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Abstract: Statistical process control (SPC) is one of the most powerful techniques for improving
quality, as it is able to detect special causes of problems in processes, products and services with a
remarkable degree of accuracy. Among SPC tools, X and R control charts are widely employed in
process monitoring. However, scenarios involving vague, imprecise and even subjective data require
a type-2 fuzzy set approach. Thus, X and R control charts should be coupled with interval type-2
triangular fuzzy numbers (IT2TFN) in order to add further information to traditional control charts.
This paper proposes a performance analysis of IT2TFN and X and R control charts by means of
average run length (ARL), standard deviation of the run length (SDRL) and RL percentile. Computer
simulations were carried out considering 10,000 runs to obtain ARL, SDRL and the 5th, 25th, 50th,
75th and 95th RL percentiles. Simulation results reveal that the proposed control charts increased
fault detection capability (speed of response) and slightly reduced the number of false alarms in
processes under control. Moreover, it was observed that, in addition to superior performance, IT2TFN
X-R control charts proved to be more robust and flexible when compared to traditional control charts.

Keywords: control charts; uncertainty; type-2 fuzzy sets; performance analysis

1. Introduction

Among statistical process control (SPC) tools, control charts are by far the most widely
used method due to the simplicity of understanding them, while at the same time being
efficient in detecting defects in production processes [1].

There are two types of control charts: variable or attribute control charts. According
to [2], such classification is made according to the type of data being monitored. In variable
control charts, the degree of data precision (usually defined by the number of decimal
places) and continuous data, such as length, height, mass, time, among others, can be
measured. For attribute control charts, data may or may not have some attributes, such as
number of nonconforming items or number of nonconformities per lot, thus requiring the
use of discrete variables that are countable.

When human judgments and subjectivity significantly affect the definition of quality
characteristics, traditional control charts should be used. In such a case, the theory of fuzzy
sets developed by [3] should be used instead, since it enhances the flexibility of control
charts and adds further information about process details, in addition to its performance
improvement capability [4].

In scenarios containing several sources of uncertainty regarding the data under analy-
sis, the type-2 fuzzy set approach proposed by [5] should be used, which was mathemati-
cally formulated by [6].

Measurement error is a concept related to the difference between a measured value and
the reference value of a measurand. As measurement errors cannot be fully corrected, there
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will always be a portion of doubt associated with measurements, which is represented by
uncertainty [7]. The theory of type-2 fuzzy sets is applied in order to model this uncertainty.

Type-1 fuzzy logic makes use of uncertainties related to the meanings of words through
precise membership functions. Such membership functions, when well defined, are capable
of eliminating uncertainties arising from the meanings of words. A membership function of
type-2 fuzzy sets, on the other hand, measures uncertainty through the so-called footprint
of uncertainty (FOU), which allows working on a higher level of uncertainty. Therefore, if
type-2 fuzzy pertinence functions are well defined, type-2 uncertainties are also eliminated
and data are restored to type-1 fuzzy numbers [6].

Regarding the performance of fuzzy control charts, [8] presented type-1 fuzzy X-R
control charts for monitoring the mean and range of univariate processes. Through a
performance analysis, the authors observed that fuzzy control charts achieved higher
efficiency in detecting special causes compared to traditional control charts.

X and R control charts through the approach presented by [9] allowed implementing
exponentially weighted moving average (EWMA) control charts using fuzzy numbers to
monitor the average and range of processes. A performance analysis of their proposed
control chart through ARL proved to be more efficient than traditional control charts.
Furthermore, future research on the use of other performance metrics such as standard de-
viation of the run length (SDRL) and median of the run length (MDRL) has been suggested.

Therefore, this paper proposes a performance analysis of X-R control charts under the
use of interval type-2 fuzzy sets in univariate processes through the average run length
(ARL), SDRL and percentile of RL. Equations for control limits using triangular type-2
fuzzy numbers will be presented, and simulations were performed to show the values of
ARL, SDRL and percentile of RL as functions of the variation in parameters δ (shift), λ
(disturbance) and the FOU. Finally, an illustrative example will be presented.

Although there are other control chart models using fuzzy set theory, the X and R con-
trol charts are most applied to industrial processes due to their simplicity of implementation
and their comprehensive application in variable monitoring of different process types.

This paper is organized as follows: Section 2 introduces the concepts of type-2 fuzzy
sets, interval type-2 triangular fuzzy number (IT2TFN) operations, the defuzzification
method and footprint of uncertainty. Section 3 presents the proposed interval type-2
fuzzy X-R control charts. Section 4 shows the ARL, SDRL and RL percentile performance
measurements together with variables making up in-control and out-of-control conditions.
Section 5 contains details about the performance analysis of proposed fuzzy control charts.
Finally, Section 6 draws conclusions and offers suggestions for future research.

2. Interval Type-2 Fuzzy Sets

According to [10], a type-2 fuzzy set, denoted by Ã, can be characterized by the
membership function µÃ = (x, u), where x ∈ X and u ∈ Jx ⊆ [0, 1].

Mathematically, it is represented as:

Ã =
{(

(x, u),µÃ(x, u)
)∣∣∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]

}
(1)

where 0 ≤ µÃ ≤ 1.
According to this work, an interval type-2 triangular fuzzy number (IT2TFN) can be

illustrated as shown in Figure 1.
Although the fuzzy set theory proposed by [3] offers great advantages, classical fuzzy

sets are unable to model uncertainty through clear definitions of pertinence functions at
times. Thus, type-2 fuzzy sets should be used as they successfully improve the quality
of uncertainty modeling. It is also known that pertinence functions of classical fuzzy
sets are bidimensional, while those of type-2 fuzzy sets are three-dimensional, therefore
type-2 fuzzy sets can accurately represent uncertainty and reduce its undesirable/negative
effects [11].
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Figure 1. Interval type-2 triangular fuzzy number (3, 8, 12, 15, 18) in a three-dimensional space.

2.1. Interval Type-2 Triangular Fuzzy Sets

An interval type-2 fuzzy set Ã is represented by a lower membership function (LMF)

ÃL and an upper membership function (UMF) Ã
U

, where Ã = Ã
L

, Ã
U

. In particular,
when triangular pertinence functions are used, it is illustrated as in Figure 2, where
ÃL =

(
aL

i1, aL
i2, aL

i3; H
(

ÃL
))

, ÃU =
(

aU
i1, aU

i2, aU
i3; H

(
ÃU
))

, (aL
i1, aL

i2, aL
i3) and (aU

i1, aU
i2, aU

i3)

denote three key points of LMF and UMF, and Ã
L

and Ã
U

, where aU
1 ≤ aL

1 , aU
3 ≤ aL

3 ,

0 < H
(

Ã
L) ≤ H

(
Ã

U)
= 1, denote the highest membership function values.
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Upper membership and lower membership functions are described according to
Equations (2) and (3), respectively:

µU
Ã
=


x−aU

1
aU

2 −aU
1

; if aU
1 ≤ x ≤ aU

2
aU

3 −x
aU

3 −aU
2

; if aU
2 ≤ x ≤ aU

3

(2)

µL
Ã
=


x−aL

1
aL

2−aL
1

; if aL
1 ≤ x ≤ aL

2
aL

3−x
aL

3−aL
2

; if aL
2 ≤ x ≤ aL

3

(3)

The closer the shapes of Ã
L

and Ã
U

are, the less uncertain information contained

in Ã obviously is. When Ã
L

coincides with Ã
U

, the interval type-2 fuzzy set becomes a
type-1 fuzzy set [12].
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In order to simplify the model, the central IT2TFN value aU
2 = aL

2 is considered, as it

defines the singleton of an interval type-2 triangular fuzzy number, but height H
(

ÃU
)

of

the upper membership function coincides with height H
(

Ã
L)

of the lower membership

function. Particularly where aU
2 = aL

2 and H
(

ÃU
)
= H

(
ÃL
)

, the so-called perfect interval
type-2 triangular fuzzy number (PI2TFN) is obtained [13].

The arithmetic operations of addition, subtraction and multiplication, respectively,
are used in X-R control charts for IT2TFN, which are given by Equations (4)–(6) according
to [14]:

Ã1 + Ã2 =

(aU
11 + aU

21, aU
12 + aU

22, aU
13 + aU

23; min
(

H( Ã
U
1

)
,
(

H( Ã
U
2

) )
,(

aL
11 + aL

21, aL
12 + aL

22, aL
13 + aL

23; min
(

H( Ã
L
1

)
,
(

H( Ã
L
2

) )  (4)

Ã1 − Ã2 =

(aU
11 − aU

23, aU
12 − aU

22, aU
13 − aU

21; min
(

H( Ã
U
1

)
,
(

H( Ã
U
2

) )
,(

aL
11 − aL

23, aL
12 − aL

22, aL
13 − aL

21; min
(

H( Ã
L
1

)
,
(

H( Ã
L
2

) )  (5)

kx Ãi =

(kxaU
i1, kxaU

i2, kxaU
i3; min

(
H( Ã

U
i

) )
,(

kxaL
11, kxaL

12, kxaL
13; min

(
H( Ã

L
i

) ) (6)

2.2. Footprint of Uncertainty and Membership Functions

According to [12], the uncertainty of primary pertinence functions in type-2 fuzzy
sets is represented by the footprint of uncertainty (FOU). If this aspect is not present, the
type-2 fuzzy set in question becomes an ordinary fuzzy set. Figure 3 illustrates the FOU
of triangular interval type-2 fuzzy set. Its height should be consistent with the type of
problem under analysis as well as with the desired degree of uncertainty [10].
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(
Ã

L)
.

Adapted from [12].

The FOU provides an additional degree of freedom for a type-2 fuzzy set so as to
directly handle system uncertainties. Thus, it is worth mentioning that FOU is able to
model uncertainties in systems making use of type-2 fuzzy sets [15,16]. The FOU of an
IT2TFN set is illustrated by Figure 3.

Concerning the most usual FOU values, [17] demonstrate the analytical structure
variation in values of FOU (θ) ranging from 0 to 0.5. In order to discuss other values of
FOU, [18] reported the differences between FOU values and used PI controllers through
interval type-2 fuzzy numbers. It is worth mentioning that the value of the FOU depends
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on the type of application and what is to be controlled. Table 1 summarizes the objectives
according to FOU values.

Table 1. FOU values according to objectives of a control system. Adapted from [18].

Target FOU Values (θ) FOU Relationship

Faster response 0.00 < θ1 = θ2 = θ ≤ 0.50 They should be equal and small
Response with lower or no overshoot 0.50 ≤ θ1 = θ2 = θ < 1.00 They should be equal and larg
Smaller overshoot and faster response 0.30 ≤ θ1 = θ2 = θ < 0.90 They should be equal and medium sized

Thus, it can be observed how FOU can make systems more flexible, in addition to
allowing an increase in the speed of response and/or stabilize data in order to avoid
decision-making errors.

With regard to SPC, [19] describe that the aim of process monitoring is to detect shifts
in statistical parameters. In this case, when interval type-2 fuzzy sets are used, the value
of the FOU can increase this capacity for detecting statistical parameters, when greater
response speed is required (rigorous inspection), or decrease the capacity for detecting
these parameters, reducing unnecessary stops on the production line (moderate inspection).

3. Interval Type-2 Fuzzy X and R Control Charts

Regarding a type of quality characteristic able to be expressed as a measure, it is
common to monitor both the mean value and variability. The X control chart is widely used
to monitor mean and variability of a process which can be controlled by an R chart [20].

Fuzzy control charts must be used in the following cases: when statistical data un-
der consideration are uncertain or vague or when available data about the process are
incomplete or include human subjectivity [21].

Regarding the characteristics of the fuzzy set, [22] proposed X and R and X and S con-
trol chart models using triangular fuzzy numbers. The alpha-cut midrange transformation
technique was used for data defuzzification, and representative fuzzy values were found
using control charts.

Subsequently, [14] proposed X and R control charts using interval type-2 trapezoidal
fuzzy numbers (IT2TraFN). Adapting equations to triangular fuzzy numbers, parameters
X and R to be plotted can be more clearly understood by (7) and (8):

xIT2TFN =

(
∑n

i=1 xU
1

n
,

∑n
i=1 xL

1
n

,
∑n

i=1 xU
2

n
,

∑n
i=1 xL

3
n

,
∑n

i=1 xU
3

n

)
(7)

RIT2TFN =
(

maxxU
1 −minxU

3 , maxxL
1 −minxL

3 , maxxU
2 −minxU

2 , maxxL
3 −minxL

1 , maxxU
3 −minxU

1

)
(8)

where variable x is an interval type-2 triangular fuzzy number in the format
(
xU

i1, xL
i1, xL

i2 =
xU

i2, xL
i3, xU

i3
)

and n is the sample size.
The average of sample means and sample mean amplitude for m samples can be

calculated as in Equations (9) and (10):

=
xIT2TFN =

(
∑n

i=1 xU
1

m
,

∑n
i=1 xL

1
m

,
∑n

i=1 xU
2

m
,

∑n
i=1 xL

3
m

,
∑n

i=1 xU
3

m

)
(9)

RIT2TFN =

(
∑n

i=1 RU
1

m
, ∑n

i=1 RL
1

m
,

∑n
i=1 RU

2
m

, ∑n
i=1 RL

3
m

,
∑n

i=1 RU
3

m

)
(10)

Upper (UCL) and lower control limits (LCL), and the center line (CL) for the X control
chart can be obtained from Equations (11)–(13):
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UCLIT2TFN =

=
x

U
1 + A2 RU

1 ,
=
x

L
1 + A2 RL

1 ,
=
x

U
2 + A2 RU

2 ,
=
x

L
3 + A2 RL

3 ,
=
x

U
3 + A2 RU

3 ;

min
(

H( Ã
U
)
)

; min
(

H( Ã
L
)
)  (11)

CLIT2TFN =

(
=
x

U
1 ,

=
x

L
1 ,

=
x

U
2 ,

=
x

L
3 ,

=
x

U
3 ; min

(
H( Ã

U
)
)

; min
(

H( Ã
L
)
))

(12)

LCLIT2TFN =

=
x

U
1 −A2 RU

3 ,
=
x

L
1 −A2 RL

3 ,
=
x

U
2 −A2 RU

2 ,
=
x

L
3 −A2 RL

1 ,
=
x

U
3 −A2 RU

1 ;

min
(

H( Ã
U
)
)

; min
(

H( Ã
L
)
)  (13)

where A2 is a statistical constant associated with sample size, and H
(

Ã
U)

and H
(

Ã
L)

are
heights of triangles formed by the upper and lower pertinence function, respectively.

Similarly, the control limits for triangular interval type-2 fuzzy control chart R can be
obtained from Equations (14)–(16):

UCLIT2TFN =
(

D4 RU
1 , D4 RL

1 , D4 RU
2 , D4 RL

3 , D4 RU
3 ; min

(
H( Ã

U
)
)

; min
(

H( Ã
L
)
))

(14)

CLIT2TFN =
(

RU
1 , RL

1 , RU
2 , RL

3 , RU
3 ; min

(
H( Ã

U
)
)

; min
(

H( Ã
L
)
))

(15)

LCLIT2TFN =
(

D3 RU
1 , D3 RL

1 , D3 RU
2 , D3 RL

3 , D3 RU
3 ; min

(
H( Ã

U
)
)

; min
(

H( Ã
L
)
))

(16)

where D3 and D4 are statistical constants associated with the sample size.

3.1. Fuzzification Method

The fuzzification method occurs in a similar way to the methods proposed by [23,24].
They used random variables to transform crisp numbers into fuzzy numbers. Uniformly
distributed random variables were obtained using a random number generator herein.
These variables are used to multiply lower and upper bounds (L1 and L2), respectively, and
this process can also be used to transform crisp numbers into type-1 fuzzy numbers.

Type-1 fuzzy values should be coupled with a convenient value of FOU in order to
obtain a type-2 fuzzy number (according to experts).

Crisp numbers were transformed into IT2TFN (interval type-2 triangular fuzzy num-
bers), where IT2TFN = (xU

1 , xL
1 , xU

2 , xL
3 , xU

3 ), as illustrated in Figure 4:
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3.2. Type Reduction and Defuzzification Method

The transformation process from an IT2TFN into a crisp value is performed through a
couple of steps according to Figure 5.
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Firstly, type reduction occurs by transforming a type-2 into type-1 fuzzy set by means
of a type-reducing method. Subsequently, a defuzzification method is applied to obtain a
crisp number.

The defuzzification method for interval type-2 triangular fuzzy numbers proposed
by [26] is used herein to generate a crisp value in order to facilitate the plotting of sam-
ple observations, maintain the traditional control chart format and decide whether the
monitored process is in or out of statistical control.

Let Ã = (aU
1 , aL

1 , aU
2 =aL

2 , aL
3 , aU

3 ) be an IT2TFN. The defuzzification method can be
applied using Equation (17):

DTriT =

(aU
i3−aU

i1)+(aU
i2−aU

i1)
3 + aU

i1 + H
(

Ã
L)[ (aL

i3−aL
i1)+(aL

i2−aL
i1)

3

]
2

(17)

In order to compare X and R interval type-2 fuzzy control charts (IT2TFN) with
traditional X and R control charts, there must be type reduction followed by defuzzification.

As calculated values are similar to crisp values, the interval type-2 fuzzy control
charts for triangular fuzzy numbers generated by these methods are similar to traditional
control charts. Therefore, the presented reduction and defuzzification methods can evaluate
the process as being “in control” and “out of control” in the same way as the traditional
(statistical) method. The defuzzification method proposed by [26] allows finding the plotted
parameters which can be defuzzied by Equations (18) and (19):

x DTriT =

( xU
i3− xU

i1)+( xU
i2− xU

i1)
3 + xU

i1 + H
(

Ã
L)[ ( xL

i3− xL
i1)+( xL

i2− xL
i1)

3

]
2

(18)

RDTriT =

(RU
i3−RU

i1)+(RU
i2−RU

i1)
3 + RU

i1 + H
(

Ã
L)[ (RL

i3−RL
i1)+(RL

i2−RL
i1)

3

]
2

(19)

Performing the defuzzification of control limits of IT2TFN X results in Equations (20)–(22):

UCLIT2TFN =

=
x

U
1 +

=
x

U
2 +

=
x

U
3 + A2

(
RU

1 + RU
2 + RU

3

)
6

+ H
(

Ã
L)=

x
L
1 +

=
x

L
2 +

=
x

L
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(
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1 + RL
2 + RL

3

)
6

 (20)
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CLIT2TFN =
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3
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x

L
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6

 (21)

LCLIT2TFN =
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R U
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Similarly, the control limits for IT2TFN R they can be calculated by Equations (23)–(25):

UCLIT2TFN =
D4

(
RU

1 + RU
2 + RU

3

)
6

+ H
(

Ã
L)D4

(
RL

1 + RL
2 + RL

3

)
6

 (23)

CLIT2TFN =
RU
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2 + RU

3
6

+ H
(

Ã
L)[ RL
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2 + RL

3
6

]
(24)

LCLIT2TFN =
D3

(
RU

1 + RU
2 + RU

3

)
6

+ H
(

Ã
L)D3

(
RL

1 + RL
2 + RL

3

)
6

 (25)

Figures 6 and 7 graphically illustrate the construction of the IT2TFN X-R control charts
after defuzzification of the control limits and their sample observations.

The proposed model can be used in real processes whose parameters are unknown.
However, for comparison purposes with traditional control charts, it is possible that its
performance can be measured using known parameters.
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4. Control Chart Performance Measures

In situations where processes are stabilized, i.e., free of special causes, ARL0 is defined
as the main performance measure. The ARL0 reveals the number of samples required until
there is a false alarm. This implies that a control chart indicates when a sample is out of
control while it is supposedly in control [27]. According to [20], ARL0 is the inverse of a
type I error (α) as in Equation (26):

ARL0 =
1
α

(26)

Another important measure concerning the performance analysis of control charts
is the standard deviation of the run length (SDRL). For a better performance analysis of
control charts, [28,29] state that it is important to use a performance measure associated
with dispersion coupled with ARL, since ARL presents high variability. The value of
SDRL0, i.e., the expected value for a process free of special causes, can be calculated as in
Equation (27):

SDRL0 =

√
1− α

α
(27)

From simulated RL values, it is possible to perform other statistical analyses, such as
RL percentiles. Proposed by [30], RL percentiles are used to complement the ARL and SDRL
analysis, since it is capable of demonstrating variation in false alarms given by control
charts under study.

According to [31], an exclusive use of ARL as a performance measure may not pro-
vide a complete picture of chart performance, since both in-control and out-of-control
distributions are largely skewed. The RL percentile is a robust measure of control chart
performance. The 100th percentile (0 < q < 1) can be given by Equation (28):

1− βm =
q

100
(28)

In order to compare the proposed control charts to traditional control charts, the
control factor (k) of each chart must be initially adjusted individually so that when the
process is under control, the two charts reach approximate values of ARL0. Once ARL0
values are very close, the difference in δ standard deviations of the process mean and the
displacement of λ in the process range are simulated so as to compare ARL values found
through a traditional control chart with those of the proposed fuzzy control chart. The one
with the lowest ARL value is the most efficient for a given situation. Therefore, the most
efficient graphs should reach high ARL0 values, i.e., few false alarms and low ARL values,
so as to quickly detect variations in the process mean and range [32].
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Thus, according to [33,34], control charts mainly aim to monitor any random cause
changing the value of the process mean in control µ0 to µ1 = µ0 ± δσ x and/or those
increasing the standard deviation in control σ0 to σ1 = λσ0, where λ is the magnitude of
variability increase.

The fuzzy sets used in control charts by [8] allowed performing a fuzzification method
using random variables, and the performance of type-1 fuzzy X-R control charts was
measured using the average run length (ARL) and the extra quadratic loss (EQL).

On the other hand, [9] evaluated the performance of exponentially weighted mov-
ing average (EWMA) control charts using ARLs for traditional and fuzzy control charts.
Considering a process whose mean is 0 and standard deviation equals 1, triangular fuzzy
numbers are subsequently found through a fuzzification method.

In this work, the ARL, SDRL and RL percentile values are simulated as performance
measures. The simulation algorithm, considering known parameters, can be seen in Figure 8.
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In order to obtain the ARL, SDRL and RL percentile measurements, the X-R control
charts were considered together. According to [20], the X and R control charts should be
applied together in such a way that both the mean and variability of processes can be
monitored. Once a sample is shown to be out of control, either by means of the X or R
control chart, the process must be stopped so that corrective action can be taken.

5. Results and Discussion

To simulate ARL, SDRL and RL percentiles of IT2TFN X and R control charts, sample
size n = 5, process mean 0.0 and standard deviation 1.0 were selected. L1 = L2 = 0.05 and
FOU = 0.30 were used in the fuzzification process according to experts, as they provide a
fast response while at the same time reducing overshoots according to [18].

5.1. Average Run Length (ARL) and Standard Deviation Run Length (SDRL) for X-R
Control Charts

The values of δ range from 0 to 1.6 with successive increments of 0.2, and λ ranges
from 1 to 2.5. According [34], 10,000 iterations were performed in the simulation in order
to reach a more accurate result.

Table 2 presents the theoretical values of ARL and SDRL performance measures found
for traditional control charts. It is observed that the SDRL value is very close to that of ARL,
which explains the high variability of ARL as a performance measure.
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Table 2. Theoretical values of ARL and SDRL found for traditional X and R control charts.

Traditional X-R Control Chart ARL

λ δ (Shift)
# 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

1.0 370.5 228.0 84.9 30.8 12.6 6.0 3.3 2.1 1.5
1.1 119.2 88.2 44.1 20.1 9.7 5.2 3.1 2.1 1.6
1.2 48.8 40.3 25.0 13.8 7.7 4.5 2.9 2.1 1.6
1.3 24.2 21.3 15.3 9.8 6.2 4.0 2.8 2.0 1.6
1.4 13.9 12.8 10.1 7.2 5.0 3.5 2.6 2.0 1.6
1.5 8.9 8.4 7.1 5.5 4.2 3.1 2.4 1.9 1.6
2.0 2.6 2.5 2.4 2.3 2.1 1.9 1.7 1.5 1.4
2.5 1.6 1.6 1.5 1.5 1.5 1.4 1.4 1.3 1.2

Traditional X-R Control Chart SDRL

λ δ (Shift)
# 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

1.0 370.0 227.5 84.4 30.2 12.1 5.5 2.8 1.5 0.9
1.1 118.7 87.7 43.6 19.6 9.2 4.7 2.6 1.5 1.0
1.2 48.3 39.8 24.4 13.3 7.1 4.0 2.4 1.5 1.0
1.3 23.7 20.8 14.8 9.3 5.6 3.5 2.2 1.4 1.0
1.4 13.4 12.2 9.5 6.7 4.5 3.0 2.0 1.4 1.0
1.5 8.4 7.9 6.5 5.0 3.6 2.6 1.8 1.3 1.0
2.0 2.0 2.0 1.8 1.7 1.5 1.3 1.1 0.9 0.8
2.5 0.9 0.9 0.9 0.9 0.8 0.8 0.7 0.6 0.6

Although not starting from an ARL = 370.50, IT2TFN control charts showed an average
reduction by 0.31% and 0.33% in ARL and SDRL values, respectively, when compared to
values found using traditional control charts.

ARL values whose δ = 0.8 showed 1.37% lower values (on average) with respect to the
same δ value simulated in traditional control charts. Regarding λ, ARL values were found
when λ = 1.40 and showed 0.76% lower ARL considering the same λ value simulated in
traditional control charts, as shown in Table 3.

For SDRL, there is an average reduction by 2.13% considering δ = 1.6, but 0.98% in
SRDL when λ = 1.2 in comparison with traditional control charts. Such reductions in
ARL and SDRL demonstrate that IT2TFN X and R control charts are capable of detecting
out-of-control points more accurately than traditional control charts. Thus, the presently
proposed model has superior performance.

A rapid response is observed when the purpose of process monitoring is to detect de-
fects from a quality characteristic, which is a variable able to be obtained by a measurement
system in the case under study.

Regarding the behavior of RLs, [29] reports that ARL and SDRL values at every δ
and λ value should be close, since ARL and SDRL performance metrics are in accordance
with a geometric distribution. Figures 9 and 10 illustrate the values of ARL and SDRL as a
function of δ and λ, respectively. It is worth mentioning that they are quite similar in terms
of shape and numerical scale.
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Table 3. Simulated values of ARL and SDRL found for IT2TFN X and R control charts.

IT2TFN X-R Control Chart ARL

λ δ (Shift)
# 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

1.0 372.45 228.54 85.32 30.43 12.55 5.93 3.35 2.11 1.56
1.1 118.56 87.10 44.23 20.32 9.56 5.17 3.11 2.10 1.59
1.2 48.54 39.54 24.89 13.77 7.67 4.54 2.95 2.08 1.58
1.3 24.10 21.09 15.45 9.71 6.14 4.03 2.76 2.00 1.60
1.4 13.91 12.61 9.77 7.27 4.99 3.50 2.56 1.97 1.60
1.5 8.70 8.33 7.06 5.52 4.10 3.08 2.41 1.92 1.59
2.0 2.56 2.50 2.42 2.29 2.05 1.87 1.70 1.54 1.42
2.5 1.57 1.55 1.54 1.50 1.45 1.40 1.36 1.29 1.26

IT2TFN X-R Control Chart SDRL

λ δ (Shift)
# 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

1.0 371.141 226.537 84.860 29.844 12.081 5.298 2.807 1.515 0.942
1.1 119.090 85.087 43.340 19.960 9.167 4.605 2.551 1.528 0.972
1.2 47.318 39.034 24.456 13.138 7.122 3.997 2.400 1.491 0.964
1.3 23.366 20.641 14.992 9.222 5.628 3.549 2.208 1.407 0.968
1.4 13.220 12.266 9.299 6.628 4.510 3.012 1.981 1.397 0.987
1.5 8.180 7.808 6.506 4.924 3.534 2.526 1.880 1.346 0.964
2.0 2.042 1.975 1.879 1.735 1.482 1.296 1.094 0.910 0.774
2.5 0.938 0.938 0.918 0.869 0.827 0.742 0.697 0.614 0.576
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5.2. Run Length Percentile Analysis for X-R Control Charts

Table 4 presents the theoretical values of RL percentiles found for the traditional control
chart. It should be noted that the 50th percentile for the in-control situation, i.e., considering
δ = 0.0 and λ = 1.0, indicates that there is a false alarm within the first 257 samples, at least
half the time. The initial 5th percentile for δ = 0.0 and λ = 1.0 allowed evidencing early
false alarms. There is a 5% probability that there will be a first false alarm in less than
19 measurements.

Table 4. Theoretical values of RL Percentiles (5th, 25th, 50th, 75th and 95th) found for traditional X
and R control charts. The percentiles are divided into sub-tables.

5th

λ δ (Shift)

25th

λ δ (Shift)
# 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 # 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

1.0 19 12 5 2 1 1 1 1 1 1.0 107 66 25 9 4 2 1 1 1
1.1 7 5 3 2 1 1 1 1 1 1.1 35 26 13 6 3 2 1 1 1
1.2 3 3 2 1 1 1 1 1 1 1.2 14 12 8 4 3 2 1 1 1
1.3 2 2 1 1 1 1 1 1 1 1.3 7 6 5 3 2 2 1 1 1
1.4 1 1 1 1 1 1 1 1 1 1.4 4 4 3 2 2 1 1 1 1
1.5 1 1 1 1 1 1 1 1 1 1.5 3 3 2 2 2 1 1 1 1
2.0 1 1 1 1 1 1 1 1 1 2.0 1 1 1 1 1 1 1 1 1
2.5 1 1 1 1 1 1 1 1 1 2.5 1 1 1 1 1 1 1 1 1

50th
(MDRL)

λ δ (Shift)
# 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

1.0 257 158 59 21 9 4 2 2 1
1.1 83 61 31 14 7 4 2 2 1
1.2 34 28 17 10 5 3 2 2 1
1.3 17 15 11 7 4 3 2 2 1
1.4 10 9 7 5 4 3 2 1 1
1.5 6 6 5 4 3 2 2 1 1
2.0 2 2 2 2 2 1 1 1 1
2.5 1 1 1 1 1 1 1 1 1

75th

λ δ (Shift)

95th

λ δ (Shift)
# 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 # 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

1.0 513 316 117 42 17 8 4 3 2 1.0 1109 682 253 91 37 17 9 5 3
1.1 165 122 61 28 13 7 4 3 2 1.1 356 263 131 59 28 14 8 5 3
1.2 67 56 34 19 10 6 4 3 2 1.2 145 120 74 40 22 13 8 5 4
1.3 33 29 21 13 8 5 4 3 2 1.3 72 63 45 28 17 11 7 5 4
1.4 19 17 14 10 7 5 3 2 2 1.4 41 37 29 21 14 10 7 5 4
1.5 12 11 10 7 6 4 3 2 2 1.5 26 24 20 15 11 8 6 5 4
2.0 3 3 3 3 3 2 2 2 2 2.0 7 6 6 6 5 4 4 3 3
2.5 2 2 2 2 2 2 2 1 1 2.5 3 3 3 3 3 3 3 3 2

Table 5 presents the simulated values of RL percentiles found for IT2TFN control
charts. It should be noted that MDRL (50th percentile) considering a scenario which is
in control, i.e., δ = 0.0 and λ = 1.0, indicates that there is a false alarm within the first
260 samples at least half the time. The initial 5th percentile for δ = 0.0 and λ = 1.0 allowed
evidencing early false alarm. There is a 5% probability that there will be a first false alarm
in less than 20 measurements.

In contrast, it was observed that RL percentile values for IT2TFN X and R control
charts are quite similar to those found through traditional control charts. However, on an
overall average, small reductions in RL percentile values shown by the proposed charts
demonstrate a slightly greater propensity for false alarms.

For situations in which the process is in control, the proposed charts generally take
longer to reveal false alarms if compared to traditional control charts. Figure 11 illustrates
the 50th percentile, i.e., the MDRL.
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Table 5. Simulated values of RL Percentiles (5th, 25th, 50th, 75th and 95th) for IT2TFN X and R
control charts. The percentiles are divided into sub-tables.

5th

λ δ (Shift)

25th

λ δ (Shift)
# 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 # 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

1.0 20 13 5 2 1 1 1 1 1 1.0 107 67 25 9 4 2 1 1 1
1.1 7 5 3 2 1 1 1 1 1 1.1 34 26 13 6 3 2 1 1 1
1.2 3 2 2 1 1 1 1 1 1 1.2 15 12 8 4 3 2 1 1 1
1.3 2 2 1 1 1 1 1 1 1 1.3 7 6 5 3 2 2 1 1 1
1.4 1 1 1 1 1 1 1 1 1 1.4 4 4 3 3 2 1 1 1 1
1.5 1 1 1 1 1 1 1 1 1 1.5 3 3 2 2 2 1 1 1 1
2.0 1 1 1 1 1 1 1 1 1 2.0 1 1 1 1 1 1 1 1 1
2.5 1 1 1 1 1 1 1 1 1 2.5 1 1 1 1 1 1 1 1 1

50th
(MDRL)

λ δ (Shift)
# 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

1.0 260 160 59 21 9 4 2 2 1
1.1 82 61 31 14 7 4 2 2 1
1.2 34 27 17 10 5 3 2 2 1
1.3 17 15 11 7 4 3 2 2 1
1.4 10 9 7 5 4 3 2 1 1
1.5 6 6 5 4 3 2 2 1 1
2.0 2 2 2 2 2 1 1 1 1
2.5 1 1 1 1 1 1 1 1 1

75th

λ δ (Shift)

95th

λ δ (Shift)
# 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 # 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

1.0 517 317 118 42 17 8 4 3 2 1.0 1098 682 258 91 37 17 9 5 3
1.1 164 122 61 28 13 7 4 3 2 1.1 358 257 130 60 28 14 8 5 4
1.2 67 55 34 19 10 6 4 3 2 1.2 142 118 75 41 22 12.1 8 5 4
1.3 33 29 21 13 8 5 4 3 2 1.3 71 62 46 28 17 11 7 5 4
1.4 19 17 13 10 7 5 3 2 2 1.4 41 37 29 20 14 9 7 5 4
1.5 12 11 10 8 5 4 3 2 2 1.5 25 24 20 15 11 8 6 5 3
2.0 3 3 3 3 3 2 2 2 2 2.0 7 6 6 6 5 4 4 3 3
2.5 2 2 2 2 2 2 2 1 1 2.5 3 3 3 3 3 3 3 3 2
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Figure 11. Run length for the 50th percentile, highlighting the scenario in which the process is in
control (δ = 0.0 and λ = 1.0).

Thus, IT2TFN X and R control charts offer several overwhelming advantages over
traditional X and R control charts.

5.3. Illustrative Example

After the performance analysis, in order to understand how the proposed model can
be implemented in real processes, we use an illustrative example. Considering a process
whose mean is 0 and standard deviation is 1, 20 samples are randomly generated whose
sample subgroups have a size of 5. Using the control limit equations for the traditional X
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and R control charts, as can be seen in [18], we obtain: LCL = −1.477 and UCL = 1.480 for
X; and LCL = 0 and UCL = 5.417 for R. Table 6 shows the situation described, together with
the X and R parameters.

Table 6. Example for traditional X and R control charts (normal distribution, µ = 0.0 and σ = 1.0.

Sample
Number

Measures (Crisp Values) Variables
Decision

x1 x2 x3 x4 x5 x R

1 −0.547 −0.551 1.866 −0.418 −0.706 −0.071 2.572 In control
2 −0.382 0.075 −1.504 1.395 −0.152 −0.114 2.899 In control
3 0.694 −0.444 −1.559 1.975 −1.800 −0.227 3.776 In control
4 0.050 −0.520 −1.425 −0.194 0.721 −0.273 2.146 In control
5 1.368 0.014 −0.207 0.518 −1.400 0.059 2.769 In control
6 1.615 0.706 −0.783 −0.620 −1.980 −0.212 3.595 In control
7 −2.426 1.077 0.569 1.686 −0.859 0.009 4.112 In control
8 1.824 0.195 −0.659 −0.415 −0.581 0.073 2.483 In control
9 0.646 −0.241 −1.400 −1.045 1.090 −0.190 2.490 In control

10 1.101 −0.685 1.772 0.372 −0.337 0.445 2.457 In control
11 0.259 −2.005 1.247 1.204 0.223 0.186 3.252 In control
12 −0.104 −0.320 −0.968 −0.484 −0.337 −0.443 0.864 In control
13 −2.235 −0.614 0.234 0.991 −0.096 −0.344 3.226 In control
14 2.216 −0.527 −3.062 0.176 0.155 −0.208 5.278 In control
15 0.960 0.729 0.772 0.304 1.699 0.893 1.395 In control
16 −0.199 2.435 0.528 0.906 0.547 0.843 2.634 In control
17 1.416 −0.461 −0.244 0.202 −0.058 0.171 1.878 In control
18 1.633 −0.748 −0.642 −0.832 0.872 0.056 2.465 In control
19 0.064 0.758 −0.515 1.516 0.671 0.499 2.031 In control
20 0.292 −0.551 −0.362 0.309 0.449 0.027 1.000 In control

As can be seen in Table 6, all the samples are in control, which indicates that the
process is stable. Applying the proposed fuzzification method, considering the lower
and upper bounds L1 = L2 = 0.05, according to experts, FOU equals 0.30 and considering
H(ÃU) = H(ÃL) = 1. The crisp numbers obtained for the traditional X and R control
charts was used with xU

2 = xL
2 (center value) and is used as a basis for obtaining the

other interval type−2 fuzzy values. After the fuzzification process, as can be seen in
Figure 4, we calculate the sample means xIT2TFN =

(
xU

i1, xL
i1, xU

i2, xL
i3, xU

i3

)
and sample

ranges RIT2TFN =
(

RU
i1, RL

i1, RU
i2, RL

i3, RU
i3
)
, where i is the number of the measurements

obtained (Table 7).
In order to compare IT2TFN X and R control charts with the traditional control charts,

it is important that the fuzzified values of XIT2TFN and RIT2TFN are defuzzied, according to
Equations (18) and (19). The defuzzied XDTriT and RDTriT values are plotted in the control
charts. The fuzzified and defuzzied data can be seen in Table 8.

Since the values of
=
X = (0.033, 0.041, 0.059, 0.077, 0.084) and R = (2.617, 2.632, 2.666,

2.700, 2.715), and considering the variables A2 = 0.577, D3 = 0.000 and D4 = 2.114, it is
possible to calculate the defuzzied IT2TFN X and R control limits.

Based on the data presented in Table 8, one can calculate the control limits for the
IT2TFN X control chart using Equations (20)–(22). Similarly, to calculate the control limits
of the IT2TFN R control chart, we use Equations (23)–(25). The IT2TFN X and IT2TFN R
control charts are illustrated in Figures 12 and 13, respectively.
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Table 7. Fuzzified numbers of illustrative example on an interval type−2 triangular fuzzy number approach.

Sample
Number

x1 x2 x3 x4 x5

xU
11 xL

11 xU
12 xL

13 xU
13 xU

21 xL
21 xU

22 xL
23 xU

23 xU
31 xL

31 xU
32 xL

33 xU
33 xU

41 xL
41 xU

42 xL
43 xU

43 xU
51 xL

51 xU
52 xL

53 xU
53

1 −0.587 −0.575 −0.547 −0.526 −0.517 −0.566 −0.561 −0.551 −0.535 −0.528 1.838 1.846 1.866 1.890 1.900 −0.461 −0.448 −0.418 −0.391 −0.380 −0.736 −0.727 −0.706 −0.696 −0.692
2 −0.418 −0.407 −0.382 −0.349 −0.335 0.028 0.042 0.075 0.078 0.080 −1.534 −1.525 −1.504 −1.485 −1.477 1.346 1.361 1.395 1.406 1.411 −0.177 −0.170 −0.152 −0.144 −0.140
3 0.687 0.689 0.694 0.698 0.700 −0.466 −0.459 −0.444 −0.410 −0.395 −1.608 −1.593 −1.559 −1.556 −1.555 1.932 1.945 1.975 1.996 2.004 −1.817 −1.812 −1.800 −1.770 −1.758
4 0.008 0.021 0.050 0.079 0.091 −0.538 −0.532 −0.520 −0.488 −0.474 −1.428 −1.427 −1.425 −1.402 −1.392 −0.209 −0.204 −0.194 −0.167 −0.155 0.690 0.700 0.721 0.743 0.752
5 1.341 1.349 1.368 1.372 1.374 −0.025 −0.013 0.014 0.041 0.053 −0.241 −0.231 −0.207 −0.205 −0.204 0.482 0.493 0.518 0.537 0.545 −1.406 −1.404 −1.400 −1.377 −1.367
6 1.607 1.609 1.615 1.624 1.628 0.661 0.674 0.706 0.726 0.735 −0.822 −0.810 −0.783 −0.749 −0.734 −0.623 −0.622 −0.620 −0.599 −0.589 −1.989 −1.986 −1.980 −1.967 −1.961
7 −2.475 −2.460 −2.426 −2.409 −2.401 1.067 1.070 1.077 1.112 1.127 0.537 0.547 0.569 0.576 0.579 1.664 1.671 1.686 1.701 1.708 −0.866 −0.864 −0.859 −0.849 −0.845
8 1.810 1.815 1.824 1.840 1.847 0.165 0.174 0.195 0.218 0.229 −0.673 −0.669 −0.659 −0.631 −0.618 −0.441 −0.433 −0.415 −0.412 −0.410 −0.611 −0.602 −0.581 −0.567 −0.561
9 0.626 0.632 0.646 0.646 0.647 −0.249 −0.247 −0.241 −0.232 −0.228 −1.409 −1.406 −1.400 −1.395 −1.393 −1.046 −1.046 −1.045 −1.024 −1.015 1.087 1.088 1.090 1.113 1.122
10 1.100 1.100 1.101 1.120 1.128 −0.724 −0.712 −0.685 −0.681 −0.679 1.737 1.748 1.772 1.796 1.806 0.323 0.338 0.372 0.381 0.385 −0.350 −0.346 −0.337 −0.321 −0.315
11 0.236 0.243 0.259 0.270 0.275 −2.014 −2.011 −2.005 −1.982 −1.973 1.206 1.218 1.247 1.254 1.257 1.201 1.202 1.204 1.222 1.230 0.220 0.221 0.223 0.252 0.265
12 −0.111 −0.109 −0.104 −0.076 −0.064 −0.341 −0.335 −0.320 −0.308 −0.303 −1.018 −1.003 −0.968 −0.940 −0.927 −0.502 −0.497 −0.484 −0.468 −0.461 −0.354 −0.349 −0.337 −0.312 −0.302
13 −2.281 −2.267 −2.235 −2.203 −2.189 −0.662 −0.648 −0.614 −0.609 −0.607 0.197 0.208 0.234 0.265 0.279 0.973 0.979 0.991 1.006 1.012 −0.112 −0.107 −0.096 −0.088 −0.085
14 2.214 2.215 2.216 2.246 2.259 −0.569 −0.556 −0.527 −0.508 −0.501 −3.088 −3.080 −3.062 −3.061 −3.061 0.140 0.150 0.176 0.206 0.218 0.150 0.151 0.155 0.184 0.197
15 0.950 0.953 0.960 0.971 0.975 0.680 0.695 0.729 0.744 0.750 0.763 0.766 0.772 0.797 0.808 0.263 0.276 0.304 0.309 0.312 1.656 1.669 1.699 1.703 1.705
16 −0.244 −0.230 −0.199 −0.176 −0.166 2.389 2.403 2.435 2.444 2.447 0.499 0.508 0.528 0.538 0.543 0.878 0.886 0.906 0.913 0.917 0.524 0.531 0.547 0.576 0.589
17 1.401 1.405 1.416 1.450 1.465 −0.494 −0.484 −0.461 −0.439 −0.430 −0.286 −0.274 −0.244 −0.242 −0.242 0.160 0.172 0.202 0.217 0.223 −0.101 −0.088 −0.058 −0.032 −0.021
18 1.632 1.632 1.633 1.633 1.634 −0.780 −0.771 −0.748 −0.714 −0.699 −0.659 −0.654 −0.642 −0.622 −0.613 −0.844 −0.840 −0.832 −0.827 −0.825 0.855 0.860 0.872 0.896 0.906
19 0.015 0.030 0.064 0.098 0.113 0.740 0.745 0.758 0.774 0.781 −0.521 −0.519 −0.515 −0.490 −0.480 1.491 1.498 1.516 1.546 1.559 0.650 0.656 0.671 0.703 0.717
20 0.269 0.276 0.292 0.295 0.297 −0.575 −0.568 −0.551 −0.549 −0.548 −0.412 −0.397 −0.362 −0.352 −0.347 0.278 0.288 0.309 0.343 0.358 0.420 0.429 0.449 0.457 0.461
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Table 8. Fuzzified and defuzzied values of X and R from an illustrative example on an interval
type−2 triangular fuzzy number approach.

Sample
Number

Mean XIT2TFN Range RIT2TFN Defuzzified

XU
1 XL

1 XU
2 XL

3 XU
3 RU

1 RL
1 RU

2 RL
3 RU

3 XDTriT RDTriT

1 −0.102 −0.093 −0.071 −0.052 −0.043 2.529 2.542 2.572 2.617 2.636 −0.072 2.578
2 −0.151 −0.140 −0.114 −0.099 −0.092 2.822 2.846 2.899 2.931 2.945 −0.118 2.890
3 −0.254 −0.246 −0.227 −0.209 −0.201 3.690 3.715 3.776 3.808 3.821 −0.227 3.764
4 −0.295 −0.289 −0.273 −0.247 −0.235 2.082 2.101 2.146 2.170 2.180 −0.269 2.138
5 0.030 0.039 0.059 0.074 0.080 2.708 2.726 2.769 2.777 2.780 0.057 2.755
6 −0.233 −0.227 −0.212 −0.193 −0.184 3.568 3.576 3.595 3.610 3.617 −0.210 3.594
7 −0.014 −0.007 0.009 0.026 0.033 4.065 4.079 4.112 4.161 4.183 0.009 4.119
8 0.050 0.057 0.073 0.090 0.097 2.429 2.445 2.483 2.510 2.521 0.073 2.478
9 −0.198 −0.196 −0.190 −0.179 −0.174 2.480 2.483 2.490 2.519 2.531 −0.188 2.499

10 0.417 0.426 0.445 0.459 0.465 2.417 2.429 2.457 2.508 2.530 0.443 2.466
11 0.170 0.175 0.186 0.203 0.211 3.179 3.201 3.252 3.265 3.271 0.188 3.236
12 −0.465 −0.459 −0.443 −0.421 −0.411 0.816 0.830 0.864 0.927 0.954 −0.440 0.876
13 −0.377 −0.367 −0.344 −0.326 −0.318 3.162 3.181 3.226 3.273 3.293 −0.346 3.227
14 −0.231 −0.224 −0.208 −0.187 −0.177 5.275 5.276 5.278 5.327 5.347 −0.206 5.297
15 0.863 0.872 0.893 0.905 0.910 1.344 1.360 1.395 1.428 1.442 0.889 1.394
16 0.809 0.820 0.843 0.859 0.866 2.555 2.579 2.634 2.674 2.691 0.840 2.628
17 0.136 0.146 0.171 0.191 0.199 1.831 1.845 1.878 1.934 1.959 0.169 1.887
18 0.041 0.045 0.056 0.073 0.081 2.457 2.459 2.465 2.474 2.477 0.059 2.466
19 0.475 0.482 0.499 0.526 0.538 1.970 1.988 2.031 2.065 2.080 0.503 2.028
20 −0.004 0.006 0.027 0.039 0.044 0.968 0.978 1.000 1.025 1.035 0.023 1.001

The control limits illustrated in the IT2TFN X control chart (Figure 12) are: LCL = −1.479,
CL = 0.059 and UCL = 1.597. For the IT2TFN control chart R (Figure 13): LCL = 0.000,
CL = 2.666 and UCL = 5.716. In this case, the control limits can be considered valid be-
cause there are no out-of-control points, thus concluding phase I of statistical control and
beginning phase II, which is monitoring.
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Visually, the proposed control charts have the same appearance as traditional control
charts, which makes them easy to implement in industry. The illustrative example was
intended to demonstrate the application of the proposed model in such a way that it can be
extended to cases where the parameters are unknown. Although the construction of the
limits of the IT2TFN X and R control charts is more complex, the proposed model proves
to be more efficient in detecting defects and more flexible due to the fuzzy variables, can
increase response speed or reduce overshoots (false alarms) as required by the process.

6. Conclusions

This paper aimed at evaluating the performance of X and R control charts coupled with
an interval type-2 fuzzy approach. The present fuzzification and defuzzification methods
proved feasible to be implemented using real data. The choice of the L1 and L2 bounds,
as well as the FOU in the fuzzification process, allowed making the model more flexible
and robust, increase speed response, reduce overshoots and add further information than
traditional control charts.

Thus, IT2TFN X and R control charts have greater capacity to detect out-of-control
samples compared to traditional X and R control charts. ARL was 0.83% lower on average
and SDRL was 0.06% lower than traditional control charts when used in stable processes;
ARL and SDRL can be 1.37% lower and 1.79% lower in other process-instability cases.

Although values were very close, RL percentiles showed that the proposed control
charts tend to reveal fewer false alarms than traditional control charts in situations where
the process is in control. MDRL (50th percentile) shows that for δ = 0.0 and λ = 1.0, half
the time the false alarm is given for sample 260, while they are given slightly earlier in
traditional control charts for sample 257.

The illustrative example was able to demonstrate how the model can be applied
to any type of process and be visually identical to classic control charts, requiring no
specific knowledge of process monitoring. In addition, the model complexity is reduced
by applying IT2TFN and by the equations of control limits presented, which makes its
application feasible in various production systems.

As future research, it is suggested to evaluate the performance of X and S control
charts using interval type-2 fuzzy sets.
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