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Abstract: Due to the present trend in the wind industry to operate in deep seas, floating offshore
wind turbines (FOWTs) are an area of study that is expanding. FOWT platforms cause increased
structural movement, which can reduce the turbine’s power production and increase structural stress.
New FOWT control strategies are now required as a result. The gain-scheduled proportional-integral
(GSPI) controller, one of the most used control strategies, modifies the pitch angle of the blades in the
above-rated zone. However, this method necessitates considerable mathematical approximations to
calculate the control advantages. This study offers an improved GSPI controller (OGSPI) that uses
the grey wolf optimizer (GWO) optimization method to reduce platform motion while preserving
rated power output. The GWO chooses the controller’s ideal settings. The optimization objective
function incorporates decreasing the platform pitch movements, and the resulting value is used to
update the solutions. The effectiveness of the GWO in locating the best solutions has been evaluated
using new optimization methods. These algorithms include the COOT optimization algorithm, the
sine cosine algorithm (SCA), the African vultures optimization algorithm (AVOA), the Harris hawks
optimization (HHO), and the whale optimization algorithm (WOA). The final findings show that,
compared to those caused by the conventional GSPI, the suggested OGSPI may successfully minimize
platform motion by 50.48%.

Keywords: floating offshore wind turbines; metaheuristic optimization; grey wolf optimizer; pitch
control

1. Introduction

Offshore wind turbines (OWTs) are a profitable way to generate clean and sustainable
electricity. The availability of strong, steady, and low-turbulence offshore wind conditions
is one of the most significant advantages of OWTs [1]. Taking advantage of these advanta-
geous circumstances and overcoming the constraints associated with onshore installations
has piqued the curiosity of many, making the development of offshore wind farms an
enticing proposition. This insight is reflected in the increasing use of OWTs [2]. Currently,
most OWTs in operation are supported by fixed-bottom foundations such as monopiles,
jackets, and tripods. These structures normally suit shallow to intermediate water depths
(50 m). Their economic rewards, however, are low [3]. Using floating platforms, on the
other hand, enables the deployment of floating offshore wind turbines (FOWTs) to locations
further out at water. FOWTs positioned adequately in deep water benefit from a multi-
tude of advantages. These include utilizing more consistent wind conditions, minimizing
acoustic noise levels, and diminishing visual impact. In addition, FOWTs outperform their
onshore and fixed-bottom offshore equivalents. As a result, selective offshore wind turbine
deployment can minimize many of the issues associated with onshore wind turbines [4,5].
In addition, the economic returns are considerably better compared to the fixed bottom
types [6]. Several governments, including the European Union and the United Kingdom,
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have committed to decarbonizing their economy by 2050 [7]. Germany, France, the United
Kingdom, Denmark, and the Netherlands have all carried out a substantial amount of
research on deploying FOWTs inside their respective national seas [3]. These efforts con-
tributed to the creation and advancement of several FOWT projects. Some of them are now
in various stages of development or have already been commissioned.

Numerous FOWT designs have been put out, examined, and optimized in recent
years [8]. Each design has special mooring lines and supporting platform settings [9]. These
platforms are modeled after well-known floating support structures in the offshore oil
and gas sector, such as semi-submersibles, tension leg platforms (TLPs), and spar buoys.
Figure 1 depicts these platforms. However, the FOWT structure is exposed to several
factors associated with the floating platform that may affect its performance or damage its
structure [10,11]. For these reasons, a control system is required.
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The control system should maximize produced power when wind speeds are between
the cut-in and rated thresholds and maintain power at the rated value when wind speeds
exceed the rated threshold. However, a floating platform’s additional degrees of freedom
might cause undesired structural vibrations. These vibrations, notably platform pitch-
ing, enhance the swings in generator power output and exhaust the entire structure. To
regulate the WTs while attempting to limit these movements, linear control techniques
such as the GSPI controller [12], linear parameter varying (LPV), linear quadratic regulator
(LQR) [13], and feedforward control (FFC) [14] have been used. The National Renewable
Energy Laboratory (NREL) has suggested a reference open-source controller (ROSCO)
for a 15 MW IEA FOWT [15]. This controller regulates both torque and collective pitch
angles. Conversely, these controllers are based on linear models created by the OpenFAST
(Fatigue, Aerodynamics, Structures, and Turbulence) around an operational point reflecting
specific wind and wave conditions [16]. As a result, their performance is determined via
the linearization points chosen.

The problems caused by model nonlinearity and uncertainty are handled in this study
by using metaheuristic optimization algorithms. These algorithms benefit from considering
the system as a “black box”, which implies that the system’s increased complexity does
not inhibit its performance while calculating the appropriate GSPI controller parameters.
Comparing the OGSPI with the classical GSPI, the calculation method of the control gains of
the GSPI involves some simplifications and assumptions, which can decrease its efficiency.
This can be avoided by the optimization process when finding the optimal control gains that
satisfy the objective function. The design of the control parameters of the ROSCO controller
is similar to those used for the GSPI, so it has the same problems that can be solved
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when using the OGSPI. On the other hand, the LPV, LQR, and FFC controllers are mainly
designed based on the linearized model generated by the OpenFAST software. Therefore,
the controller performance is based on the chosen linearization points. Hence, these models
provide good performance close to a linearization point and weak performance further
away from it.

The key contributions of this work are:

• Proposed a self-tuning improved version of the GSPI that reduces platform movement
by more than 50%.

• Using the grey wolf optimizer (GWO) [17] algorithm intelligence, the OGSPI parame-
ters are obtained with low effort.

According to the principles of the “no-free lunch” hypothesis, the success of a meta-
heuristic optimizer cannot be anticipated [17]. As a result, various metaheuristic optimizers
are used in this study to compare their performance to that of the GWO. The used algo-
rithms for the comparison are Harris hawks optimization (HHO) [18], African vultures
optimization algorithm (AVOA) [19], COOT optimization algorithm [20], sine cosine algo-
rithm (SCA) [21], and whale optimization algorithm (WOA) [21]. Compared with GWO,
which uses the best three solutions to drive the optimization process, each of the previously
mentioned algorithms has several characteristics. AVOA uses the two best algorithm solu-
tions to represent the two groups of eagles stronger than the others. This makes a balance
between diversity and resonance. This AVOA is more flexible and has less computational
complexity, but it was not able to perform well when dealing with more complex problems.
Regarding the COOT algorithm, the optimization process is carried out by a lead group.
Multiple leading points will enhance the exploration ability with low computational efforts.
However, the accuracy of the guiding mechanism is relatively weak compared to other
algorithms. The SCA algorithm updates the candidate solutions based on the best-obtained
solution as the target point. The SCA algorithm’s search agents are able to diverge and
converge thanks to several random and adaptive factors. This can enhance its accuracy but
needs more calculation time. The HHO is a more advanced optimization algorithm that
controls the exploitation and exploration phases based on a transition factor. The authors
focused on enhancing exploration ability to converge to the optimal solution with the
lowest possible iterations. However, this requires more elapsed time per iteration, which
increases the total calculation time.

The remainder of this work is structured as follows: The system models employed
in this investigation, including the aerodynamic, mechanical, and electrical components,
are presented in Section 2. Section 3 depicts the suggested control system’s technique.
Section 4 shows the results of the co-simulation between MATLAB/Simulink and Open-
FAST. Section 5 of this study presents the conclusions.

2. System Modeling
2.1. Aerodynamic Model

The turbine blades gather aerodynamic (kinetic wind) power and convert it to mechan-
ical power by spinning the LSS. The captured aerodynamic power (Paer) may be obtained
as follows [22]:

Paer =
Cp(β, λ)

2
ρπR2V3 (1)

where V is the wind speed, Cp is the power coefficient, β inclination angle, λ tip–speed
ratio, R is the radius, and ρ (=1.225) is the air density. The aerodynamic torque (Taer) can be
expressed as a function of the aerodynamic power and the low-speed shaft (ωrot) as follows:

Taer =
Paer

ωrot
=

Cp(β, λ)

2λ
ρπR3V2 (2)

λ =
Rωrot

V
(3)
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where λ tip–speed ratio, R is the radius, ωrot is the low-speed shaft, and V is the wind speed.
The applied loads on the blades that may cause the deformation of the blades are neglected.

2.2. Mechanical Model

According to [23], the mechanical model for the wind turbine adopts a two-mass
arrangement, which includes the gearbox mass and the wind wheel mass. This two-mass
drivetrain model’s mathematical formulae are based on the principles of Newton’s second
law. The dynamics of the low-speed shaft may be stated as follows:

Jrot
dωrot

dt
= Taer − Tmec −ωrotDrot (4)

where Jrot is the turbine’s rotor shaft inertia, Drot is the rotor damping constant that expresses
the rotor torsional damper that helps in eliminating the vibrations (Nm/(rad/s)), and Tmec
is mechanical torque, which can be calculated as follows:

Tmec = ks
(
θrot − θgen

)
+ kd

(
ωrot −ωgen

)
= ksθr + kd

.
θr (5)

where ωgen is the generator speed, ks is the drivetrain stiffness constant, kd is the damping
constant, and θr is the angle between the turbine rotor and the generator rotor.

The generator dynamics can be presented as follows:

Jgen
dωgen

dt
=

Tmec

ηg
− Tem −ωgenDgen (6)

where Jger is the generator shaft inertia, Tem is electromagnetic torque, Dgen is the generator
self-damping coefficient, and ηg is the gear ratio. Neglecting all the damping and stiffness
factors, Equation (6) can be rewritten as follows:

Jgen
dωgen

dt
=

1
ηg

(
Taer − Jrot

dωrot

dt

)
− Tem =

1
ηg

(
Taer − Jrot

1
ηg

dωgen

dt

)
− Tem =

Taer

ηg
− Jtr

ηg2
dωgen

dt
− Tem (7)

(
Jgen +

Jrot

ηg2

)
dωgen

dt
=

Taero

ηg
− Tem (8)

2.3. Electric Model

The electrical equations of the stator and the rotor of PMSG in the direct–quadratic
(DQ) axes are written [24]:

vd = Rsid + Ld
did
dt
−ΩeLqiq (9)

vq = Rsiq + Lq
diq
dt

+ Ωe(ψs + Ldid) (10)

where Ld and Lq are the direct and quadratic inductance values, is the stator flux, Ωe is the
electrical speed that can be expressed as a function of θ or as a function of ωHSS and the
number of the poles of the machine (p). The mechanical equations of electromagnetic torque
where p is the number of poles on the machine, Ld and Lq are the direct and quadratic
inductance values, ψs is the stator flux, and Ωe is the electrical speed, which may be
represented as a function of ωgen.

The electromagnetic torque’s mechanical equations:

Tem =
3p
2
(
idiq
(

Ld − Lq
)
+ ψsiq

)
(11)
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3. The Control System

The controller’s primary goals are to maintain power production at the rated value
when wind speeds exceed the rated threshold and to maximize power generation when
wind speeds exceed the cut-in threshold. Figure 2 illustrates this operating approach.
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To manage the generated power, the generator torque has to be adjusted. The generator
requires six control zones to achieve this, as shown in Figure 2:

• Region 1: the generator speed is below the starting value (ωgen0), the generator torque
is zero, and no power is collected. Instead, the wind is utilized to speed the rotor
during the start-up process.

• Region 2: the generator torque is proportional to the square of the generator speed,
which is between the transitional generator speed between R12 and R2 (ωgen1) and
the transitional generator speed between R2 and R23 (ωgen2). The control technique
in this area should employ an MPPT method to optimize the produced power. The
torque expression can be expressed as follows:

Tem = kmpptωgen
2 (12)

• where kmppt is the MPPT gain.
• Region 12: when linear transit is provided between R1 and R12, the generator speed is

linearly limited between ωgen0 and ωgen1.

Tem = S1
(
ωgen −ωgen0

)
(13)

S1 =
kmpptωgen1

2

ωgen1 −ωgen0
(14)

• Region 3: because the power must be kept constant at the rated generator speed
(ωgenRated), the torque is inversely proportional to the generator speed.
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Tem =
Prated
ωgen

(15)

• where Prated is the rated generator power.
• Region 23: the generator speed is linearly limited to the tip –speed of rated power

between ωgen2 and ωgenRated.

Tem = S2
(
ωgen −ωgen2

)
(16)

S2 =
Prated/ωgenRated

ωgenRated −ωgen2
(17)

• Region 4: if the wind speed exceeds the cut-off value (ωcut off), the wind turbine is
deactivated in order to safeguard itself.

Concentrating on Region 3, when the power coefficient (Cp) changes with the blade
pitch angle (β), the wind turbine blades can achieve aerodynamic productivity. In actuality,
regulating the blade pitch angle in Region 3 for FOWTs has two unique purposes: reducing
floating platform movements and regulating power [25,26]. Most commercial FOWTs use a
typical PI controller to reduce the error between the rotor speed and the rated value [27].

3.1. PI Controller

The PI controller can generate the required pitch angle variations (∆βref) based on the
calculated kp and ki parameters and the error value between the reference power and the
measured reference. Based on the recommendation in ref. [28], the control gains can be
obtained as follows:

kp =
2ζωn JmecωgenRated

ηg2
(
− ∂Paer

∂β

) (18)

ki =
ωn

2 JmecωgenRated

ηg2
(
− ∂Paer

∂β

) (19)

where ωn is the natural frequency and ζ is the damping factor.

3.2. Gain-Scheduled PI (GSPI) Controller

Because of the nonlinearity of the wind turbines, the operating point is continually
shifting. Consequently, the rate performance cannot be satisfied by the current control
parameters, and a gain-scheduling correction is introduced to change the parameters per
the operating point. According to ref. [29], the PI gains alter linearly as the pitch angle
changes. As a result, the control equation may be expressed as follows:

∆βre f = GS(β)

(
kpe(t) + ki

∫
e(t)dt

)
(20)

GS(β) =
1

1 + β/βk
(21)

where βk is the pitch angle where the pitch angle sensitivity value doubles from the rated
operating point.

3.3. The Proposed Controller

Metaheuristic optimization techniques are frequently used to solve challenging opti-
mization problems like optimizing control parameters. Physical processes inspire these
algorithms, including evolution, swarm behavior, and natural occurrences. They thor-
oughly search the search space to find the finest or nearly ideal solution. The grey wolf
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optimizer (GWO) is a popular metaheuristic algorithm. The GWO algorithm simulates
gray wolves’ natural leadership structure and hunting mechanism [17]. The leadership
hierarchy is simulated using four sorts of grey wolves: alpha, beta, delta, and omega. In
addition, three key hunting processes are incorporated to optimize performance: seeking,
surrounding, and attacking prey. The mathematical model for each step can be represented
as follows:

3.3.1. Encircling Prey

PW(t + 1) = PP(t)− A·D(t) (22)

D(t) = |C·PP(t)− PW(t)| (23)

where PW is the wolves’ positions, PP is the prey’s position, t denotes the iterations, and A
and C are vectors that contain the adaptive control gains.

3.3.2. Hunting Prey

PW(t + 1) =
PW1(t) + PW2(t) + PW3(t)

3
(24)


PW1(t) = Pα(t)− A1·Dα(t)
PW2(t) = Pβ(t)− A2·Dβ(t)
PW3(t) = Pδ(t)− A3·Dδ(t)

(25)


Dα(t) = |C1·Pα(t)− PW(t)|
Dβ(t) =

∣∣C2·Pβ(t)− PW(t)
∣∣

Dδ(t) = |3·Pδ(t)− PW(t)|
(26)

Figure 3 illustrates the evolution of the agents (the wolves) in a bidirectional search
space as a function of the iterations.
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4. Results and Discussion

This study investigates the NREL 5MW ITI barge floating offshore wind turbine
(FOWT). The authors use a co-simulation strategy, integrating MATLAB/SIMULINK and
OpenFAST software to simulate all possible degrees of freedom (DOFs) in the system.
Figure 4 depicts an exemplary depiction of the simulation framework. OpenFAST com-
prises several sub-codes, each corresponding to a different wind turbine component and
interacting with different influencing forces. The operations of OpenFAST are primar-
ily regulated by the interaction of aerodynamic thrust and hydrodynamics caused by
marine waves.
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The FAST NREL 5MW baseline configuration with the ITI barge setup was used to
obtain aerodynamic and mechanical characteristics. The wind speed was constantly higher
than the turbine’s rated value of 13 m/s. The spectrum of the JONSWAP (Joint North Sea
Wave Observation Project) was also utilized to produce wave characteristics [30]. This spec-
trum is especially intriguing because it may reflect nonlinear interactions between waves
across extended timeframes and distances. The following is the computation procedure for
the JONSWAP spectrum:

Sj(2π f ) =
αg2

(2π)4 f 5
e
(− 5

4 (
f

fp
)
−4

)γb
(27)

b = e
(− 1

2σ2 (
f

fp
−1)

2
)

(28)

σ =

{
0.07 f f < fp
0.09 f f ≥ fp

(29)

where f is the wave frequency (Hz), α = 8.1 × 10−3, g is the gravity acceleration (=9.8 m/s2),
fp is the significant wave height ‘Hs’ peak frequency (Hz), and γ = 3.3. Table 1 shows the
FOWT settings and meteorological conditions that were employed. The wave curves are
illustrated in Figure 5.

The optimization approach in this research employs optimizers with a population size
of 20 agents and a maximum number of iterations for 20 iterations. The optimization cycle
of each algorithm was repeated five times to enhance the likelihood of obtaining optimal
results and to test the resilience of each approach.
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Table 1. Simulation parameters.

Parameter Symbol Value Unit

Turbine parameters (NREL 5MW ITI energy barge)
The radius of wind turbine R 63 m

Air density ρ 1.225 kg/m3

Optimal tip–speed ratio λopt 9.7
Wind turbine inertia moment Jtr 115,926 kg.m2

Maximum power coefficient Cpmax 0.465
Wind cut in speed Vcut_in 3 m/s
Wind rated speed Vrated 11.4 m/s

Wind cut out speed Vcut_out 25 m/s
Generator reference speed ωref 1173.7 rpm

MPPT gain kmppt 2.8805
Drivetrain parameters (NREL 5MW ITI energy barge)

Gearbox ratio n 97
Drivetrain torsional spring ks 8.67637 × 108 Nm/rad

Drivetrain torsional damper kd 6.215 × 106 Nm/(rad/s)
Environmental conditions

Significant wave height Hs 5 m
Peak frequency of the significant wave height fp 12.4 Hz

Wind speed Vw 13 m/s
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4.1. Simulation Results Comparison

Table 2 highlights the optimization technique’s statistical outputs, including the best,
worst, mean, and standard deviation (STD) findings. This table describes the results
obtained by each algorithm. The best result is the lower one, which indicates the best
performance of the corresponding set of parameters. The worst corresponds to the higher
fitness, meaning that the corresponding set of parameters performed worst. The mean value
expresses the average performance, and the standard deviation (STD) indicates the algo-
rithm’s robustness. All these indicators should be considered to evaluate the performance
of each algorithm. From these results, the following observations can be drawn:
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• GWO provided the best result (lower fitness value) of 169.964, outperforming all the
other algorithms, including HHO with a result of 169.976 and WOA with a result
of 170.341.

• The GWO algorithm showed good robustness, as demonstrated by a standard devi-
ation (STD) of 3.913. This is confirmed by the mean value (170.423) and max value
(171.035), which are close to the best result (169.964). The COOT also provided a good
STD indicator at 4.726. However, the mean value is relatively significant, meaning the
COOT is trapped in a local solution.

• The GWO provided the best motion reduction ratio (16.118), which approves its
contribution to finding the best parameters for reducing the platform motions.

• Compared to the best outcomes produced by each algorithm (except for the AVOA),
the total of the square platform motions acquired by the traditional GSPI approach is
203.170, which is much higher. These results clearly highlight a significant difference
between the classical GSPI method and the OGSPI provided by the metaheuristic
optimization algorithms.

Table 2. Statistical simulation results.

AVOA COOT HHO SCA WOA GWO

Best 174.860 171.984 169.976 172.982 170.341 169.964
Worst 303.036 183.337 219.602 224.354 235.826 171.035
Mean 220.961 175.095 180.612 187.261 184.147 170.423
STD 52.901 4.726 21.808 21.141 28.896 3.913

Best kp 0.0104767 0.0092126 0.0096815 0.0088913 0.0107274 0.0093141
Best ki 0.0176733 0.0166215 0.0176835 0.0153915 0.0197864 0.0171811
η (%) −8.757 13.818 11.10 7.8304 9.363 16.118

η is the motion reduction ratio that can be calculated as follows:

η = ( fGSPI − fmean)/ fGSPI (30)

where fGSPI is the sum of squared platform motions attained through the classical GSPI
controller and fmean is the mean of squared platform motions achieved by each optimizer to
assess its average performance.

Figure 6 depicts the fitness progression of several algorithms based on their mean
fitness values and convergence speed. This graph shows how the algorithms’ performance
varies through optimization cycles. When compared to the other methods, the GWO
algorithm has a quicker convergence curve from the curves. This means that the GWO
algorithm can arrive at optimal or near-optimal solutions quickly. The GWO algorithm
utilizes a three-point leading technique. These leading points will most likely guide the
algorithm’s search across the solution space.

4.2. Computational Complexity Analysis

The computational complexity of the methods utilized is investigated to compare
their performances. The algorithm’s time complexity quantifies how long the algorithm
takes to find the optimal solutions. Three parameters are set in the case of time complexity:
population size (Npop), search space dimensions (D), and number of iterations (Tmax). Table 3
displays the time complexity comparison results.

From this table, the degree of complexity mainly depends on the population size, the
search space dimension, and the maximum number of iterations. However, it can be noted
that the GWO required a large amount of computing time for its updating mechanism.
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Table 3. The time complexity of each algorithm.

Parameter Complexity for a
Single Iteration

Complexity for All
Iterations Elapsed Time (s)

AVOA O(Npop,D) O(Npop,D,Tmax) 298.44
COOT O(Npop,D) O(Npop,D,Tmax) 777.52
HHO O(Npop,D) O(Npop,D,Tmax) 2947.40
SCA O(Npop,D) O(Npop,D,Tmax) 1594.34

WOA O(Npop,D) O(Npop,D,Tmax) 1544.83
GWO O(Npop,D) O(Npop,D,Tmax) 1192.00

4.3. OGSPI vs. Classical GSPI

Figure 7 displays the acquired pitch angle in proportion to the wave elevation for
both the OGSPI and the GSPI techniques. The graph clearly shows the significant differ-
ence in pitch corrections made using the OGSPI and GSPI techniques. This comparison
demonstrates optimization’s significant effect on pitch angle accuracy.

Figure 8 depicts the power curves in relation to their influence on produced power. In
terms of electricity generation, these numbers support the distinction between the OGSPI
and the GSPI. The OGSPI improved power generation by providing 63.9496 kWh of energy
throughout the simulation duration, whereas the GSPI generated 63.1237 kWh under the
same conditions.

Regarding the platform motions, Figure 9 in the right displays the inclinations of the
platform using the GSPI controller for each axis: yaw, pitch, and roll. On the other hand,
Figure 9 in the left portrays the platform inclinations using the proposed OGSPI. From
these figures, it can be seen that the proposed OGSPI successfully decreased the floating
platform’s pitch angle. In addition, the roll has also been reduced. This confirms its ability
to handle the platform inclinations better.
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Figure 9. The platform inclinations using: (right)—GSPI; (left)—OGSPI.

Acting on the platform inclinations will lead to reducing the platform motions. The
motions of the platform center of gravity (surge (x), sway (y), and heave (z)) are illustrated
in Figure 8. Of these motions, sway stands out as particularly significant, as it reflects the
changes in the platform’s pitch. Based on these figures, the OGSPI method demonstrated a
notably improved reduction in platform motions compared to the GSPI approach. This is
apparent from the more confined range of variations in sway motions depicted in Figure 8.
Furthermore, a discernible reduction in the platform’s pitch angle can be observed in
Figure 10 providing clear evidence of GSPI’s superior capability in mitigating motions
compared to the conventional GSPI method.
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The above results prove the OGSPI-based RTH’s capability to increase power genera-
tion while decreasing platform movements. Reducing the platform motion will reduce the
applied loads on the WT body, reduce structure fatigue, increase the lifespan of the whole
structure, and reduce maintenance costs [31]. For this reason, it is necessary to reduce
these motions. In addition, these motions can lead to fluctuation in the output power,
consequently affecting the electrical efficiency of the WT. This can be mitigated when these
motions are attenuated.

5. Conclusions

The efficiency of floating offshore wind turbines (FOWTs) is substantially impacted by
platform vibrations, making platform motion stabilization a vital problem for enhancing
their performance. The technique of addressing this issue using gain-scheduled propor-
tional integrator (GSPI) control has received much attention. Nonetheless, this strategy
necessitates significant calculations and depends on assumptions, limiting its usefulness.
An optimum GSPI (OGSPI) technique can be used to improve performance. This entails us-
ing metaheuristic optimization methods to set control parameters, which results in higher
performance efficiency for platform movements and power generation. Because of its
unique search method, the grey wolf optimizer (GWO) was utilized in this investigation.
Its efficiency was confirmed by comparing its performance to other metaheuristic optimiza-
tion techniques. The simulation results show that the proposed method reduces platform
motion while increasing produced power when compared to the classical GSPI, with the
sum square of platform motions reduced from 203.170 using the GSPI to 169.964 using
the OGSPI via a reduction ratio of 16.118%. However, the electricity produced increased
from 63.1237 kWh to 63.9496 kWh in 50 s. In addition, the final findings show that, com-
pared to those caused by the conventional GSPI, the suggested OGSPI may successfully
minimize platform motion by 50.48%. However, the proposed controller is based on the
GWO. According to the no-free-lunch theory, better control gains may be obtained using
other metaheuristic optimization algorithms. On the other hand, the proposed method
obtained the gains via an offline optimization process. An online adaptation may provide
better performance, but its implementation complexity will increase. Moreover, unlike
GSPI, OGSPI is sensitive to platform type. Therefore, OGSPI parameters are designed for
each type separately and cannot be applied to all types of platforms.
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