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Abstract: The advent of many popular commercial forms of natural language processing tools has
changed the way we can utilise digital technologies to tackle problems with big data. The objective of
this review is to evaluate the current research and landscape of natural language processing tools and
explore their potential use and impact in the field of orthopaedic surgery. In doing so, this review
aims to answer the research question of how NLP tools can be utilised to streamline processes within
orthopedic surgery. To do this, a scoping review was performed in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Arksey and O’Malley
framework for scoping reviews, as well as a computer-assisted literature search on the Medline,
Embase and Google Scholar databases. Papers that evaluated the use of natural language processing
tools in the field of orthopaedic surgery were included. Our literature search identified 24 studies
that were eligible for inclusion. Our scoping review captured articles that highlighted multiple uses
of NLP tools in orthopaedics. In particular, one study reported on the use of NLP for intraoperative
monitoring, six for detection of adverse events, five for establishing orthopaedic diagnoses, two
for assessing the patient experience, two as an informative resource for patients, one for predicting
readmission, one for triaging, five for auditing and one for billing and coding. All studies assessed
these various uses of NLP through its tremendous computational ability in extracting structured
and unstructured text from the medical record, including operative notes, pathology and imaging
reports, and progress notes, for use in orthopaedic surgery. Our review demonstrates that natural
language processing tools are becoming increasingly studied for use and integration within various
processes of orthopaedic surgery. These AI tools offer tremendous promise in improving efficiency,
auditing and streamlining tasks through their immense computational ability and versatility. Despite
this, further research to optimise and adapt these tools within the clinical environment, as well as the
development of evidence-based policies, guidelines and frameworks are required before their wider
integration within orthopaedics can be considered.

Keywords: natural language processing; artificial intelligence; generative artificial intelligence; ma-
chine learning; deep learning; ChatGPT; GPT-3; GPT-4; chatbot; generative pre-training transformer;
orthopaedic surgery; orthopaedics
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1. Introduction

Natural language processing (NLP) refers to a subfield of artificial intelligence (AI) tech-
nology that includes generative AI tools that are designed to utilise large language models
to receive, rationalise and subsequently generate human language [1,2]. These technologies
have gained significant popularity, attributed to widely accessible and advanced iterations
including ChatGPT, a generative pre-training transformer (GPT) chatbot tool released by
OpenAI (San Francisco, CA, USA), Bing Chat by Microsoft (Redmond, WA, USA) and
BARD by Google (San Francisco, CA, USA). These tools have led to a paradigm shift in
the ways we can approach digital problems. Specifically, the underlying algorithms of
these popular tools have been extensively trained to receive, recognise and interpret input
from human language. In doing so, these tools have the ability to generate output data for
various applications including content creation, education, restructuring or re-organisation
of data as well as provide contextually relevant answers to prompts in real time. Popular
ways this has been utilised have been to use Chatbot NLP tools such as ChatGPT or Google
Bard to answer frequently asked questions, provide frameworks for academic assignments,
and even author academic research papers. The advanced computational ability of these
tools to process big data and generate natural human language has therefore understand-
ably seen global implementation of these technologies across multiple industries including
education, finance and business.

Progressive digitalisation of healthcare in the field of orthopaedic surgery, which
utilises large amounts of data-based infrastructure through electronic medical records,
telehealth, intra-operative stereotaxis and the use of radiology therefore offers a valuable
opportunity for implementing these tools to improve the delivery of healthcare for or-
thopaedic surgeons. To date, the use of natural language processing tools in orthopaedic
surgery is limited, with minimal research into clinical application of these tools and there-
fore no guidelines as to how orthopaedic surgery can effectively implement these tech-
nologies. Despite this, the translatability of generative AI and NLP tools is significantly
high given the vast amount of unstructured free text in progress notes, operative notes,
radiology reports and pathology reports. There is a growing field of research into the ways
in which NLP tools can be applied in orthopaedic surgery to improve the experience for
all stakeholders including surgeons, researchers, nursing and allied health staff as well as
patients. In particular, there is a potential for these tools to enhance auditing processes,
research capabilities, prognostication and triaging as well as optimisation of healthcare
delivery for surgeons and healthcare access for patients. To date, however, these outcomes
are poorly characterised, with no current studies that have explored the potential of NLP
tools within the global journey of orthopaedic surgery. Furthermore, the challenges of
implementing these technologies in practice, including issues related to privacy, clinician
acceptance, resources and funding, as well as appropriate stewardship of data, remain
poorly considered.

The main objective of this scoping review, which has been conducted in accordance
with the Arksey and O’Malley framework, is to provide an up-to-date review of the
current landscape of research exploring the potential avenues of implementation for NLP
in orthopaedic surgery. This review aims to answer the research question of how NLP
tools can be utilised to streamline processes within orthopedic surgery by characterising
the efficacious evidence-based methods in which NLP tools can be applied through the
journey of orthopaedic surgery. This review also aims to further contribute key insights
and challenges of integrating contemporary NLP technologies into orthopaedic practice.

2. Materials and Methods
2.1. Literature Search Strategy

A scoping review was systematically conducted with adherence to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and
the Arksey and O’Malley framework for scoping reviews. The PRISMA guidelines were
utilised to provide a structured and comprehensive foundational search to ensure all
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relevant research in this field was captured in a systematic way. The Arksey and O’Malley
framework was utilised to ensure a systematic and robust methodological approach was
followed in the generation of this review.

A computer-assisted search of electronic databases Medline, Embase and Google
Scholar was performed on 18 April 2023. The search query combined medical subject
headings (MeSH) terms and keywords related to NLP, ChatGPT and surgery for all papers
between 18 April 1974 to 18 April 2023. Additional articles were captured using hand
searching of reference lists of included articles. The full search strategy can be viewed in
Appendix B.

2.2. Inclusion and Exclusion Criteria

Full-text, peer-reviewed publications in the English language were assessed. Papers
that were included evaluated the applications of NLP tools, large language models and
other forms of generative AI within the field of orthopaedic surgery.

Papers were excluded if they (1) were not available in full-text or English language,
(2) assessed AI tools that were not related to NLP, large language models or generative AI,
(3) were pre-clinical, animal-based, cell-based or lab-based research, or (4) evaluated NLP
tools in fields other than orthopaedic surgery.

2.3. Literature Screening and Data Extraction

Initial title and abstract screening were completed independently by two investigators
(FS, KL). Studies that met eligibility based on the aforementioned inclusion and exclusion
criteria were eligible and selected for full-text analysis. The same investigators (FS, KL)
subsequently reviewed these articles for inclusion in this review. Disagreement during this
process was resolved by consensus.

2.4. Quality Assessment

The quality of evidence of included studies was assessed utilising the Newcastle–
Ottawa Scale (NOS) by two independent investigators (FS, KL). Disagreements during this
process were resolved by consensus. If consensus could not be achieved, a third investigator
(ST) was consulted for resolution.

3. Results
3.1. Overview of Included Studies

A total of 810 publications were retrieved following a computer-assisted search
(Figure 1). Following the removal of duplicates, 519 articles were screened by title and
abstract to assess eligibility, resulting in the exclusion of 305 articles. The remaining 214 ar-
ticles progressed to full-text analysis in which 190 articles were excluded: 156 due to wrong
population of interest, 12 due to wrong intervention, 12 due to wrong study design, 7 due
to wrong outcomes and 1 article due to retraction. A total of 24 articles were included
in this scoping review (Table 1). Of the 24 articles, 23 were retrospective observational
studies utilising NLP tools within various fields of orthopaedics. The remaining article
was a case study. All retrospective observational studies were of level III evidence and
the case study was of level IV evidence based on the Oxford Centre for Evidence-Based
Medicine guidelines.

Of the included studies, one study reported on the use of NLP for intraoperative
monitoring, six for detection of adverse events, five for establishing orthopaedic diagnoses,
two for assessing the patient experience, two as an informative resource for patients, one
for predicting readmission, one for triaging, five for auditing and one for billing and coding
(Figure 2).
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Figure 1. Search strategy and workflow in accordance with PRISMA guidelines.

Table 1. Overview of included studies.

Author Year Study Type Location Intervention Cohort
Level of
Evidence
(CEBM)

Agaronnik
et al. [3] 2022

Retrospective
comparative
study

United
Kingdom

NLP (Bio_ClinicalBERT) for
clinical data extraction, identifying
intraoperative neuromonitoring in
spine surgery, compared against
traditional codes.

13,718 patients who
had spinal
surgeries, with
23,243 operative
reports in total

III

Borjali et al.
[4] 2021

Retrospective
comparative
study

United
States

NLP (Generalised Linear Model,
K-NN, Random Forest, SVM,
Shallow Neural Network,
Multilayer Bidirectional Long
Short-term Memory (BiLSTM) and
Convolutional Neural Network
(CNN)) for clinical data extraction,
identifying adverse events in
free-text clinical notes.

6617 patients
presenting for
primary THR, with
7156 surgeries total

III

Fu et al. [5] 2021
Retrospective
Observational
Study

United
States

NLP (MedTaggerIE) for clinical
data extraction, identifying
periprosthetic joint infections
compared against manual
chart review.

1179 surgeries. III
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Table 1. Cont.

Author Year Study Type Location Intervention Cohort
Level of
Evidence
(CEBM)

Thirukumaran
et al. [6] 2019

Retrospective
observational
study

United
States

NLP (Python Software, v3.12.0)
for data extraction: Surgical site
infections in orthopaedic
surgeries.

372 patients
undergoing
orthopaedic
surgery.

III

Karhade
et al. [7] 2020

Retrospective
observational
study

United
States

NLP (Extreme Gradient Boosting
(XGBoost)) for identifying
clinically relevant outcome:
Reoperation for wound infection,
compared against manual review
and ICD coding.

5860 patients who
underwent spinal
surgery.

III

Karhade
et al. [8] 2021

Retrospective
observational
study

United
States

NLP (Extreme Gradient Boosting
(XGBoost)) for identifying
clinically relevant outcome:
Intraoperative vascular injury.

1035 patients who
underwent spinal
surgery.

III

Karhade
et al. [9] 2022

Retrospective
observational
study

Netherlands

NLP (Extreme Gradient Boosting
(XGBoost)) for clinical data
extraction: Incidental Durotomy,
compared against manual review.

3223 patients who
underwent spinal
surgery.

III

Li et al. [10] 2022
Retrospective
observational
study

United
States

NLP (Python Software) for data
extraction: Meniscal
tear detection.

3593 Magnetic-
Resonance Imaging
reports of Knees.

III

Olthof et al.
[11] 2021

Retrospective
comparative /
observational
study

Ireland

NLP (Rule Based Classification,
Naive Bayes, ANN, Random
Forest and Bidirectional Encoder
Representations from
Transformers (BERT)) for data
extraction: Identification of
injuries in radiology reports.

2469 radiology
reports of injured
extremities, and
799 chest
radiographs.

III

Groot et al.
[12] 2020

Retrospective
observational
study

United
Kingdom

NLP (Extreme Gradient Boosting
(XGBoost)) for clinical data
extraction, identifying bone
metastases from bone
scintigraphic reports.

704 reports from
704 patients who
had bone
scintigraphy
performed.

III

Tibbo et al.
[13] 2019

Retrospective
observational
study

United
States

NLP (MedTaggerIE) for data
extraction: Identifying
periprosthetic femur fractures and
further classification of this.

2982 total hip
arthroplasty
reports

III

Tan et al.
[14] 2018

Retrospective
comparative
study

United
States

NLP (Java Apache Lucene, Porter
Stemmer (Python Software),
NegEx and the Caret Package was
used to implement the machine
based model) as a clinical
predictive model: Identifying
radiological features suggestive of
low back pain

871 lumbar spinal
radiological reports III

Bovonratwet
et al. [15] 2021

Retrospective
observational
study

United
States

NLP (Press Ganey Associates)
analyses of patient comments to
assess for sentiment compared to
traditional measures
of satisfaction.

319 patients who
underwent primary
total knee
arthroplasty, 1048
patient comments
in total

III
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Table 1. Cont.

Author Year Study Type Location Intervention Cohort
Level of
Evidence
(CEBM)

Langerhuizen
et al. [16] 2021

Retrospective
observational
study

Netherlands

NLP (Latent Dirichlet Allocation
(Python Software)) for data
extraction and analyses: Common
themes from patient reviews,
compared against
manual reviewing.

11,614 free-text
reviews relating to
orthopaedic
surgeons.

III

Dubin et al.
[17] 2023 Observational

study
United
States

NLP (ChatGPT) analyses of 20
Frequently Asked Questions. 20 FAQs III

Seth et al.
[18] 2023 Case study Australia

NLP (ChatGPT) analyses of
clinical questions relating to
surgical management of
knee osteoarthritis.

N/A IV

Karhade
et al. [19] 2022

Retrospective
observational
study

United
States

NLP (Extreme Gradient Boosting
(XGBoost)) for identifying
clinically relevant outcome:
90-day inpatient readmission
rates post-surgery.

708 patients who
underwent spinal
surgery.

III

Krebs et al.
[20] 2023

Retrospective
observational
(pilot) study

Germany
NLP (in-house model) as a clinical
predictive model compared
against simple clinical variables.

398 patients
presenting to spinal
surgery clinic.

III

Sagheb et al.
[21] 2021

Retrospective
observational
study

United
States

NLP (MedTaggerIE) for data
extraction in knee arthroplasty
operative reports.

1592 knee
arthroplasty
operative reports

III

Wyles et al.
[22] 2019

Retrospective
observational
study

United
States

NLP (MedTaggerIE) for data
extraction: Relevant data from
total hip arthroplasty, compared
against manual review.

250 total hip
arthroplasty
operative notes

III

Wyles et al.
[23] 2022

Retrospective
observational
study

United
States

NLP (MedTaggerIE) for data
extraction: Relevant data from
total-hip arthroplasty notes,
compared against manual review.

39 total hip
arthroplasty
operative notes.

III

Shah et al.
[24] 2020

Retrospective
observational
study

United
Kingdom

NLP (CloudMedX) for data
extraction: Relevant elements in
knee arthroplasty.

1000 clinical notes III

Jungmann
et al. [25] 2022

Retrospective
observational
study

Germany

NLP (in-house model) for data
extraction: Identifying incidence
of fractures by analyses of
radiographic reports.

5397 limb
radiograph reports III

Zaidat et al.
[26] 2023

Retrospective
observational
study

United
Kingdom

NLP (Natural Language Toolkit
(Python Software) for data
extraction: Generation of billing
codes, compared against
manual review.

922 spinal surgical
operative notes III

Of the 24 studies, all were published within the last 5 years, specifically from the year
2018. The year with the most publications was 2021 (n = 7) and the year with the least
publications was 2018 (n = 1) (Figure 3). Fifty-eight percent were published in the United
States (n = 14), 16.6% were published in the United Kingdom (n = 4), 8.3% were published
in Germany and the Netherlands (n = 2) and 4.16% were published in Ireland and Australia
(n = 1) (Figure 4).
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3.2. Use in Intraoperative Monitoring and Guidance

One study explored the intra-operative uses of NLP in orthopaedic surgery. Agaron-
nik et al. created a machine learning tool to retrospectively extract neuromonitoring status
documentation from operative records of spine surgery [3]. They used an NLP keyword
library to identify the relevant operative reports, followed by a deep learning model to
characterise the documentation into a change in status, difficulty establishing baseline
signals and stable course. Compared to the current gold standard manual chart review,
NLP was able to more effectively and efficiently characterise the data. In particular, the NLP
keyword library had an F1 score of 1.0, recall of 0.99 and precision of 1.0, compared to 0.64,
0.49, and 0.92, respectively, in current practice (i.e., using the International Classification of
Disease (ICD) codes). The deep learning model for change in status of neuromonitoring
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signals, difficulty establishing baseline and stable course had an F1 score of 0.8, 0.8 and
0.93, a precision score of 0.67, 0.71, 0.89 and a recall of 1.0, 0.91, 0.98, respectively.
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3.3. Use in the Detection of Adverse Events

Six studies explored the use of NLP for the detection of adverse events related to
orthopaedic surgery. Borjali et al. compared easy-to-access traditional machine learning
NLP (ML-NLP) to two newly developed deep learning NLP (DL-NLP) models for retro-
spective detection of hip dislocations post total hip arthroplasty [4]. The models were used
on radiology reports and telephone consult notes. DL-NLP models were highly accurate
and performed better than ML-NLP. In particular, DL-NLP models were able to better
interpret longer phrases, i.e., “no fracture or dislocation” as opposed to “no dislocation”
and they were able to better delineate a dislocated hip from other displaced or dislocated
joints or bones. Their convolutional neural network proposed DL-NLP model was the best
performing with a kappa of 0.97 (for radiology reports) and 1.00 (for telephone consult
notes). Finally, Borjali et al. also showed that 25% of dislocated hip patients identified with
NLP did not have valid ICD codes, which infers the potential missed data that occur with
traditional coders reviewing documentation [4].

Fu et al. applied NLP models to extract data from operative reports, consultation
notes, microbiology and pathology reports related to periprosthetic joint infections (PJI) [5].
The NLP algorithm identified PJI based on the Musculoskeletal Infection Society criteria
with an F1 score of 0.911 [5]. Thirukumaran et al. also identified that NLP models were
able to correctly perform surgical site infection surveillance, based on their ability to extract
information from administrative and medical records [6]. Compared to the gold standard,
manual data abstraction, the NLP models precisely identified 97% of surgical site infections.
Similarly, Karhade et al. identified that NLP was more accurate in identifying postoperative
wound infection requiring reoperation post lumbar discectomy compared to ICD codes [7].
They showed that NLP detected 15 out of 16 cases (sensitivity of 0.94) compared to ICD
codes, which detected 12 out of 16 (sensitivity 0.75).

Further, NLP was able to successfully extract data regarding intraoperative vascular
injury in anterior lumbar spine surgery, identifying 18 out of 21 cases compared to ICD
codes, which identified 6 of 21, with a sensitivity of 0.86 compared to 0.29, respectively [8].
Finally, NLP algorithms were found to be reproducible in geographically diverse pop-
ulations for the identification of incidental durotomy post-spine surgery [9]. The same
algorithm achieved an area under the curve receiver operating characteristic (AUC-ROC)
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ranging between 0.95 and 0.99 in three separate geographically diverse cohorts (Australia,
Massachusetts, Maryland).

3.4. Use for Orthopaedic Diagnoses

Five studies explored the role of NLP in assisting orthopaedic clinicians with formulat-
ing and identifying diagnoses. Li et al. trained NLP algorithms to interpret meniscal tears
in magnetic resonance imaging (MRI) scan reports and later applied the same algorithm
to arthroscopy reports [10]. For MRI reports, the algorithm had an F1 score of 0.93–0.94
for medial meniscus tears and an F1 score of 0.86–0.88 for lateral meniscus tears. With
respect to scope reports, it had an F1 score of 0.97 and 0.99, respectively. Li et al. also
combined scope and MRI reports to identify if NLP was able to identify mismatch between
the two reports, resulting in a sensitivity of 79% and specificity 87%. Olthof et al. also
used machine learning and deep learning NLP models on radiology reports—specifically
orthopaedic trauma X-rays [11]. They compared various available models and identified
the Bidirectional Encoder Representations from Transformers (BERT) as the most accurate,
with an accuracy of 96% and an F1 score of 0.95. The radiology reports were in Dutch and
therefore NLP proved to be effective in the non-English written language.

Groot et al. successfully used NLP algorithms to identify bony metastases in bone
scintigraphy reports of patients undergoing surgery for bone metastases [12]. They found
that the NLP algorithm had a sensitivity of 0.94 and specificity of 0.82, a positive predictive
value of 0.97 and an F1 score of 0.96. Similarly, Tibbo et al. used an NLP algorithm
to identify periprosthetic femoral fractures post total hip arthroplasties and compared
its results to a diagnosis made by orthopaedic surgeons using chart and radiological
review [13]. The algorithm was applied to operative and consult notes and had a sensitivity
of 100% and specificity of 99.8% for identifying periprosthetic femoral fractures. With
respect to identifying the correct Vancouver classification, it demonstrated a sensitivity of
78.6% and a specificity of 94.8%. Lastly, Tan et al. used an NLP system trained to identify
lumbar spine imaging findings from both X-ray and MRI reports obtained from patients
with lower back pain presentations [14]. In their study, four spine experts annotated the
presence of 26 findings of which the NLP systems were able to achieve a high inter-rater
agreement for 25 of 26 findings with a sensitivity of over 0.94 and an AUC of over 0.90,
indicating the NLP system performed excellently when benchmarked to reference standard
annotation by spinal experts.

3.5. Use in Assessing Patient Experience

Two studies explored the use of NLP in assessing patients’ experience with orthopaedic
surgery. Bovonratwet et al. used a predeveloped NLP model to extract patient satisfaction
data post a total knee replacement and identify its impact on patient outcomes [15]. Whilst
a comparison with non-NLP data extraction was not completed, they demonstrated that
it is feasible to use NLP to extract relevant data required to create correlations and com-
parisons. Langerhuizen et al. used NLP to identify themes in online patient reviews of
orthopaedic surgeons and their practice [16]. They compared the themes to identify corre-
lations and ultimately found that patient–clinician interactions were the major contributor
to patient satisfaction and therefore more effective communication training by surgeons
could improve patient satisfaction and reviews.

3.6. Use as an Informative Resource for Patients

Two studies explored the role of NLP as a tool for the generation and provision of
orthopaedic information. Dubin et al. compared the use of ChatGPT and Google web search
using frequently asked questions by patients undergoing total hip replacements (THR)
and total knee replacements (TKR) [17]. ChatGPT proved to use more reliable resources
to answer the questions. In total, 15 out of 20 questions were answered with government
websites (primarily PubMed) using ChatGPT, whereas 13 out of 20 questions asked on
Google Web search were answered using commercial websites. Whilst this does not replace
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the importance of education and consent by the treating physician, it has proven to be a
potential reliable resource to educate patients on their orthopaedic procedures. Seth et al.
prompted ChatGPT with a series of questions related to knee osteoarthritis and surgical
management [18]. They found that the information presented was accurate, but relatively
superficial and missed key contributing studies or elements of literature, hence proving
that whilst ChatGPT could be used for generic patient education (with supplementation
from the surgeon), it is not yet at the level where it can be used for orthopaedic research or
generation of new ideas.

3.7. Predict Readmission

One study explored the ability of NLP to predict readmission for patients. Karhade et al.
used an NLP algorithm on free text discharge summaries, operative notes and multidisci-
plinary progress notes from the medical record to estimate the risk of readmission within
90 days post lumbar spine fusion [19]. The area under the receiver–operating curve was
0.70, 0.57, 0.57, 0.60, 0.60 and 0.49, respectively. Discharge summaries were most useful at
estimating risk, whilst daily progress notes provided little benefit.

3.8. Triaging

One study explored the use of NLP for triaging orthopaedic patients. Krebs et al. used
NLP on MRI reports to predict whether patients with lower back pain or neck pain would
end up needing a surgical intervention [20]. They found that NLP did not improve the
accuracy of prediction to surgery. The three main predictive variables were lower back and
leg pain, distal pain and difficulty walking. All three of these variables are best assessed
via self-reported assessments as opposed to MRI reports. It is likely that Krebs et al. were
not able to validate their current NLP model because they used radiological imaging as
opposed to extracting qualitative data from patient reports and notes.

3.9. Audit

Five studies explored the use of NLP for auditing within orthopaedic surgery. Sagheb et al.
used NLP algorithms to extract data from TKR operative reports and compared its accuracy
to manual chart review [21]. They assessed the category of knee arthroplasty (total, uni-
compartmental, patellofemoral), laterality, constraint type, patella resurfacing and implant
model. These showed an accuracy of 98.3%, 99.5%, 99.2%, 99.4%, and 99.9%, respec-
tively. Wyles et al. completed a similar study using THR operation reports, assessing NLP
accuracy in identifying the operative approach (anterolateral, direct anterior, posterior),
fixation (uncemented, cemented, hybrid and reverse hybrid) and bearing surface (metal
on polyethylene, ceramic on polyethylene, metal on metal, ceramic on ceramic) [22]. They
identified an accuracy of 99.2%, 90.7% and 95.8%, respectively. They also validated these
results externally using operative reports from a different institution and found an accuracy
of 94.4%, 95.6% and 98%, respectively. Wyles et al. later applied it to a further 39 operative
THR reports from a private practice “OrthoCarolina” to refine the algorithm and validate
its use externally on a broader scale, they identified an accuracy of 100% for operative
approach, fixation and bearing surface compared to manual chart review [23].

More broadly, Shah et al. applied NLP algorithms to 1000 randomly selected operative
and hospital notes for patients undergoing a primary arthroplasty [24]. They used preoper-
ative, operative and postoperative variables in their NLP algorithm, showing accuracy of
96.3%, sensitivity of 95.2% and specificity of 97.4%. The algorithm was better at detecting
structured data, i.e., range of motion, as opposed to unstructured author-dependent infor-
mation, i.e., written complications. This was compared to the gold standard manual chart
review. Finally, Jungmann et al. utilised a pre-trained in-house NLP engine to categorise
5397 radiological reports (hand/wrist, elbow, shoulder, ankle, knee, pelvis/hip) to identify
the incidence and age distribution of fractures during the COVID-19 pandemic [25]. In their
study, the NLP engine achieved an F1 score of 0.81 when benchmarked against manual
human annotation indicating that there was sound evidence to use these technologies for
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epidemiological studies, auditing of cases and real-time monitoring of fractures. Overall,
these studies indicate that NLP has a promising role in data extraction from joint registries
and can contribute to auditing and research processes.

3.10. Billing and Coding

One study explored the use of NLP for billing and coding practices in orthopaedic
surgery. Zaidat et al. showed that NLP can generate Current Procedural Terminology (CPT)
codes on operative notes of patients who underwent anterior cervical discectomy and
fusion (ACDF), posterior cervical decompression and fusion (PCDF), a combination of the
two procedures or cervical disc arthroplasty (CDA) [26]. ACDF operative notes only had
an area under the receiver–operator curve (AUROC) of 0.82, an area under the precision–
recall curve of 0.81, and an accuracy of 77%. PCDF had an AUROC of 0.82, precision of
0.7 and accuracy of 71%. All operative notes analysed together yielded an AUROC of
0.95, precision of 0.84 and accuracy of 88%. Hence, NLP could generate CPT codes in a
comparable manner to the current gold standard code generation by the billing department.

3.11. Quality Assessment

Quality assessment was performed utilising the Newcastle–Ottawa Scale and ranged
from low quality (3/9) to high quality (8/9) (Appendix A). The median NOS score achieved
was 6 with an interquartile range of 2.5, indicating that despite the high variability, overall
the included studies are considered to be of moderate quality.

4. Discussion

As healthcare continues its shift towards digitalisation, the potential for leveraging
technology to enhance the orthopaedic surgery experience becomes evident for all involved
parties, from surgeons to patients and allied health staff. Yet, the realm of orthopaedics lags
in a structured, guideline-based approach to integrating these digital tools, with limited
research exploring their specific application into streamlining and augmenting processes
in orthopaedics. As orthopaedics becomes further digitalised, with advancements like
electronic medical records, the capabilities of NLP and generative AI tools stand out. These
technologies, with their vast computational power and adaptability, hold the promise
of optimising efficiency, task streamlining, and auditing processes. This review aims
to answer this research question pertaining to how we can best utilise these AI tools by
presenting a comprehensive overview of existing research on the use of NLP and generative
AI within orthopaedic surgery. Furthermore, it sheds light on potential future research
trajectories, aiming to inform the creation of evidence-based strategies and frameworks for
NLP technology adoption in this field.

Our analysis encompassed and synthesised the current traits, evidence, and potential
of NLP and generative AI tools from 24 publications, focusing on their influence in the
realm of orthopaedics. A key finding is the current absence of evidence-based guidelines
for these tools’ application within orthopaedics. There has been an emerging body of
research since 2018 that started to explore the strategies by which implementation of NLP
could improve processes within orthopaedic surgery. Notably, the majority of this research
hails from the United States, the birthplace of popular tools like ChatGPT and Google Bard.

For implementation, our scoping review identified one study by Agaronnik et al. that
assessed the use of NLP for intraoperative monitoring and guidance in spinal surgery [3].
They found that NLP could with high accuracy, as compared to manual chart review,
retrospectively identify important events including changes in patient status and baseline
signals, stability and change in neuromonitoring signals. Practically these early findings
could establish a role for NLP in retrospectively identifying and evaluating events that
occur during surgery for learning and auditing processes. However, the true potential lies
in augmenting these NLP systems by integrating them into modern monitoring tools to
potentially develop a real-time system that can identify important intraoperative changes
to support more efficient and rapid decision making for orthopaedic surgeons. This same
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concept could be applied to other orthopaedic surgeries, such as hip arthroplasties where
monitoring the sciatic or femoral nerves can have significant importance to patient outcomes.

Our review pinpointed burgeoning research into NLP’s applications for diagnostic
purposes, specifically for identifying adverse events linked to orthopaedic surgery and
assisting in pinpointing orthopaedic diagnoses. Six studies probed the deployment of NLP
for these tasks, leveraging its capability to extract data from diverse digital documents such
as radiology reports, consultation notes, and pathology reports [4–9]. In all cases, NLP is
able to correctly identify relevant adverse outcomes including hip dislocations, peripros-
thetic joint and surgical site infection and intraoperative vascular injury. Furthermore, five
studies explored the use of NLP in assisting with the diagnostic process for orthopaedic
patients [10–14]. In these studies, NLP was able to extract data from radiology reports of
multiple modalities to accurately define orthopaedic diagnoses including meniscal tears,
bone metastases, periprosthetic fractures and traumatic orthopaedic injuries. Interestingly,
one study could perform this task effectively from non-English radiology reports [11].

Historically, orthopaedic clinicians have depended on manual chart reviews, data
accumulation, and synthesis as the gold standard for gathering adverse outcomes or
diagnostic data. Efforts to enhance the efficiency of these processes have included the
transition of healthcare systems from paper-based to electronic medical records, allowing
all the information to be found on one interface. This has allowed clinicians to streamline
these processes by allowing computer-generated searches of adverse outcomes or diagnoses
from relevant investigations as required.

However, this digital transition has its set of challenges, primarily due to the pro-
liferation of unstructured text, vast data quantities, and user interfaces that might not
effectively capture pertinent data. There is clear emerging evidence that NLP offers a
solution for evaluating vast swathes of digital healthcare data in a highly accurate and
efficient manner. Integration of these technologies could theoretically improve the time
orthopaedic surgeons and trainees spend in auditing and data collection for research. This
is supported by five additional studies which demonstrate NLP is able to extract with high
accuracy various outcome measures and important operative details [21–25]. In almost all
of these cases, hundreds to thousands of separate documents were evaluated with these
tools, a task that would be laborious and highly prone to human error, particularly if factors
including fatigue, burnout and staff shortages are considered. The allure of automated,
swift data extraction, processing, and synthesis through NLP is undeniable. Nevertheless,
it is pivotal to acknowledge the need for further refinement and training of these tools to
hone their precision.

Our scoping review identified various preliminary studies that explored unique appli-
cations of NLP in orthopaedic surgery including in the assessment of the patient experience,
as an informative resource for patients, in the prediction of readmission, in assistance with
billing/coding procedures and in triaging of patients [15–20,26]. With the exception of pre-
dicting readmission and triage, NLP was adequately and efficiently used for these purposes.
The ability of NLP to assess the patient experience and provide advice may represent the
beginnings of a new paradigm shift in the way we harness digital tools outside of the acute
care setting. For the former, sentiment analysis of patient experience can be streamlined and
better represented with NLPs [15,16]. This may allow not only orthopaedic departments
but also various quality and safety units within hospital systems to best understand how
our health services can improve the delivery of healthcare. Furthermore, the ability of
ChatGPT to provide answers to frequently asked questions associated with hip and knee
arthroplasty may be a useful adjunct for surgeons to present information in more accessible
and palatable ways for patients [17,18]. This is particularly relevant in an environment
where diverse caseloads of patients exist. More streamlined generation of CPT codes from
operative notes by NLP tools is of great benefit to health services, particularly as this
would improve the workload and efficiency of clinical coders [26]. Importantly, allowing
surgeons to be prompted with specific CPT codes based on their operation notes, may
yield more accurate and comprehensive documentation. The downstream impacts of this
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include improved healthcare funding, more appropriate remuneration of clinicians and
better identification of areas for resource allocation. Notably, when it came to predicting
readmission and triage, Karhade et al. and Krebs et al., respectively, found that NLP was
unable to assist with these processes with high accuracy [19,20]. Specifically, Karhade et al.
demonstrated low to moderate AUC scores when using NLP to predict 90-day readmission
and Krebs et al. demonstrated NLP was unable to be validated for triaging patients with
neck or lower back pain in operative or nonoperative populations [19,20]. These studies
highlight that we are far from close to utilising NLP for decision making or prognostication
within orthopaedic surgery. Specifically, these clinical decisions still require the dynamic
and well-trained insights of orthopaedic surgeons.

A strength of this scoping review is the diverse range of studies with a wide variety
of methods, objectives and outcomes evaluating the use of NLPs within the field of or-
thopaedic surgery. In fact, to our knowledge, this review is the first to systematically search
for and synthesise the literature in this space to gain a comprehensive understanding of
the currently studied applications of NLPs within orthopaedics as well as the potential
avenues to explore with respect to future directions. Another strength of the review is that
it explores both quantitative and qualitative outcomes related to the implementation of
NLPs within orthopaedics, thereby allowing a better understanding of the current benefits,
downsides and challenges of integrating this technology at this point in time.

Limitations of this review relate to the paucity of research within this space, partic-
ularly with many of the applications of NLPs proposed remaining largely theoretical or
poorly characterised. Given that NLPs are a new technology and efforts to integrate these
technologies within orthopaedic surgery are still in their infancy, the current literature ex-
ploring their applications is also of poor methodological quality, largely theoretical or aimed
at assessing feasibility. Consequently, it remains difficult to gain a deep understanding of
the true effect of implementing NLPs in the various stages of orthopaedic surgery. Further-
more, from our quality assessment of the included studies using the NOS, the quality of
papers was highly variable but overall of moderate quality. Given this, the results of this
review should be considered with caution but nonetheless provide exciting insights into
the beginnings of further research and applications of NLPs within orthopaedic surgery.

Regardless, in all cases, NLP tools were used to extract a significant variety of unstruc-
tured and structured free-form text information. The general theme was that NLP tools
did so with moderate to high accuracy, sensitivity and specificity when compared with
current manual approaches. Understandably, given these findings and the tremendous
computational capacity of NLP algorithms, it is expected that the implementation of NLP
confers significant potential in improving efficiency and streamlining processes within all
stages of the orthopaedic journey.

Given that NLP is a new technology and efforts to integrate these technologies within
orthopaedic surgery are still in their infancy, the current literature exploring their appli-
cations is also of poor methodological quality, largely theoretical or is aimed at assessing
feasibility. Consequently, it remains difficult to gain a deep understanding of the true effect
of implementing NLP in orthopaedic surgery. Furthermore, from our quality assessment of
the included studies using the NOS, the quality of papers was highly variable but overall of
moderate quality. Given this, the results of this review should be considered with caution.

The prospect of integrating NLP into orthopaedics is highly appealing. However,
as for all new technologies, some significant barriers and challenges must be considered
before seamless integration. Specific to healthcare in general is the potential for error that
may arise by blindly trusting the outputs from NLP algorithms. Zhu et al. demonstrated
that when five different NLP systems were subjected to a set of 22 questions from a prostate
cancer community, 90% of answers were able to be answered appropriately however these
systems lacked the ability to navigate queries that resulted from further clarification, nor
could they provide empathic comfort to patients [27]. Similarly, in a study by Haemmerli
et al. whereby ChatGPT was used to provide advice based on analysing glioma diagnoses
from 10 patients, the algorithm demonstrated poor ability to classify glioma by type and
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subsequently lacked nuance when medical advice for these tumours was requested [28].
These studies suggest that these tools remain imperfect, with a very low likelihood that
they can replace any role that requires specialist medical input.

Furthermore, without the right safeguards, these tools might pose harm. For instance,
ChatGPT has demonstrated the ability to produce persuasive yet incorrect information
when queried about ophthalmological diagnoses [29]. This underscores the need to assess
what human oversight is necessary to monitor these tools and facilitate their integration.
In an era marked by meticulous healthcare budgeting and spending, there is a demand
for compelling evidence before fully endorsing the integration of generative AI technolo-
gies. A deeper dive into research is imperative to discern the specific scenarios within
orthopaedics where these tools would be most beneficial.

Lastly, the integration of NLP technology comes with strong ethical considerations.
Given the tremendous computational demands of NLP, it is unlikely, nor cost-effective, to
develop in-house NLP algorithms with the same capacity as current open-access tools. It
is likely that integration of these would leverage the current infrastructure available on
the market, which raises the question about the confidentiality and privacy of healthcare
data. In an environment where data can be used for harm and cybersecurity measures are
at the forefront of digital health, clinicians and policymakers must consider the nature of
the personal data that these tools may receive, where it is stored, how secure it is, data
ownership and how data are used by larger corporations. Perhaps for a single specialty
like orthopaedics, the benefit of this is far outweighed by the costs. However, when it
comes to overall healthcare, health-centric sub-brands of these current NLP tools, with a
specific focus on evidence-based training from healthcare databases, stronger security and
transparent processes behind data storage, may provide a more reassuring avenue for this
digital transition. For this to take place, significant multi-sectoral partnerships would need
to occur and the cost of this process would need to be strongly considered.

5. Conclusions

The advent of widely accessible natural language processing (NLP) tools has spurred
their adoption across various sectors, including healthcare. Despite this, there is currently
a lack of evidence-based understanding of how to best integrate these tools, as well as a
lack of best-practice methodologies to optimise the implementation of these tools within
orthopaedic surgery. This scoping review is the first to provide broad insight into the
potential applications of contemporary NLP technologies in the field of orthopaedics. Our
review has demonstrated the significant potential of these tools from the foundational
literature to rapidly and efficiently extract and repurpose digital data for a multitude of
tasks through the orthopaedic journey. There is a pressing need for more in-depth studies
to ascertain how to refine, integrate, and commercialise these tools in orthopaedic surgery.
Such advancements could catalyse a transformative shift in harnessing digital data within
the discipline.
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Appendix A

Table A1. Quality analysis of included studies using Newcastle–Ottawa Score.

Study
Representative of

the Exposed
Cohort

Selection of
External Control/

Non-Exposed
Cohort

Ascertainment
of Exposure

Outcome of
Interest Not

Present at the
Start of the

Study

Study Controls for
Intervention of

Natural Language
Processing Tool

Study Control
for External

Confounders

Assessment of
Outcomes/

Ascertainment
of Exposure

Sufficient
Follow-Up/Same

Method of
Ascertainment for

Cases and Controls

Adequacy of
Follow-up/

Non-Response
Rate

Total
Score

(/9)

Agaronnik et al., 2022 [3] + - + + + + + + - 7

Borjali et al., 2021 [4] + - + + + + + + - 7

Bovonratwet et al., 2021 [15] - - + + - - + - - 3

Dubin et al., 2023 [17] - - + + - - + - - 3

Fu et al., 2021 [5] + - + + - - + - - 4

Groot et al., 2020 [12] + - + + + + + - - 6

Junmann et al., 2022 [25] + - + + + + + + - 7

Karhade et al., 2020 [7] + - + + + + + + - 7

Karhade et al., 2021 [8] + - + + + + + + - 7

Karhade et al., 2022 [19] + - + + + + + + - 7

Karhade et al., 2022 [9] + - + + + + + + - 7

Krebs et al., 2023 [20] - - + + + + + + - 6

Langerhuizen et al., 2021 [16] + - + + - - + - - 4

Li et al., 2022 [10] + - + + - - + - - 4

Olthof et al., 2021 [11] + - + + + + + + - 7

Sagheb et al., 2021 [21] + - + + + + + + - 7

Seth et al., 2023 [18] - - + + - - + = = 3

Shah et al., 2020 [24] + - + + + - + + - 6

Tan et al., 2018 [14] + + + + + + + + - 8

Thirukumaran et al., 2019 [6] - + + + + + + + - 7

Tibbo et al., 2019 [13] - - + + + + + - - 5

Wyles et al., 2022 [23] - - + + + - + + - 5

Wyles et al., 2019 [22] - - + + + - + + - 5

Zaidat et al., 2023 [26] + - + + + - + + - 6
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Appendix B. Search Query

1. * natural language processing
2. (chatgpt * or chat gpt * or “GPT-3” or “GPT-4” or language model * or natural language

processing).ti,kf.
3. ((Gopher or Chinchilla or Google Bard or Perplexity or SpaCy or Stanford Core NLP

or NTLK) adj6 (AI or language model *)).mp.
4. 1 or 2 or 3
5. exp surgery/or exp perioperative complication/or exp perioperative care/or exp

surgical training/or “surg *”.jw, ti, kw.
6. 4 and 5
7. ((chatgpt * or chat gpt* or “GPT-3” or “GPT-4” or language model* or natural language

processing) adj6 (surg* or neurosurg * or orthop?edic * or operative * or preoperative *
or postoperative * or intraoperative *)).mp.

8. 6 or 7
9. limit 8 to english language
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