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Abstract: Trucking is an important production link in most open-pit mines, and its transportation cost
accounts for more than 50% of the total production cost of open-pit mines. The quality of the driver’s
driving behavior plays a crucial role in the fine control of the production cost of transportation.
Different from the previous evaluation studies of drivers’ driving behavior in open-pit mines, which
mainly took safety driving behavior index as a factor variable, this paper puts forward a compre-
hensive evaluation method of driving behavior of mining truck drivers, which takes both safety
driving and transportation cost as factor variables. Taking the mining truck as the research object,
firstly, a scientific and reasonable data collection scheme is established, and the data information
characterizing the transport state of the mining truck is obtained through data collection and analy-
sis. Secondly, the RKNN algorithm of time series prediction and the wavelet analysis method are
used to achieve noise reduction and missing processing of the original data so as to obtain accurate
sample data. Then, taking the principal component analysis method as the entry point, through
constructing the principal component analysis theory model, the key index system representing safe
driving behavior and transportation cost is established to realize the comprehensive evaluation of the
driving behavior of mining truck drivers, and the evaluation system of “standard driving”, “prudent
driving” and “aggressive driving” of mining truck drivers is formulated. The results show that
after noise reduction, the accuracy of mining car operation data can be improved by 7~12%, and the
transportation cost can be reduced by about 5% after the driver’s operation behavior is standardized.

Keywords: open-pit mine; mining truck; driving behavior evaluation; principal component analysis

1. Introduction

Currently, as a subversive innovative technology, intelligence has become the core
driving force for the revolution of basic industries worldwide [1]. By adopting intelligent
and new technology, developing and utilizing mining information resources, optimizing the
whole process of mining activities, and improving the management level and technology
level of the mining industry, the Chinese mining industry can be promoted to the long-term
goal of safety, high efficiency, economy, green, and sustainable development [2,3]. In the
process of open-pit mining, the transportation link is an essential production link in the
process of open-pit mining, and truck transportation is the main mode of transportation in
most domestic open-pit mines [4]. In the production cost of an open-pit mine, the truck
transportation cost accounts for more than 50% of the total production cost, and the truck
fuel consumption cost is the main component of the truck transportation cost, and the fuel
consumption cost accounts for 50~70% of the transportation cost [5]. With the continuous
advancement of intelligent construction of open-pit mines, refined control of truck fuel
consumption has attracted more and more attention from the industry. In recent years, with
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the continuous popularization of sensor technology, positioning technology, and Internet
of Things technology, it has brought new opportunities and challenges for refined control
of the fuel consumption of trucks used in open-pit mines.

With the increasingly tight global energy supply, optimizing the performance of truck
transportation and improving the technical level of the driver’s operation so as to reduce
the energy consumption of trucks and improve the economic level of production have
become the focus of the industry. In terms of truck performance optimization, Martyushev,
N.V. [6] established a mathematical simulation model of an electric vehicle traction battery
and studied the dynamic charge and discharge modes of a heavy-duty electric vehicle
traction battery under urban cycle conditions and driving conditions outside the city. Wang
G [7] studied the suspension structure characteristics of mining trucks under different
operating conditions and determined the damping characteristics of the suspension system
during loading. Wenying Li [8] conducted an in-depth analysis of the truck structure design
process, performance index setting, performance development process, etc. Hongliang
Li [9] established an energy management strategy based on dynamic programming to
study the fuel economy of hybrid mining trucks. Jorge Hurel [10] modeled the McPherson
suspension for a quarter of the vehicle model and optimized the transient response relation-
ship of truck spring acceleration. In terms of the research on the driving behavior of truck
drivers, Ningli Wu [11] analyzed and studied the driving style of conventional highway
transport trucks and proposed a truck fuel consumption prediction model. Jiangsu Zhu [12]
established a driving behavior model of truck drivers based on multiple regression analysis
and obtained significant characteristic parameters that are strongly related to truck fuel
consumption. Zarkadoula M [13] conducted a pilot program of ecological driving, and the
results showed that when drivers adopted ecological driving strategies, fuel consumption
could be saved by 4.35%. Kropiwnicki J [14] determined the direct dynamic response
relationship between truck travel time and vehicle energy consumption.

However, in the production process of open-pit mines, the trucking link is relatively
extensive, especially in terms of drivers’ driving behavior. According to incomplete statis-
tics, the fuel consumption of good and bad drivers during transportation can vary by up
to 15% [15]. With the continuous extension of the stope to the deep, the transportation
environment becomes more and more complex, and the poor driving behavior of drivers
directly or indirectly leads to the gradual reduction of single bucket-truck discontinuous
mining system advantages and the gradual increase of production costs. In addition, unsafe
behaviors that drivers may have in the process of driving also lead to the enhancement of
safety risks in the transportation link, which restricts the long-term development goal of an
open-pit mine.

In view of this, under the premise of ensuring transportation safety in open-pit mines,
in order to minimize transportation production costs and optimize driving behaviors of
mining truck drivers, a comprehensive evaluation method of driving behaviors of mining
truck drivers, which takes both safe driving and transportation costs as indicators as factor
variables, is proposed. In the process of research, firstly, a scientific and reasonable data
collection scheme is developed by taking some operation parameters of mining trucks as
the collection object. Secondly, the RKNN (the KNN algorithm is an improved algorithm)
algorithm of time series prediction and the wavelet analysis method are used as data analy-
sis methods, and the original data is processed scientifically. Then, through the construction
of the principal component analysis theory model, the key index system representing safe
driving behavior and transportation cost is established to realize the automatic evaluation
and scientific assessment of the driving behavior of mining truck drivers, and the evalua-
tion system of “standard driving”, “prudent driving”, and “aggressive driving” of mining
truck drivers is proposed and formulated. Finally, the fine management of production costs
in the transportation link of an open-pit mine is promoted.
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2. Methods and Steps
2.1. Engineering Background

The single bucket-truck discontinuous mining system has become the mainstream
mining process in Chinese open-pit mines due to its many advantages, such as flexibility,
strong adaptability, and large production capacity [16,17]. However, with the gradual
extension of the stope to the deep, the geological conditions become more complex, resulting
in an increasingly harsh environment for truck transportation and a continuous increase
in transportation costs, thus gradually reducing the advantages of the single bucket-truck
discontinuous mining system [18]. According to incomplete statistics at the open-pit mine
site, different driving behaviors of truck drivers can result in fuel consumption differences
of up to 15% while driving the same truck under the same road conditions. Considering
that optimizing truck transportation costs can play a decisive role in reducing the overall
production cost of an open-pit mine (taking the production cost ratio of an open-pit mine
as an example, each cost situation is shown in Figure 1). Therefore, this paper takes an
open-pit mine in China as the research object and, based on the collected mining truck
running state data, studies and analyzes the dynamic variation rule between truck drivers’
driving behavior and truck running fuel consumption. Then, combined with the key
characteristic indexes of truck drivers’ driving behavior, the optimal driving behavior
of mining truck drivers under different working conditions and different transportation
conditions is determined, which provides a scientific basis for reducing the transportation
cost of open-pit mines and improving the transportation safety of open-pit mines.
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Figure 1. Schematic diagram of the production cost ratio of an open-pit mine. (a) Open-pit mine
production links. (b) Open-pit mine transportation link.

2.2. Data Collection Method
2.2.1. Analysis of the Whole Process of Mining Truck Transportation

In the link of mining truck transportation in an open-pit mine, the purpose of the
mining truck is mainly to transport the loose materials covered by the upper part of the ore
body and loose ore body to the designated area so as to collect the ore body and process
and utilize the ore body later. According to the analysis of the link between mining truck
transportation and open-pit mines, the whole process of mining truck transportation can
be divided into the following parts (taking mining truck transportation of loose rocks as an
example, as shown in Figure 2).
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Figure 2. A schematic diagram of the whole process of mining truck transportation.

(1) Truck loading stage: the open-pit mine uses electric shovels or other excavators to
load loose rocks into mining trucks;

(2) Truck bunching stage: a certain number of mining trucks are marshalled in an
open-pit mine to serve different loading equipment;

(3) Heavy-duty transporting stage: After the loose rocks are transported to the desig-
nated area by mining trucks, the loose rocks are unloaded;

(4) No-load returning stage: After unloading all loose rocks, mining trucks start to
return along the transport route;

(5) Truck queuing stage: mining trucks are transported to the loading area and queued
up for loading equipment;

(6) Truck spotting stage: the mining truck enters the loading area and adjusts its
attitude according to the spatial position of the loading equipment.

2.2.2. Design of the Data Acquisition Scheme

In order to accurately grasp the running state of mining trucks, the dynamic change
law between the driving behavior of truck drivers and the fuel consumption of trucks was
studied and determined. Data collected in this paper include spatial position data (error
up to sub-meter level), fuel consumption data (error less than 0.5%, sampling frequency
1 Hz, accuracy up to mL level), vehicle body vibration data, driver pedal (accelerator,
brake) opening data (sampling frequency up to 10 Hz), environmental meteorological data,
carriage loading information, etc. The equipment layout scheme is shown in Figure 3.
Where, 1 # represents the pedal; 2 # represents the top of the cockpit; 3 # represents the
interior of the cockpit; 4 # represents the vehicle body skeleton; 5 # represents the hydraulic
lifting device; 6 # represents the lower part of the carriage.
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Among them, position 1 mainly collects the angle data of the driver’s pedal (accelerator
and brake), and the selected equipment is the inclination sensor. Position 2 position mainly
collects environmental meteorological data (temperature, humidity, and wind speed) and
spatial location data. The selected equipment is an environmental meteorological sensor
and a positioning sensor. Position 3 is a data analysis and storage module that mainly
analyzes, processes, and stores various data indicators. Position 4 mainly collects fuel
consumption data; the selected equipment is a fuel consumption sensor. Positions 5 and 6
mainly collect the vibration data of the car body and the state information of the carriage.
The selected equipment is a vibration sensor.

2.3. Data Sample Processing Method

In the process of data collection, considering the complexity of the open-pit mine stope
transportation environment, weak signals in local areas, and the large size of the mining
truck leading to large seismic activity during the driving process, the massive data indexes
collected by sensors may contain noise data, missing data, and redundant data [19,20].
Therefore, in order to minimize the deviation of data anomalies resulting in subsequent
data analysis, this paper first needs to analyze and preprocess abnormal data before data
analysis and data mining.

2.3.1. Data Missing Processing Method Based on the RKNN Algorithm

Affected by multiple factors such as the complexity of the transportation environment,
signal weakness, and strong seismic activity of the vehicle body, it is easy to cause the loss
of multiple variable values of truck running state data in the process of data acquisition
by multiple sensors; that is, at least two or more indicators in multiple groups of data are
missing. The data missing in the multivariable missing mode is shown in matrix X.

X =


x11 x12 ∗ · · · x1n−1 x1n
x21 ∗ x23 · · · ∗ ∗
∗ x32 ∗ · · · x3n−1 x3n
· · · · · · · · · · · · · · · · · ·
∗ xm2 xm3 · · · ∗ xmn

 (1)

where * represents the missing item of the variable; am n represents the data variable index;
n represents the variable type; and m represents the sample size of the variable.

In a comprehensive consideration of the causes of missing data in mining truck
running state prediction data, combined with the types of missing data information, this
paper uses the RKNN algorithm to fill in the truck running state data, so as to increase the
number of data samples and improve scientific support for subsequent data mining and
analysis. The KNN (K-Nearest Neighbor) algorithm is one of the classical machine learning
algorithms, and RKNN is a KNN [21,22] algorithm with an improved reduced association
coefficient, which has many advantages such as simple principles and convenient operation.
The main idea of the data filling algorithm is to regard the samples with missing data as
the samples to be tested, and then select the K data closest to the missing sample data from
the data set. Finally, the missing data is analyzed and processed according to the mean
or mode of the K data, and the missing data index is determined. The specific calculation
formula can be expressed as:

aij =

√
n

∑
k=1

(xik − xik)
2 (2)

where aij represents the Euclidean distance from sample i to sample j and xik represents the
data of sample i in the k-dimension.

The specific process of data filling by the RKNN algorithm can be divided into the
following parts [23,24]:
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Step 1: Firstly, the relevant data missing in the running state of the mining truck are
pre-filled. If the missing data is continuous data, the average value is used to complete it. If
the missing data is discrete data, the mode is used to complete it.

Step 2: Normalize all sample data to eliminate the impact of the data structure caused
by dimensional problems.

Step 3: Formulas (3) and (4) were used to calculate the reduced correlation coefficient
between the data to be filled and other samples.

RRC(xiq, xjq) =
ρMax∇q

{∣∣Xiq −minq
∣∣, ∣∣Xiq −maxq

∣∣}∣∣Xiq − Xjq
∣∣+ ρMax∇q

{∣∣Xiq −minq
∣∣, ∣∣Xiq −maxq

∣∣} (3)

RRG(xi, xj) =
1
m

m

∑
q=1

RRC(xiq, xjq) (4)

where RRC(xiq, xjq) represents the reduced correlation coefficient between sample i and
sample j under index q; xiq and xjq represent the value of index q in the ith sample and
the value of index q in the j sample, respectively; and RRC(xi, xj) represents the reduced
correlation coefficient between sample i and sample j.

Step 4: Order the determined reduced correlation coefficient from large to small and
select K data samples that have been filled as reference data;

Step 5: Determine the type of missing data. For discrete data, mode is used to fill in,
while for continuous data, mean value is used to fill in. Specific expressions are shown in
Formulas (5) and (6).

ŷik =
k

∑
k=1

wikxik (5)

wik = RRG(xi, xk)/
k

∑
k=1

RRG(xi, xk) (6)

where wik represents the weight of the k adjacent sample with filling sample i.
After analyzing and processing the sample data using the time series prediction

method, the sample number has significantly increased. Finally, after the successful im-
plementation of the data acquisition scheme, six kinds of data information related to truck
operation, such as elevation, speed, driving distance, instantaneous diesel consumption, cu-
mulative diesel consumption, and diesel consumption during driving, can be collected (the
environment-related parameter data mainly plays an auxiliary role in analysis). Taking the
single transportation process of an open-pit mining truck as an example, a total of 837 sets
of single factor variable data were obtained through the data acquisition device, and a total
of 5859 sets of sample data were obtained, among which 856 sets of data were missing in
the 5859 sets of data, and the collection accuracy was only 85.3%. After processing by the
RKNN algorithm, the data sample size can reach about 5460, and the accuracy is increased
by 7.9% (due to the limitation of the research space, the specific operation process will not
be described). The running status data of some mining trucks are shown in Table 1.

Among them, X1 represents the elevation; X2 represents the traveling speed, m/s; X3
represents the distance traveled, m; X4 represents the instantaneous diesel consumption,
L/s; X5 represents the cumulative diesel consumption, L; and X6 represents the diesel
consumption during driving, L.

2.3.2. Data Denoising Processing Method Based on the Wavelet Analysis Method

Based on the RKNN algorithm, this paper realizes the filling of missing data in the
sample data and improves the number of samples. In order to improve the accuracy
of sample data and reduce the deviation of subsequent data analysis caused by noisy
data as far as possible, this paper needs to further carry out noise reduction analysis
and preprocessing of noisy data. Considering data noise types and data noise reduction
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methods comprehensively, this paper adopts the wavelet transform method to realize noise
reduction processing of sample data on mining truck running state [25].

Table 1. Running state data for some mining trucks.

Position X1 X2 X3 X4 X5 X6 ···
1 1222 3.95 7.9 0.068 78.23 15.62 ···
2 1222 4.06 16 0.065 78.34 15.73 ···
3 1222 3.81 23.6 0.070 78.44 15.74 ···
4 1221 3.95 31.5 0.060 78.55 15.85 ···
5 1221 3.87 39.2 0.057 78.53 15.96 ···
6 1220 3.84 46.9 0.040 78.62 15.94 ···
7 1220 3.73 54.3 0.052 78.76 16.25 ···
8 1219 3.90 62.1 0.046 78.75 16.16 ···
9 1219 4.00 70.1 0.053 78.86 16.25 ···

10 1218 4.14 78.4 0.068 78.97 16.24 ···
11 1219 4.17 86.7 0.052 78.95 16.33 ···
12 1218 4.23 95.2 0.047 79.23 16.42 ···
··· ··· ··· ··· ··· ··· ··· ···

According to the characteristics of mining truck running state data signal and noise
at different scales, wavelet analysis can be processed to realize weak signal detection and
enhance the signal-to-noise ratio, respectively, so as to complete the separation of real
signal and noise [26]. The wavelet transform can effectively describe signal characteristics,
so the use of wavelet noise reduction technology can not only remove the noise to the
maximum extent but also ensure that the signal, after noise reduction, maintains the
original characteristics.

The basic idea of a wavelet transform is to transform the signal f (t) by using the
wavelet basis function ψ(t) [27]. For any signal f (t)∈L2(R), its continuous wavelet transform
can be expressed as:

W f (a, b) =
1√
a

∫ +∞

−∞
f (t)ψ

(
t− b

a

)
dt, (a, b ∈ R, a 6= 0) (7)

Data reconstruction can be expressed as:

f (t) =
1

Cψ

∫ +∞

−∞

∫ +∞

−∞
W f (a, b)ψ

(
t− b

a

)
dadb (8)

where a represents the scale parameter of data transformation, b represents the data trans-
formation translation parameter, and Cψ represents the wavelet transform coefficient.

The processing process of mining truck running state data signal denoising based on
the wavelet analysis method is as follows:

(1) Signal multi-scale decomposition
The N-layer wavelet decomposition of mining truck running state data is carried out

by choosing a wavelet function. That is, FN−M and gj can be determined by known fN,
where j = N − 1, N − 2,···, N −M.

fN = gN−1 + gN−2 + · · ·+ gN−M + fN−M (9)

where fi∈Vj, gj∈Wj, fN are f∈L2(R). The decomposition formula can be expressed as:
cj+1(n) = ∑

k∈Z
h(k− 2n)cj(k)

dj+1(n) = ∑
k∈Z

g(k− 2n)dj(k)
(10)
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where j represents the number of original signal decomposition layers; n represents the
number of original signal sampling points; and h and g represent the orthogonal filter bank.

(2) The selection of the wavelet threshold
The signal noise of truck running state data is unknown, so it needs to be estimated.

Considering the GCV (Generalized Cross Validation) method only through the data input
and data output to determine the threshold value, it has nothing to do with noise ability or
the real data. Therefore, the GCV method is adopted in this paper to determine the noise
reduction threshold. The GCV expression is as follows:

GCV(δ) =
‖W −Wδ‖2

N(N0/N)2 (11)

where N represents the number of wavelet coefficients, N0 represents the number of wavelet
coefficients 0, W represents the wavelet coefficient of the signal input polluted by noise,
and Wδ represents the wavelet coefficient after threshold processing.

Then the optimal threshold can be expressed as:

T = argminGCV(δ) (12)

(3) Wavelet reconstruction process
Contrary to signal decomposition, wavelet reconstruction solves fN with known gj and

FN−M, and the relevant expression is as follows: ckj = ∑
l

[
pk−2lcl,j−1 + qk−2ldl,j−1

]
cj =

{
ckj

}
∈ l2

(13)

where p(z) and q(z) represent the corresponding scale functions.
In order to improve the data accuracy and verify the reliability of the wavelet analysis

method, this paper takes the measured mining truck running state data as an example for
data noise reduction. Considering the wavelet transform basis function, the DB5 wavelet is
orthogonal, tightly supported, an approximately symmetric wavelet, with a linear phase,
good smoothness, simple calculation, and many other advantages. In this paper, the DB5
wavelet is used to reduce the noise of the mining truck running state data signal. Through
multi-scale decomposition, wavelet threshold selection, and wavelet reconstruction of
data signals, real data can be obtained to characterize the running state information of
mining trucks. After wavelet analysis of 5260 sets of sample data processed by the RKNN
algorithm, the data accuracy is expected to increase by 10.3% after comparison and analysis
with the original data. Taking the result of some data noise reduction processing as an
example, the results are shown in Figures 4 and 5.

2.4. Evaluation Method of Driving Behavior of Mining Truck Drivers

The evaluation of drivers’ driving behavior is the most basic performance evalua-
tion method, aiming at the safety, economy, and efficient production of open-pit mine
transportation links. The key to the scientific and rationality of performance evaluation
lies in the selection of the mining truck driving behavior evaluation method. With the
deepening research on driver’s driving behavior evaluation in the process of conventional
highway transportation, a large number of scholars have carried out a lot of research and
discussion on the basic theory and application practice of the driver’s driving behavior
evaluation method. However, considering that the transport road of an open-pit mine is
in the process of constant dynamic change with the advance of stope and the transport
road construction is formed by rolling sand, stone, loess, and other materials, the road
quality may be damaged at any time due to the rolling of equipment, thus leading to the
uncertainty regarding road location and quality of open-pit mines. Therefore, limited by the
uncertainties of transportation roads, there are few studies investigating the driving behav-
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ior of mining truck drivers in open-pit mines. In addition, in the process of evaluating the
driving behavior of mining truck drivers in an open-pit mine, there are many long-existing
problems that cannot be solved effectively, such as insufficient driving information of trucks,
serious lack of driving operation information of drivers, a complex and changeable layout
of the development transportation system, etc. Although technicians and truck drivers
collect and record some relevant information in the production process, the accuracy and
effectiveness of the information cannot be guaranteed due to the roughness and delay of the
recording. At the same time, there are significant differences in the comprehensive quality
and experience of different technical personnel, which makes it difficult for management
decision-makers to obtain accurate and effective data information and make scientific and
reasonable evaluations of the performance appraisals of mining truck drivers.

Therefore, by combining and analyzing previous studies, this paper proposes a method
to evaluate mining truck drivers’ driving behavior based on the principal component
analysis method, so as to provide reliable support for the evaluation and evaluation of
mining truck drivers’ driving behavior and improve the automation and information level
of production management in an open-pit mine.
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Figure 4. Part data before and after noise reduction of running speed and position of truck No. 1.
(a) Partial running speed data of truck No. 1. (b) Partial operation location data of truck No. 1.
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Figure 5. Part data before and after noise reduction of running speed and position of truck No. 2.
(a). Partial running speed data of truck No. 2. (b). Partial operation location data of truck No. 2.

2.4.1. Principles of Principal Component Analysis

Based on mathematical theory, principal component analysis recombines and classifies
a large number of relevant indicators (assuming a total of p indicators) to form a comprehen-
sive index Fm with limited numbers and no correlation to replace the original index [28,29].
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The purpose of the extraction of comprehensive indicators is to not only ensure that the
new indicators remain irrelevant to each other (information does not overlap), but also to
make them reflect the information represented by the original variable Xp to the greatest
extent. The specific operation process is as follows [30]:

First of all, it is assumed that there are n samples of data information related to mining
truck drivers collected in the research, and each sample involves p index variables to form
an n × p order data matrix:

X =


x11 x12 · · · x1p
x21 x22 · · · x2p

...
... · · ·

...
xn1 xn2 · · · xnp

 (14)

Secondly, F1 is set as the first principal component index formed by linear combination
in the original variable, namely F1 = a11x1 +va12x2 +···+ a1pxp. Then, the information
extracted by principal component F1 is effectively measured by variance. If the variance
Var(F1) is positively correlated with the information contained in it, the larger the variance,
the more information, and the more favorable it will be for the research and analysis of
truck drivers’ driving behavior.

Finally, in the process of analysis, if the original p indicates incomplete information
for the first principal component, then there is a need to further select the second principal
component index F2; and the index of F1 and F2 are two indicators that are independent
of each other and have no relevance, namely covariance Cor (F1, F2) = 0. On this basis, F1,
F2,···, Fm are gradually constructed as the main components of the original variable index
x1, x2, ···, xp. 

F1 = a11x1 + a12x2 + . . . a1pxp
F2 = a21x1 + a22x2 + . . . a2pxp
· · ·
Fm = am1x1 + am2x2 + . . . ampxp

(15)

2.4.2. Calculation Procedure for Principal Component Analysis

Principal component analysis is based on the idea of dimensionality reduction, which
gradually converts diversified indicators into a small number of comprehensive indicators,
namely corresponding principal components. Each principal component can accurately
and intuitively reflect most of the information on the condition that the information is
not repeated [31,32]. This method can greatly eliminate the interference of human factors
and ensure the objectivity, scientific accuracy, and effectiveness of the evaluation process
and results. It is suitable for the evaluation system with closely related and systematic
evaluation indicators. The specific analysis process is as follows [33]:

(1) Step 1: original data standardization processing
It is assumed that there are m index variables that can characterize the driving behavior

of mining truck drivers, namely x1, x2,···, xm. There are n evaluation objects in total, and the
value of the j index of the ith evaluation object is xij. Will each acquire xij into a standardized

index
∼
xij relation can be expressed as:

x̃ij =
xij − xj

sj
, (i = 1, 2, · · · , n; j = 1, 2, · · · , m) (16)

Among them, xj =, 1
n

n
∑

i=1
xij, sj =

√
1

n−1

n
∑

i=1

(
xij − xj

)2, (j = 1, 2, · · · , m), and xj,sj, indi-

cate for the first j, the index, the sample mean, and the standard deviation, respectively.
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(2) Step 2: Obtain the correlation coefficient matrix R
After standardizing the index data representing the driving behavior of mining truck

drivers, it is necessary to further calculate and obtain the correlation coefficient matrix R,
whose relationship can be expressed as:

R =
(
rij
)

m×m (17)

Among them, rij =

n
∑

k=1
x̃ki×x̃kj

n−1 , (i, j = 1, 2, · · · , m), rii = 1, rij = rji, and rij are the correla-
tion coefficients between the ith index and the jth index.

(3) Step 3: Determine the eigenvalues and eigenvectors
Using the step 2 calculation of the correlation coefficient matrix, R eigenvalues from

large to small are λ1 ≥ λ2 ≥ λ3 ≥···≥ λm ≥ 0, and the corresponding eigenvector u1, u2, ···,
um, where uj=(u1j, u2j, ···, unj)T, composed of m new index variables can be expressed as:

y1 = u11 x̃1 + u21 x̃2 + · · · un1 x̃n
y2 = u12 x̃1 + u22 x̃2 + · · · un2 x̃n
· · · · · · · · ·
ym = u1m x̃1 + u2m x̃2 + · · · unm x̃n

(18)

where y1 represents the first principal component, y2 represents the second principal
component, and ym represents the principal component.

(4) Step 4: Select p (p ≤ m) principal components to calculate the comprehensive
evaluation value

Finally, the corresponding information contribution rate and cumulative contribution
rate are calculated according to the eigenvalue determined in Step 3. Then, through the
information contribution rate and cumulative contribution rate of each principal compo-
nent, the comprehensive evaluation value corresponding to the driving behavior samples
of each group of mining truck drivers can be calculated. The specific calculation process is
as follows:

Then, the principal component yi information contribution rate, which can represent
the driving behavior index of mining truck drivers, can be calculated as follows:

bj = λj/
m

∑
k=1

λk, (j = 1, 2, · · · , m) (19)

The cumulative contribution rate of each principal component y1, y2,···, yp can be
calculated as follows:

αp =
p

∑
k=1

λk/
m

∑
k=1

λk (20)

Among them, when αp is close to 1 (αp = 0.85, 0.90, 0.95), the first p index variables y1,
y2, ···, yp are selected as p principal components to replace the original m index variables,
so as to conduct comprehensive analysis and calculation of p principal components.

In view of this, the formula for a comprehensive evaluation of the driving behavior
samples of each group of mining truck drivers is as follows:

Z =
p

∑
j=1

bjyj, (j = 1, 2, · · · , m) (21)

2.4.3. Establishment of a Driver Behavior Index Evaluation System

The accuracy and perfection of the index evaluation system play a decisive role in the
subsequent evaluation of the driving behavior of mining truck drivers. Up to now, a perfect
driver behavior index evaluation system has been developed in the field of conventional
road transportation. Therefore, based on the improved index evaluation system and the
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production status of the open-pit mining transportation link, this paper studies and puts
forward the driving behavior index system of mining truck drivers, which takes into
account both safe driving behavior and the production cost of the transportation link. Then,
according to each index attribute, it is divided into two categories, which are related to the
parameters related to safe driving behavior and the parameters related to the production
cost of transportation.

(1) Analysis of indicators related to safe driving behavior
The index related to the acceleration or deceleration process can be used to describe

the speed change of a mining truck and can judge whether the driver of the truck has
extreme behavior such as rapid acceleration, rapid deceleration, and sudden braking. At
the same time, it can judge the abnormal operation behavior of mining truck drivers under
abnormal working conditions. In this paper, six indicators such as average speed driving
ratio, overspeed ratio, rapid acceleration or deceleration ratio, and sudden braking ratio of
mining trucks are selected as objects to carry out research and analysis, and the relevant
expressions are shown in Table 2.

Table 2. Driving behavior indicators related to safe driving behavior.

No Name Expression

1 Maximum acceleration at(max) = {a1, a2, · · ·, an}max
2 Minimum acceleration at(min) = {a1, a2, · · ·, an}min
3 Mean acceleration at =

1
n

n
∑

t=1
at

4 Acceleration standard
deviation σa =

√
1
n

n
∑

t=1
(at − at)

2

5 Overspeed ratio Speed = ts/T

6 Sharp acceleration and
deceleration ratio Rapid = tr/T

7 Screeching ratio Quick = tq/T

(2) Analysis of indicators related to production costs in transportation links
As a key indicator to evaluate drivers’ driving behavior, driving speed determines the

fuel consumption of trucks at different time intervals. Therefore, speed-related indicators
are taken as some key parameters to measure driving behavior. Then, according to the
characteristics of truck operation in the transport link of an open-pit mine, this paper
finally selects six indicators, such as maximum speed, minimum speed, average speed,
and standard difference of speed, as its key parameters, and their relevant expressions are
shown in Table 3:

Table 3. Driving behavior indicators related to speed.

No Name Expression

1 Maximum driving speed Vmax = {v1, v2, · · ·, vm}max
2 Minimum travel speed Vmin = {v1, v2, · · ·, vm}min
3 Average travel speed v = 1

n

n
∑

i=1
vi

4 Velocity standard deviation σv =

√
1
n

n
∑

i=1
(vi − v)2

5 Uniform ratio Con = tc/T
6 Single cycle oil consumption Q =

t
∑

i=1
qi

3. Results

In this paper, mining trucks are taken as the research object, and the data collection
process is the heavy-duty transportation stage of mining trucks. Considering the numerous
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factors that affect drivers’ driving behaviors, in order to reflect the effectiveness of data
comparison results, the idea of control variables is adopted to reduce the dimension of the
data as much as possible. Therefore, in the process of data collection, drivers with similar
ages and similar driving experience, working years, working time, and other indicators
are selected. In terms of transport environment, routes with similar working conditions,
such as transport road quality, transport road length, transport road slope, and so on, are
selected. In terms of equipment type, mining trucks with similar conditions such as body
load, service life, body working conditions, and vehicle performance are selected. Finally,
after data pre-screening, only six groups of valuable data were obtained on the same road
at the same time. After data analysis and pre-processing, data information on the heavy
load transportation stage of mining trucks was obtained, and some of the data are shown
in Table 4.

Table 4. Data on the heavy-duty transport stage of some mining trucks.

No X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

1 9.56 7.56 6.45 1.47 0.237 6.722 0.50 0.89 0.20 0.07 1.4 0.20 0.50
2 10.17 7.14 7.90 1.28 0.239 8.921 0.80 0.88 0.20 0.03 2.6 0.26 0.80
3 9.61 7.08 7.95 1.61 0.241 9.537 0.50 0.9 0.10 0.02 2.8 0.28 0.50
4 9.67 7.42 6.95 2.17 0.245 8.211 0.40 0.92 0.20 0.02 3.2 0.28 0.40
5 9.83 7.53 6.5 1.56 0.268 8.105 0.20 0.93 0.10 0.03 2.8 0.32 0.20
6 9.67 7.03 6.58 2.33 0.118 8.951 0.30 0.91 0.20 0.06 1.8 0.20 0.30

Where X1 represents the maximum traveling speed, m/s; X2 represents the average
travel speed, m/s; X3 represents the standard deviation of the velocity; X4 represents
the minimum travel speed, m/s; X5 represents the overspeed ratio; X6 represents fuel
consumption, L; X7 represents the minimum acceleration, m/s2; X8 represents the ratio of
uniform speed; X9 represents the ratio of rapid acceleration; X10 represents the proportion
of sudden braking; X11 represents the maximum acceleration, m/s2; X12 represents the
standard deviation of acceleration; and X13 represents the mean acceleration, m/s2 (the
contents of each related variable are the same below).

After processing the data information in Table 5 according to Formulas (16) and (17),
the correlation matrix of the data in the heavy-duty transport stage of the mining truck in
the transport link of the open-pit mine is obtained, as shown in Table 5 below.

Table 5. Data correlation matrix of the heavy-duty transport stage of a mining truck.

Correlation Matrix

Index X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

X1 1 −0.207 0.445 −0.477 0.202 0.301 0.538 −0.305 0.096 −0.336 0.310 0.320 0.538
X2 −0.207 1 −0.602 −0.244 0.613 −0.864 −0.313 0.334 −0.046 0.138 −0.031 0.221 −0.313
X3 0.445 −0.602 1 −0.391 0.235 0.701 0.728 −0.527 −0.189 −0.623 0.465 0.283 0.728
X4 −0.477 −0.244 −0.391 1 −0.669 0.177 −0.568 0.537 0.284 0.097 0.025 −0.247 −0.568
X5 0.202 0.613 0.235 −0.669 1 −0.267 0.191 0.046 −0.432 −0.538 0.516 0.700 0.191
X6 0.301 −0.864 0.701 0.177 −0.267 1 0.153 −0.011 −0.326 −0.577 0.486 0.293 0.153
X7 0.538 −0.313 0.728 −0.568 0.191 0.153 1 −0.902 0.374 −0.113 −0.014 −0.181 1
X8 −0.305 0.334 −0.527 0.537 0.046 −0.011 −0.902 1 −0.414 −0.275 0.421 0.512 −0.902
X9 0.096 −0.046 −0.189 0.284 −0.432 −0.326 0.374 −0.414 1 0.483 −0.414 −0.699 0.374
X10 −0.336 0.138 −0.623 0.097 −0.538 −0.577 −0.113 −0.275 0.483 1 −0.978 −0.864 −0.113
X11 0.310 −0.031 0.465 0.025 0.516 0.486 −0.014 0.421 −0.414 −0.978 1 0.878 −0.014
X12 0.320 0.221 0.283 −0.247 0.700 0.293 −0.181 0.512 −0.699 −0.864 0.878 1 −0.181
X13 0.538 −0.313 0.728 −0.568 0.191 0.153 1 −0.902 0.374 −0.113 −0.014 −0.181 1

In order to accurately evaluate the comprehensive driving state of mining truck drivers
in the heavy-duty transportation stage of an open-pit mine, principal component analysis
of sample data is needed after correlation analysis of data indexes. According to the



Appl. Sci. 2023, 13, 11597 14 of 17

principle of principal component analysis, the principle of cumulative contribution rate
αp ≥ 85% was strictly followed, and the data were processed using Formulas (18) to (20).
The cumulative contribution rate of the first three principal components was calculated as
high as 87.820% (>85%). Therefore, the first three principal components basically represent
89% of the information content of the 13 driving behavior characteristics. The specific
principal component characteristic value and cumulative contribution rate are shown
in Table 6.

Table 6. Principal component characteristic value and cumulative contribution rate.

Composition Eigenvalue Contribution
Rate

Cumulative
Contribution% Total Variance % Accumulation%

1 4.7010 36.1615 36.162 4.701 36.162 36.162
2 4.1361 31.8165 67.978 4.136 31.816 67.978
3 2.5795 19.8421 87.820 2.579 19.842 87.820
4 0.9332 7.1781 94.998
5 0.6502 5.0018 100.000
6 0.0000 0.0000 100.000
7 0.0000 0.0000 100.000
8 0.0000 0.0000 100.000
9 0.0000 0.0000 100.000

10 (0.0000) (0.0000) 100.000
11 (0.0000) (0.0000) 100.000
12 (0.0000) (0.0000) 100.000
13 (0.0000) (0.0000) 100.000

According to the analysis in Table 6:
(1) The characteristic value of principal component 1 is 4.7010, and the contribution rate

is 36.162%. The driving behavior characteristics of drivers with higher loads are maximum
driving speed, minimum acceleration, average acceleration, standard deviation of speed,
and uniform acceleration ratio column, which are all related to the driver’s standard driving.
Therefore, principal component 1 can be named “standard driving factor”.

(2) The characteristic value of principal component 2 is 4.1361, and the contribution
rate is 31.817%. The driving behavior characteristics of drivers with higher loads are mini-
mum driving speed, uniform speed ratio, maximum acceleration, and fuel consumption,
which are all related to prudent driving. Principal component 2 can be named “prudent
driving factor”.

(3) The characteristic value of principal component 3 is 2.5795, and the contribution
rate is 19.872%. The driving behavior characteristics of drivers with higher loads are
average driving speed, overspeed ratio, sudden braking ratio, and rapid acceleration ratio,
which reflect the aggressive driving information of drivers. Principal component 3 can be
named “aggressive driving factor”.

At the same time, based on the principal component matrix of the driving behavior
sample data of mining truck drivers, the strength correlation analysis of each index of the
three principal components is carried out so as to make a comprehensive evaluation of
the driving behavior of mining truck drivers. The correlation analysis results are shown
in Table 7.

Finally, according to Formula (21), this paper builds a comprehensive evaluation model
for the heavy-duty transport stage of mining trucks. Then, according to the proportional
weight of the eigenvalue of each principal component in the total eigenvalue of the extracted
principal component, combined with the corresponding eigenvector value of each principal
component, the final comprehensive evaluation value of the principal component factor
can be obtained. Then the scientific evaluation of the driving behavior of mining truck
drivers is realized. The final comprehensive evaluation values of the sample data is shown
in Table 8.
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Table 7. Correlation analysis of principal component indexes.

Component Matrix Composition

1 2 3

X1 0.672 −0.137 0.079
X2 −0.362 0.328 0.852
X3 0.926 −0.145 −0.245
X4 −0.568 0.174 −0.685
X5 0.478 0.437 0.741
X6 0.565 0.147 −0.794
X7 0.713 −0.663 0.161
X8 −0.428 0.871 −0.151
X9 −0.239 −0.711 −0.022
X10 −0.722 −0.629 0.148
X11 0.596 0.706 −0.134
X12 0.507 0.842 0.148
X13 0.713 −0.663 0.161

Table 8. Sample data comprehensive evaluation and analysis table.

No
Principal Component Factor Score Composite

Score
Ranking

F1 F2 F3

1 4.534464 1.464869 5.968043 3.746 4
2 5.856108 1.742691 4.889465 4.147 1
3 5.465452 1.991325 4.200941 3.921 2
4 4.81742 1.946713 4.540517 3.714 5
5 4.934976 1.699483 5.357386 3.858 3
6 4.633526 1.533592 3.748448 3.310 6

4. Discussion and Analysis

In order to develop a more scientific and reasonable driver behavior evaluation system,
the assistant open-pit mine achieves fine control of mining truck oil consumption and
alleviates the increasingly tight trend of global energy supply. This paper presents a
comprehensive evaluation method of the driving behavior of mining truck drivers, which
takes both safe driving and transportation costs as factors. However, considering that the
transportation link of an open-pit mine is a complex and large system, the transportation
environment is complex and changeable, there are many factors affecting the consumption
of truck oil, and there is a certain gap in the driving ability of drivers. Therefore, in the
process of research, there remains room for improvement, namely the following:

(1) In terms of data collection, although the implementation of the data collection
scheme has already possessed the ability to collect and transmit the operation data of
mining trucks, taking into account that the sensor, as a precision collection device, has strict
requirements on environmental conditions, open-pit mines are generally located in areas
with complex environments, so some data may have errors in the process of data collection.

(2) In terms of data analysis, this paper builds a time series prediction model and a
wavelet analysis data analysis model. After data analysis and processing, the accuracy of
mining truck operation data is improved by 7~12%. However, the relevant algorithms or
models cannot be integrated with the operation of mining truck drivers during operation.
In the data analysis and processing, noise reduction may be applied to the problem that
the driver brakes sharply and causes the speed to decrease instantaneously. Thus, the
algorithm model still has some limitations.

(3) In terms of data results, although the comprehensive evaluation method proposed
in the study realizes the automated assessment of the driving behavior of mining truck
drivers, the transportation cost is expected to be reduced by about 5% after the driver’s
driving operation is standardized. However, considering the driver’s age, driving ex-
perience, driving years and working hours, and many other factors that have a crucial
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impact on the driver’s driving operation behavior, our analysis is restricted by the infor-
mation confidentiality provisions of open-pit mine personnel. Therefore, only a small
number of drivers with the same driving experience can be used as research objects in the
research process, and the sample data is limited, which may lead to certain deviations in
the assessment results.

5. Conclusions

Different from the previous evaluation studies of drivers’ driving behavior in open-pit
mines, which mainly took safe driving behavior index as a factor variable, this paper
proposes a comprehensive evaluation method of mining truck drivers’ driving behavior
that takes both safe driving and transportation cost as factor variables, which laid a certain
foundation for realizing fine control of mining truck oil consumption in open-pit mines
and reducing the production cost of open-pit mines.

The research results show that: (1) The comprehensive evaluation system of driving
behavior of mining truck drivers, which takes into account both safe driving and transporta-
tion costs, is obtained in this study. This allowed for the evaluation of the driving behavior
of road transport drivers with fixed transport routes and good transport road quality and
provides a new idea and approach for the research of driving behavior of mining truck
drivers with dynamic transport routes and complex transport road conditions. (2) In view
of the problems due to missing data, data redundancy, and data errors in the original data,
a data missing processing and data noise reduction method based on time series prediction
and wavelet analysis is proposed. After the original data processing, the data accuracy can
be improved by approximately 7–12%. The noise reduction method provides a reference
for data processing in other fields. (3) Taking the principal component analysis method as
the starting point, the evaluation system of “standard driving”, “prudent driving”, and
“aggressive driving” driving behavior of mining truck drivers is researched and formulated,
and the automatic assessment of driving behavior of mining truck drivers is realized. After
the operation behavior of drivers is standardized, the transportation cost is expected to be
reduced by about 5%.
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