target states can be established.

D f (x) =

NA
∏

u=1
[Du(x)]

wu

∫ NA
∏

u=1
[Du(x)]

wu dx
. (32)

According to the simplified integral algorithm of the power of Gaussian compo-
nents [31], Equation (32) can be expressed as Equation (33), in which η(wu, Pu) can be
expressed as Equation (34).

[
NA

∑
u=1

αuN(x; x̂u, Pu)]

wu

∼=
NA

∑
u=1

[αuN(x; x̂u, Pu)]w
u
=

NA

∑
u=1

(αu)wu
η(wu, Pu)N(x; x̂u,

Pu

wu ). (33)

η(wu, Pu) =
[det(2πPuw−1)]

1/2

[det(2πPu)]wu/2 . (34)

4. Our Proposed GCI–IGGM–PMBM Scheme

Multitarget tracking for aquaculture sensor networks allows obtaining the state density
and cardinality density of multiple culture objects adopting an appropriate highly efficient
tracking method. According to the standard multitarget PMBM model in Section 3.2, some
pending problems should be considered.

First of all, detection probability is of critical importance in a multitarget tracking
scheme, and the standard PMBM filter assumes that the detection probability is known and
time-invariant. In actual multitarget tracking, targets can move in uncertain environments
at different times, and sensors collecting target state information can also be located in an
uncertain area of tracking position. Thus, the detection probability has much uncertainty
and may be time-variant, which brings about a decrease in the accuracy of target state or
cardinality depending on the detection measurements.

Secondly, the standard PMBM filter tracks multiple targets with the assumption
that newborn target birth density is known and time-invariant, or the prior density is
known [19], which only takes the known observation area into target density estimation
without considering the unknown observation area. However, newborn targets (including
spontaneous newborns and spawned newborns) may be randomly located in the coverage
range with adaptive newborn density in actual applications, leading to primitive PMBM
with further missed detection and inaccurate estimation.

Lastly, large-scale sensors located in the tracking coverage range can collect and ex-
change location information originating from multiple targets or other tracking information
for target tracking. For such an energy-limited, computation-limited, and processing-
limited sensor network, it is impossible for each sensor, even if it is an anchor with better
hardware equipment, to execute and process so much tracking information. In addition to
increased energy consumption for tracking multiple targets, extensive delays are also taken
into account for exchanging and processing tracking data by the respective sensors.

In order to solve these existing problems of the standard PMBM filter, an improved
method based on a GCI–IGGM–PMBM filter is proposed for our aquaculture tracking
sensor network. Firstly, an adaptive target detection probability, modeled as a gamma
distribution, is taken into account to estimate multiple target states and the cardinality
density. Secondly, an adaptive newborn density originating from measurements based on
the time-variant detection probability is proposed, with IG distribution. Lastly, a GCI fusion
strategy, consisting of an associative distributed fusion of target states measured by multiple
sensors according to their respective weights, is applied to a large-scale tracking network.
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This improved GCI–IGGM–PMBM scheme estimates the target state density and
cardinality of multiple targets, as elaborately presented below.

4.1. Augmented State Model

A variable ξ ∈ [0, 1], which represents the unknown detection probability in a tracking
system, is augmented into the multitarget state X. That is, the new multitarget states can
be presented as X̂ = (X, ξ), and the integral of the density of the augmented state X̂ can be
denoted as ∫

p(X̂)dX̂ =
∫ ∫ 1

0
p(X, ξ)dξdX. (35)

The state transition density fk|k−1(X̂k
∣∣X̂k−1 ) of the augmented state X̂k given the state

X̂k−1 can be denoted as

fk|k−1(X̂k
∣∣X̂k−1 ) = fk|k−1(Xk, ξk|Xk−1 , ξk−1) = fk|k−1(Xk|Xk−1 ) fˆk|k−1(ξk|ξk−1 ), (36)

lk(Mk
∣∣Xk̂ ) = lk(Mk|Xk , ξk) = lk(Mk|Xk ), (37)

where fk|k−1(Xk|Xk−1 ) is the transition density of the state Xk given the state Xk−1, and
fˆk|k−1(ξk|ξk−1 ) is the transition density of variable ξk given variable ξk−1. Then, the

survival probability pS,k(X̂k) and detection probability pD,k(X̂k) can be presented as

pS,k(X̂k) = pS,k(Xk, ξk) = pS,k(Xk), (38)

pD,k(X̂k) = pD,k(Xk, ξk) = ξk. (39)

4.2. Recursion Based on Augmented States

In the proposed GCI–IGGM–PMBM filter, the newborn intensity and detection proba-
bility are a priori unknown, which is unlike the standard PMBM filter. Gamma distribu-
tion is used to present the unknown detection probability, and target states comply with
Gaussian distribution. The prediction and updating of IGGM–PMBM can be derived as
described below.

Proposition 1 (Predicted process). Given the posterior intensity of Poisson Dk−1(X̂
u, ξ), the

newborn intensity with Bb
k(X̂b,ξ) and MBM RFS with parameters

{
wj

k−1,
{

rj,i
k−1, pj,i

k−1(x̂)
}

i∈Ij

}
j∈J

at time k − 1, representing the undetected targets and potentially detected targets, re-
spectively, the predicted intensity of IGGM–PMBM can be obtained in two steps, as
described below.

1. PPP process
Du

k|k−1(Xk, ξk) = Bb
k(Xb, ξk)+Du

k−1(Xk, ξk), (40)

Bb
k(Xb, ξk) =

∫ ∫ 1

0
Bb

k−1(Xb
k−1, ξb

k−1)pS(Xb
k−1) fk|k−1(Xk

∣∣∣Xb
k−1 ) fˆk|k−1(ξk|ξk−1 )dXb

k−1dξb
k−1, (41)

Du
k−1(Xk, ξk) =

∫ ∫ 1

0
Du

k−1(Xk−1, ξk−1)pS(ξk−1) fk|k−1(Xk|Xk−1 ) fˆk|k−1(ξk|ξk−1 )dXk−1dξk−1, (42)

where fk|k−1(Xk

∣∣∣Xb
k−1 ) denotes the transition function of target states, and fˆk|k−1(ξk|ξk−1 )

denotes the transition function of the augmented variate, presented as an unknown
detection probability.

2. MBM process

rj,i
k|k−1 = rj,i

k−1

∫ ∫ 1

0
pj,i

k−1(Xk−1, ξk−1)ps(ξk−1)dXk−1dξk−1, (43)
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pj,i
k|k−1(X, ξ) =

∫ ∫ 1

0
pj,i

k−1(Xk−1, ξk−1)ps(ξk−1) fk|k−1(Xk|Xk−1 ) fˆk|k−1(ξk|ξk−1 )dXk−1dξk−1, (44)

wj
k|k−1(X,ξ) = wj

k−1(X). (45)

Then, the predicted density is also a PMBM density, which is represented by the
parameters Du

k|k−1(Xk, ξk) and
{

wj
k|k−1,

{
rj,i

k|k−1, pj,i
k|k−1(x̂)

}
i∈Ij

}
j∈J

.

Proposition 2 (Updating process). Given the predicted PMBM density with parame-
ters Du

k|k−1(Xk, ξk) and
{

wj
k|k−1,

{
rj,i

k|k−1, pj,i
k|k−1(x̂)

}
i∈Ij

}
j∈J

, as well as the measurements

Mk at time k, the updated density of IGGM–PMBM can be obtained in four stages as
described below.

1. Update for undetected targets

pk|k(X, ξ) = (1− ξ)pk|k−1(X, ξ). (46)

2. Update for potential targets detected for the first time

ru
k,1 =

∫ 1
0

∫
Du

k|k−1(Xk−1, ξk−1)lk(Mk|Xk−1 )dXk−1dξk−1

κC(Mk, ξk−1) +
∫ 1

0

∫
Du

k|k−1(Xk−1, ξk−1)lk(Mk|Xk−1 )dXk−1dξk−1

, (47)

pu
k,1(X, ξ|M ) =

lk(M|X )Du
k|k−1(X, ξ)∫ 1

0

∫
lk(Mk|Xk−1 )Du

k|k−1(Xk−1, ξk−1)dXk−1dξk−1

, (48)

wj
k,1 =

wj
k|k−1∏C∈A1

(κC(Mk, ξk−1) +
∫ 1

0

∫
Du

k|k−1(Xk−1, ξk−1)lk(Mk|Xk−1 )dXk−1dξk−1)

∑j∈J ∑A1∈Aj wj
k|k−1∏C∈A1

(κC(Mk, ξk−1) +
∫ 1

0

∫
Du

k|k−1(Xk−1, ξk−1)lk(Mk|Xk−1 )dXk−1dξk−1)
, (49)

where κC(Mk, ξk−1) denotes the clutter density originating from measurements based
on the augmented variate unknown detection probability, and the subscript 1 denotes
the update type.

3. Missed detection of MBM

rj,i
k,2 =

rj,i
k|k−1

∫ 1
0

∫
Dj,i

k|k−1(Xk−1, ξk−1)(1− ξk−1)dXk−1dξk−1

1− rj,i
k|k−1 + rj,i

k|k−1

∫ 1
0

∫
Du

k|k−1(Xk−1, ξk−1)(1− ξk−1)dXk−1dξk−1

, (50)

pj,i
k,2(X, ξ|M ) =

(1− ξk)Du
k|k−1(X, ξ)∫ 1

0

∫
(1− ξk)Du

k|k−1(Xk−1, ξk−1)dXk−1dξk−1

, (51)

wj
k,2 =

wj
k|k−1∏C∈A2

(1− rj,i
k|k−1 + rj,i

k|k−1

∫ 1
0

∫
Du

k|k−1(Xk−1, ξk−1)(1− ξk−1)dXk−1dξk−1)

∑j∈J ∑A2∈Aj wj
k|k−1∏C∈A2

(1− rj,i
k|k−1 + rj,i

k|k−1

∫ 1
0

∫
Du

k|k−1(Xk−1, ξk−1)(1− ξk−1)dXk−1dξk−1)
, (52)

where the definitions of J and Aj are the same as in Section 3.1.
4. Update for MBM

rj,i
k,3 = 1, (53)

pj,i
k,3(X, ξ|M ) =

lk(M|X )pj,i
k|k−1(X, ξ)∫ 1

0

∫
lk(Mk|Xk−1 )pj,i

k|k−1(Xk−1, ξk−1)dXk−1dξk−1

, (54)

wj
k,3 =

wj
k|k−1∏C∈A3

rj,i
k|k−1

∫ 1
0

∫
pj,i

k|k−1(Xk−1, ξk−1)lk(Mk|Xk−1 )dXk−1dξk−1

∑j∈J ∑A3∈Aj wj
k|k−1∏C∈A3

rj,i
k|k−1

∫ 1
0

∫
pj,i

k|k−1(Xk−1, ξk−1)lk(Mk|Xk−1 )dXk−1dξk−1

, (55)
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where lk(Mk|Xk−1 ) denotes the measurement likelihood.

4.3. IGGM Implementation

The closed-form solution using adaptive newborn distributions accompanied by aug-
mented unknown detection probability can be derived using an inverse gamma Gaussian
mixture. The gamma, inverse gamma, and Gaussian distributions are presented as the
unknown detection probability, adaptive newborn distribution, and target state distri-
bution, respectively. The representations for gamma and inverse gamma distributions
were described in Section 3.4, and the recursion of IGGM–PMBM is proposed below. It is
assumed that the IGG component at time k− 1 is given as

pk|k(X, ξ) = GAM(ξξ; αξ,k−1, βξ,k−1)× IG(X, ξB; αB,k−1, βB,k−1)N (X, ξB; mB,k−1, PB,k−1)×N (X; mx,k−1, Px,k−1), (56)

lk(M|X, ξ ) = GAM(ξξ; αξ,k−1, βξ,k−1)N (M,ξ; HkX, Rk). (57)

The adaptive newborn distribution and target state Gaussian distribution can be
simplified as IGG; then, the IGG prediction can be derived as

pk|k−1(X, ξ) = GAM(ξk|k−1; αξ,k|k−1, βξ,k|k−1)× IGG(X,ξ; αB,k|k−1, βB,k|k−1, mB,k|k−1, PB,k|k−1, mx,k|k−1, Px,k|k−1), (58)

where αξ,k|k−1 =
αk−1
Tξ

, βξ,k|k−1 =
βk−1
Tξ

, αB,k|k−1 =
αk−1
TB

, βB,k|k−1 =
βk−1
TB

, mB,k|k−1 = FmB,k−1,

PB,k|k−1 = FPB,k−1FT + QB,k|k−1, mx,k|k−1 = Fmx,k−1, and Px,k|k−1 = FPx,k−1FT + Qx,k|k−1.
Tξ and TB denote the measurement rate parameters for adaptive detection probability

and adaptive newborn probability, respectively. F, QB,k|k−1, Qx,k|k−1 denotes the transition
matrix, process covariance for newborn distribution, and process covariance for the target
state. Then, the IGG updating can be derived as

pk(X, ξ) = GAM(ξk; αξ,k, βξ,k)× IGG(X; αB,k, βB,k, mB,k, PB,k, mx,k, Px,k), (59)

where αξ,k= αξ,k|k−1 + |Mk|, βξ,k= βξ,k|k−1 + 1, αB,k= αB,k|k−1 + |Bk|, βB,k= βB,k|k−1 + 1,
mB,k = mB,k|k−1 + Kε, PB,k = PB,k|k−1 − KHPB,k|k−1, mx,k = mx,k|k−1 + Kε, and
Px,k = Px,k|k−1 − KHPx,k|k−1.

H denotes the measurement matrix, and K, ε denote the new observations or measure-
ments based on state transition. The intensity of the newborn target can be assumed to be
an IGGM form as follows:

DB
k−1(X, ξ) =

JB
k−1

∑
l=1

wl,B
k−1IG(X, ξB; αl,B

B,k−1, βl,B
B,k−1)G(X; ml,B

B,k−1, Pl,B
B,k−1)

=
JB
k−1

∑
l=1

wl,B
k−1IGG(X, ξB; αl,B

B,k−1, βl,B
B,k−1, ml,B

B,k−1, Pl,B
B,k−1)

(60)

Therefore, the intensity of the Poisson process at time k− 1 can also be presented as
an IGGM form:

Du
k−1(X, ξ) =

Ju
k−1

∑
l=1

wl,u
k−1GAM(ξξ; αl,u

ξ,k−1, βl,u
ξ,k−1)IGG(X,ξ; αl,u

B,k|k−1, βl,u
B,k|k−1, ml,u

B,k|k−1, Pl,u
B,k|k−1, ml,u

X,k|k−1, Pl,u
X,k|k−1). (61)

The density of MBM in an IGGM form with parameters
{

wj
k−1,

{
rj,i
k−1, pj,i

k−1(X
j,i
k−1,ξj,i

k−1)
}

i∈Ij

}
j∈J

can be presented as

pj,i
k−1(X, ξ) = GAM(ξξ; α

j,i
ξ,k−1, β

j,i
ξ,k−1)IGG(X,ξ; α

j,i
B,k−1, β

j,i
B,k−1, mj,i

B,k−1, Pj,i
B,k−1, mj,i

X,k−1, Pj,i
X,k−1). (62)

Proposition 3 (Predicted process). Given that the intensity of Poisson process is in an IGGM
form and the density of the ith Bernoulli component in the jth hypothesis is in a single IGG
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form, the predicted intensity of the Poisson and Bernoulli components of the MBM process
are presented as described below.

1. PPP process

Du
k|k−1(X, ξ) =

JB
k−1
∑

l1=1
wl1 ,B

k|k−1IGG(X,ξB; α
l1 ,B
k|k−1, β

l1 ,B
k|k−1, ml1 ,B

k|k−1, Pl1 ,B
k|k−1)

+
Ju
k−1
∑

l2=1
wl2 ,u

k|k−1GAM(ξξ; α
l2 ,u
k|k−1, β

l2 ,u
k|k−1)IGG(X,ξu; α

l2 ,u
k|k−1, β

l2 ,u
k|k−1, ml2 ,u

k|k−1, Pl2 ,u
k|k−1)

(63)

wl1,B
k|k−1 = pS,k|k−1wl1,B

k−1, wl1,u
k|k−1 = pS,k|k−1wl1,u

k−1, (64)

2. MBM process

wj,i
k|k−1 = wj,i

k−1, (65)

rj,i
k|k−1 = pS,krj,i

k−1, (66)

pj,i
k|k−1(X, ξ) = GAM(ξξ; α

j,i
ξ,k|k−1, β

j,i
ξ,k|k−1)IGG(X,ξ; α

j,i
B,k|k−1, β

j,i
B,k|k−1, mj,i

B,k|k−1, Pj,i
B,k|k−1, mj,i

X,k|k−1, Pj,i
X,k|k−1), (67)

mj,i
B,k|k−1 = Fk−1mj,i

B,k−1, Pj,i
B,k|k−1 = Qk−1 + Fk−1Pj,i

B,k−1FT
k−1. (68)

Proposition 4 (Updating process). Given that the predicted intensity of the Poisson process
is in an IGGM form, as shown in Equation (67), where Ju

k|k−1 = JB
k−1 + Ju

k−1, the predicted
density of the MBM can be expressed as shown in Equation (69).

Du
k|k−1(X, ξ) =

Ju
k|k−1

∑
l=1

wl,u
k|k−1GAM(ξξ; αl,u

k|k−1, βl,u
k|k−1)IGG(X,ξu; αl,u

k|k−1, βl,u
k|k−1, ml,u

k|k−1, Pl,u
k|k−1), (69)

pj,i
k|k−1(X, ξ) = GAM(ξξ; α

j,i
ξ,k|k−1, β

j,i
ξ,k|k−1)IGG(X,ξ; α

j,i
B,k|k−1, β

j,i
B,k|k−1, mj,i

B,k|k−1, Pj,i
B,k|k−1, mj,i

X,k|k−1, Pj,i
X,k|k−1). (70)

Furthermore, the measurement Mk, the update of the Poisson process, and the MBM
process can be derived in four stages.

1. Update for undetected targets

Du
k (X, ξ) =

Ju
k|k−1

∑
l=1

wl,u
k1 GAM(ξξ; αl,u

k1 , βl,u
k1 )IGG(X,ξu; αl,u

k1 , βl,u
k1 , ml,u

k1 , Pl,u
k1 ), (71)

where αl,u
k1 = αl,u

k|k−1, βl,u
k1 = βl,u

k|k−1, ml,u
k1 = ml,u

k|k−1, Pl,u
k1 = Pl,u

k|k−1, and

wl,u
k1 = wl,u

k|k−1(
βl,u

k|k−1

βl,u
k|k−1+1

)
αl,u

k|k−1

.

2. Update for potential targets detected for the first time

r2
k,2(M) =

Ju
k|k−1

∑
l=1

wl,u
k|k−1G(M,ξk; Hkml,u

k|k−1, HkPl,u
k|k−1HT

k +Rk)

κC(Mk, ξk) +
Ju
k|k−1

∑
l=1

wl,u
k|k−1G(M,ξu; Hkml,u

k|k−1, HkPl,u
k|k−1HT

k +Rk)

, (72)

pk,2(X, ξ|M ) =

Ju
k|k−1

∑
l=1

wl,u
k|k−1GAM(M,ξk; αl,u

k2 , βl,u
k2 )IGG(M,ξu; αl,u

k2 , βl,u
k2 , ml,u

k2 , Pl,u
k2 , Hkml,u

k|k−1, HkPl,u
k|k−1HT

k +Rk)

Ju
k|k−1

∑
l=1

wl,u
k|k−1G(M,ξu; Hkml,u

k|k−1, HkPl,u
k|k−1HT

k +Rk)

, (73)
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where αl,u
k2 = αl,u

k , αl,u
k2 = αl,u

k , ml,u
k2 = ml,u

k|k−1 + Pl,u
k|k−1Hk(HT

k Pl,u
k|k−1HT

k + Rk)
−1

(M− Hkml,u
k|k−1), and Pl,u

k2 = (I − Pl,u
k|k−1HT

k (HkPl,u
k|k−1HT

k + Rk)
−1

Hk)Pl,u
k|k−1.

3. Missed detection of MBM

rj,i
k,3= rj,i

k|k−1, wj,i
k,3 = wj,i

k|k−1(
β

j,i
k|k−1

β
j,i
k|k−1 + 1

)

α
j,i
k|k−1

, (74)

pj,i
k,3(X, ξ) = GAM(ξ; α

j,i
k3, β

j,i
k3)IGG(ξ; α

j,i
k3, β

j,i
k3, mj,i

k3, Pj,i
k3), (75)

where α
j,i
k3 = α

j,i
k|k−1, β

j,i
k3 = β

j,i
k|k−1 + 1, mj,i

k3 = mj,i
k|k−1, and Pj,i

k3 = Pj,i
k|k−1.

4. Update for MBM

rj,i
k,4(M) = 1, (76)

pj,i
k,4(X, ξ|M ) = GAM(ξ; α

j,i
k4, β

j,i
k4)IGG(ξ; α

j,i
k4, β

j,i
k4, mj,i

k4, Pj,i
k4), (77)

wj,i
k,4(M) = wj,i

k|k−1rj,i
k|k−1G(M,ξ; Hkmj,i

k|k−1, HkPj,i
k|k−1HT

k +Rk), (78)

where α
j,i
k4= α

j,i
k|k−1 + |Mk|, β

j,i
k4= β

j,i
k|k−1 + 1, mj,i

k4 = mj,i
k|k−1 + Pl,u

k|k−1HT
k (HkPl,u

k|k−1HT
k + Rk)

−1
(M− Hkmj,i

k|k−1),

and Pj,i
k4 = (I − Pl,u

k|k−1 HT
k (HkPl,u

k|k−1 HT
k + Rk)

−1
Hk)Pj,i

k|k−1.

4.4. Fusion

Given the posterior density of multitarget states Dk(x) derived from a sensor with
fusion weight wu, the fused result of their IGGM state density and cardinality density can
be approximated as shown in Equations (79) and (80), respectively.

D f (x,k)(X, ξ) =

{
JB,k+Jx,k

∑
i=1

wkIGG(X, ξ; αi
k, βi

k, mi
k, Pi

k)

}Wj

∼=
JB,k+Jx,k

∑
i=1

w
Wj
k [(GAM(X, ξ; αi

k, βi
k)]

Wj [IG(X, ξ; αi
k, βi

k)]
Wj [G(X, ξ; mi

k, Pi
k)]

Wj

(79)

D f (x,k)(x, ξ; m) = D f (B,k)(x, R)⊗ IB,k + D f (PMBM,k)(x, R)⊗ IPMBM,k, (80)

where ⊗ denotes the Kronecker product, and IB,k and IPMBM,k denote the identity matrix
of dimensional DB,k and DPMBM,k, respectively. The fusion cardinality can be expressed as
shown in Equation (81).

N(n) =
∏k [Nk(n)]

wk
{∫

∏k[Dk(x)]wk dx
}n

NA
∑

j=1
∏i [Nk(j)]wk

{∫
∏k [Dk(x)]wk dx

}j
. (81)

The estimation sets of state density and cardinality can be computed according to
true measurements and corresponding noise. The GCI-IGGM-PMBM scheme is shown in
Algorithm 1.
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Algorithms 1 A framework of GCI-IGGM-PMBM algorithms

Step 1: Initialization
For k = 1, Nx = 0,

Adopt HTC scheme and establish one-hop and two-hop neighbor lists;
then, obtain the location information at k = 1.

At timestep k− 1;
Input: ξξ, ξB, αξk−1, βξ,k−1, αB,k−1, βB,k−1, mB,k−1, PB,k−1, mx,k−1, Px,k−1;Mk;

Output: pk|k(X, ξ), pk(X, ξ), pj,i
k−1(X, ξ), lk(M|X, ξ ), DB

k−1(X, ξ), Du
k−1(X, ξ).

Step 2: Prediction
Prediction for PPP for time step k− 1:

Input: ξB, ξu; ζξ; αl1,B
k|k−1, βl1,B

k|k−1, ml1,B
k|k−1, Pl1,B

k|k−1; αl2,u
k|k−1, βl2,u

k|k−1, ml2,u
k|k−1, Pl2,u

k|k−1; wl1,B
k|k−1, wl2,u

k|k−1;{
wj

k−1,
{

rj,i
k−1, pj,i

k−1(x̂)
}

i∈Ij

}
j∈J

;

Output: Du
k|k−1(X, ξ);

for j = 1 : NS,k + NB,k,
use Equations (63) and (64);

end for
Prediction for survival for timestep k− 1:

Input: ξξ; α
j,i
ξ,k|k−1, β

j,i
ξ,k|k−1; α

j,i
B,k|k−1, β

j,i
B,k|k−1, mj,i

B,k|k−1, Pj,i
B,k|k−1, mj,i

X,k|k−1, Pj,i
X,k|k−1;

Output: pj,i
k|k−1(X, ξ);

for j = 1 : NS,k + NB,k,
use Equations (65)–(68);

end for
Step 3: Update based on augmented variable for timestep k:
Update for undetected targets,

Input: wl,u
k1 , ξξ, ξu; αl,u

k1 , βl,u
k1 , ml,u

k1 , Pl,u
k1 ;

Output: Du
k (X, ξ);

for j = 1 : NS,k + NB,k,
use Equation (71);

end for
Update for potential targets detected for the first time,

Input: wl,u
k|k−1; ξξ, ξu; αl,u

k2 , βl,u
k2 , ml,u

k2 , Pl,u
k2 ; Mk; ml,u

k|k−1, Pl,u
k|k−1;

Output: r2
k,2(M), pk,2(X, ξ|M );

for j = 1 : NS,k + NB,k,
use Equations (72) and (73);

end for
Missed detection of MBM,

Input: wj,i
k|k−1; ξk, ξu; αl,u

k2 , βl,u
k2 , ml,u

k2 , Pl,u
k2 ; Mk; ml,u

k|k−1, Pl,u
k|k−1;

Output: wj,i
k,3, r2

k,3(M), pj,i
k,3(X, ξ);

for j = 1 : NS,k + NB,k,
use Equations (74) and (75);

end for
Update for MBM,

Input: wj; ξ; αl,u
k4 , βl,u

k4 , ml,u
k4 , Pl,u

k4 ;

Output: wj,i
k,4(M), rj

k,4(M), pj,i
k,4(X, ξ|M );

for j = 1 : NS,k + NB,k,
use Equations (76)–(78);

end for
Step 4: Fusion
Input: ξ; JB,k, Jx,k; wk, Wj; αi

k, βi
k, mi

k, Pi
k;

Output: D f (x,k)(X, ξ), N(n);
for j = 1 : NS,k + NB,k,

use Equations (79)–(81)’
end for
Step 5: State extraction
The state estimation set at time k: Dk(x, ξ) = DB,k(x, ξ) + DPMBM,k(x, ξ).
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5. Performance Analysis

The proposed GIC–IGGM–PMBM filter provides an applicable method to combine
adaptive newborn density with adaptive detection probability based on target states fol-
lowing a Gaussian distribution. In this section, comprehensive simulations are presented
to validate the accuracy of this proposed method, using the NS-3 and MATLAB simula-
tor according to previous analyses. A total of 100 Monte Carlo trials are performed for
each simulation, and the results represent the average simulation results obtained. The
simulation setup is similar to that of the MC-MPMC [34].

Target states and measurements can be presented as xk = Fk|k−1xk−1 + Gkqk−1 and

mk = Hkxk + Rk, where xk is the state vector at time k denoted as xk = (xk
.
xk yk

.
yk ωk)

T

(vectors are denoted in lowercase bold letters), xk and yk are the states of target position,
.
xk and

.
yk are the states of target velocity, andωk is the turn rate. Fk is the target transition

matrix, Gk is the control input matrix, and qk−1 is the process noise which follows a
Gaussian distribution with zero mean and covariance Qk, defined as E[qkqT

k ]. mk is the
measurement vector at time k denoted as mk = (xk yk ωk)

T , Hk is the measurement matrix,
and Rk is the measurement noise. The process noise and measurement noise are mutually
uncorrelated to each other. The parameter values can be presented as the values in [34].

Assuming that there are 12 targets following their separate trajectory in the simulations,
true trajectories of these targets are as shown in Figure 2. The birth time and death time of all
targets with the initial states are shown in Table 1. The processing time slot was set to T = 1s,
σx = 0.01, σy = 0.01, and σω = (π/180)2. The clutter generated in each measurement
was assumed to abide by a uniform distribution [16]. The optimal sub-pattern assignment
(OSPA) [35] and generalized OSPA (GOSPA) were introduced to comprehensively evaluate
the tracking behaviors of different schemes or those of different parameters originating
from the same scheme with p = 1 and c = 200. At first, we performed the proposed GCI–
IGGM–PMBM filter, and then compared its tracking performance with the BGM–PMBM [4],
IGGM–PHD (CPHD) [20], and BGGIW–PMBM [16] filters based on unknown detection
probability. Next, the tracking behavior comparisons between GCI–IGGM–PMBM and
BGGIW–PMBM are presented as a function of the characteristic parameters of adaptive
newborn distribution.
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point represents the locations of target death, which are not labeled. The labels of S, A, and Tn are
abbreviations of the normal sensor, anchor, and trajectory n, respectively.
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Table 1. The initialization of true targets, along with their birth time and death time.

Target Index Initialization Targets States Birth Time (s) Death Time (s)

Target 1 [−310, −280, 5.23, 4.12, 0] 1 100
Target 2 [−300, 480, 4.12, −3.23, −2.78] 20 100
Target 3 [−410, 470, 3.45, −4.32, 0.41] 58 100
Target 4 [0, 0, 2.74, −4.54, −0.56] 15 78
Target 5 [−310, −280, 3.65, 3.56, 0.61] 37 90
Target 6 [−390, 110, 5.32, −2.35, −2.21] 1 50
Target 7 [20, 350, 4.23, −4.12, 3.02] 45 80
Target 8 [0, −490, 3.23, 5.23, −0.34] 67 92
Target 9 [−388, 108, 3.54, 3.37, 0.43] 1 100

Target 10 [−388, 108, 1.32, 0.32, 0.75] 1 30
Target 11 [−19, 22, 2.12, −4.72, −4.27] 67 100
Target 12 [202, 0, −0.37, −1.53, −0.23] 45 90

5.1. Validations of Unknown Detection Probability

Figures 3–8 show the performance comparisons between the GCI–IGGM–PMBM filter
and other multitarget tracking filters based on unknown detection probability. Figure 3a–d
present the position estimations of the BGM–PMBM, IGGM–PHD, BGGIW–PMBM, and
IGGM–PMBM filters, respectively. Overall, the trajectories of these filters mainly abided
by the true trajectories, and the tracking estimations were accurate. Several different
demonstrations in terms of the details are shown in Figure 3. Trajectory 2 (T2) and Trajectory
12 (T12) presented relatively large position errors for the BGM–PMBM filter, as shown
in Figure 3a. T2 offset its trajectory from the initial tracking step and accumulated this
error, whereas T12 presented poor turning performance for its bearing sets with a small
turn rate. T1 and T3 for the IGGM–PHD filter presented relatively large errors, as shown
in Figure 3b, especially for T3. T5 and T12 for the BGGIW–PMBM filter presented poor
tracing performance; its computational burden was relatively high, and it took no account
of bearing or turn rate in its designs. The IGGM–PMBM filter presented relatively superior
tracking behaviors compared to the three other filters, as can be seen from the simulation
results for several factors. For example, the IGGM–PMBM filter could work at an arbitrary
turn rate. Performing the distributed fusion strategy using the global distributions of
gamma, inverse gamma, and PMBM components, other than MB components, could
substantially save energy.

The actual but unknown detection probabilities were set to pD = 0.7, pD = 0.9, and
pD = 0.96. The clutter rate was λc = 10, and the anchor rate was γ0 = 0.1. The OSPA
distances for different pD were relatively high for the periods of 26–34 s, 46–53 s, 68–74 s, and
88–92 s, as shown in Figure 4a–c, which represent the intersecting points of these trajectories.
The lowest OSPA distances for GCI–IGGM–PMBM at the initial trajectories prove that its
HTC exchange strategy was applicable and accurate in the tracking initialization step. The
distance error was relatively high at a lower detection probability; for example, the error for
pD = 0.7 was much higher than that for pD = 0.96, and the error was highest for pD = 0.7.

The cardinality estimations for the periods of intersecting points, i.e., at 26–34 s, 46–53 s,
68–74 s, and 88–92 s, exhibited great deviation from the true trajectories shown in Figure 5.
With an increase in the detection probability, the tracking performance improved. The
cardinality estimations of GCI–IGGM–PMBM followed the true trajectory with relatively
high accuracy.

The detection probability plays an important role in multitarget tracking performance.
For the processing period, 100 s in our simulations, the detection probability was changing
and adaptive. The estimations of average OSPA error, cardinality, and pD are shown in
Figure 6. The value pD,k was pD = 0.95 at k ∈ (0, 17], pD = 0.9 at k ∈ (17, 37], pD = 0.85 at
k ∈ (37, 48], pD = 0.8 at k ∈ (48, 71], pD = 0.85 at k ∈ (71, 82], and pD = 0.7 at k ∈ (82, 100].
Overall, the estimations for OSPA error, cardinality, and detection probability mainly abided
by the true values, and tracking estimations were accurate, as shown in Figure 6. On the
other hand, abrupt changes occurred at the change junctions of the detection probability,
e.g., at 17–18 s, 37–38 s, 48–49 s, 71–72 s, and 82–83 s. All filters containing the GCI–
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IGGM–PMBM filter could take some time to adjust according to the changes in detection
probability, which led to greater OSPA errors or relative higher inconformity of cardinality.
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Figure 3. Position estimation: black circles are the real track points. (a) BGM–PMBM; (b) IGGM–PHD;
(c) BGGIW–PMBM; (d) IGGM–PMBM.
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Figure 4. OSPA comparisons of GCI–IGGM–PMBM (our proposed scheme) with other multitarget
tracking schemes: (a) pD = 0.7; (b) pD = 0.9; (c) pD = 0.96.
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Figure 5. Cardinality comparisons of GCI–IGGM–PMBM (our proposed scheme) with other multitar-
get tracking schemes: (a) pD = 0.7; (b) pD = 0.9; (c) pD = 0.96.
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Figure 6. Performance comparisons of GCI–IGGM–PMBM with other multitarget tracking schemes
with unknown detection probability: (a) detection probability estimation; (b) OSPA estimation;
(c) cardinality estimation.
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Figure 7. Performance comparisons of GCI–IGGM–PMBM with other multitarget tracking schemes
with unknown detection probability: (a) GOSPA; (b) LE; (c) ME; (d) FE.

The GOSPA distance [36], including the location error (LE) for detected targets, the
missed targets error (ME), and false targets error (FE), is shown in Figure 7 for unknown
detection probability. It can be noted that the GOSPA, LE, ME, and FE for known detection
probabilities (pD = 0.7, pD = 0.9, or pD = 0.96) are not presented in this section. There
were abrupt changes for LE, ME, and FE, as shown in Figure 7, at the change junctions
of the detection probability, e.g., at 17–18 s, 37–38 s, 48–49 s, 71–72 s, and 82–83 s. The
GCI–IGGM–PMBM filter presented relative superiority over other filters except for the
BGGIW–PMBM filter at lower detection probability.

Energy consumption is an important metric of multitarget tracking schemes for energy
and computation-limited sensor networks, especially for our aquaculture sensor networks.
Energy consumption comparisons for these tracking schemes are demonstrated in Figure 8
with unknown detection probability. The energy cost was similar at the stable stage for
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each stable detection probability, whereas it changed sharply at the change junctions of
detection probability. The anchor rate plays an important role in energy consumption, as
more anchors bring about more energy efficiency, because more information is processed
more quickly by more anchors, and the initialized positioning stage originating from more
anchors is more accurate.
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Figure 8. Energy consumption comparisons based on anchor rate γ0 of GCI–IGGM–PMBM with
other multitarget tracking schemes with unknown detection probability: (a) γ0 = 0.05; (b) γ0 = 0.1.

5.2. Validation of Adaptive Newborn Distribution

Adaptive newborn distribution was proposed in this scheme, as newborn targets can
occur at random places in the monitoring area at random periods in actual applications.
The OSPA and cardinality comparisons of BGGIW–PMBM and GCI–IGGM–PMBM were
derived from the adaptive newborn distribution and known newborn distribution, as
shown in Figure 9a. The OSPA tended to relative stable values other than sharp change
values after some initialized periods for the two filters with adaptive newborn distribution,
whereas it changed sharply with known distribution at the intersections of these trajectories,
e.g., at 26–34 s, 46–53 s, 68–74 s, and 88–92 s. The OSPA reached similar values for adaptive
and known newborn distributions in other periods. The cardinality presented a similar
behavior to that of OSPA, as shown in Figure 9b. The actual number of each scheme slowly
reached the true cardinality for the adaptive distribution, whereas the actual number
matched the true cardinality after sharp changes at the intersection points.
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Figure 9. OSPA and cardinality comparisons of GCI–IGGM–PMBM filter and BGGIW–PMBM filter
based on newborn distribution: (a) average OSPA; (b) cardinality.
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The GOSPA distance, including the LE, ME, and FE, is shown in Figure 10 for unknown
newborn and known newborn distributions. There were abrupt changes for LE, ME, and FE
for known newborn distributions, as shown in Figure 10, at the trajectory intersection points,
e.g., at 26–34 s, 46–53 s, 68–74 s, and 88–92 s, whereas changes were smooth over transition
points for adaptive newborn distributions. The GCI–IGGM–PMBM filter presented relative
superiority over BGGIW–PMBM at the initialized tracking stage.
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distribution: (a) GOSPA; (b) LE; (c) ME; (d) FE.

6. Conclusions and Future Work

The proposed GCI–IGGM–PMBM filter in this work is aimed at point target tracking,
in which multiple targets (e.g., crabs) can be considered as small independent objects or
smart points without any spatial extent. The target states and cardinality of multitargets
were estimated using the IGGM–PMBM filter. Firstly, the GAM distribution was introduced
to present the augmented state of unknown and changing target detection probabilities.
Secondly, the intensity of newborn targets was adaptively derived using an inverse gamma
(IG) distribution on the basis of this augmented state. On these bases, the detailed recursion
and closed-form solutions to the proposed filter were derived by means of approximating
the intensity of target birth and potential targets to an IGGM form and the density of existing
Bernoulli components to a single IGGM form. Moreover, the associated distributed fusion
strategy GCI was applied to a large-scale aquaculture tracking network. Comprehensive
experiments were presented to verify the effectiveness of the GCI–IGGM–PMBM tracking
method. Comparisons with other multitarget tracking schemes also demonstrated that the
tracking behaviors were largely improved; in particular, the tracking energy consumption
was reduced sharply, and the tracking accuracy was relatively enhanced.
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In our future work, the tracking scheme will take into account not only the positions
of objects as in this work, but also the appearance or spatial extent of objects [6]. In addition
to crabs, extracting the shape of other farming objects in the farming environment is an
important task in tracking multiple targets, which is nearly impossible using point tracking.
We will devote ourselves to studying an efficient tracking scheme to resolve this problem,
taking various underwater factors into account for multitarget tracking [5]. Moreover,
developing smart aquaculture is a general trend for the future, and smart aquaculture can
be combined with smart agriculture to form a large agriculture IoT system [37], with many
underwater smart devices such as trackers, monitors, or controllers.
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