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Abstract: At present, numerous reflector antennas have been constructed worldwide on land. How-
ever, there are few applications of reflector antennas directly set off the coast. To expand the ap-
plication region of reflector antennas, a floating cylindrical reflector antenna (FCRA) driven by the
moving mass was developed to implement the elevation angle adjustment. Firstly, the structure
design is introduced in detail. The design parameters are stated and analyzed to obtain the kinematic
relationship while considering the water surface constraint. Then, the effects of each variable on the
rotation capacity and structural stability are discussed. Further, the feasibility of the elevation angle
adjustment process is demonstrated by using a prototype model test and software simulation. Finally,
the deformation analyses and shape sensing of the back frame are carried out on the basis of the
inverse finite element method (iFEM). We concluded that this new structure is feasible and expected
to sit off the coast. In addition, the iFEM algorithm with sub-region reconstruction was proved to be
suitable for the shape sensing of the over-constrained FCRA during the angle adjustment process via
several quasi-static sampling moments.

Keywords: floating antenna; geared back frame; moving mass; iFEM; deformation reconstruction

1. Introduction

Reflector antennas have been applied to satellite communication, remote sensing, and
radio astronomy for decades [1-4]. Radio astronomy detection is mainly carried out with
single-aperture radio telescopes or interference array antennas. The antenna array can be
composed of various antennas such as parabolic cylindrical reflector antennas, parabolic
reflector antennas, and dipole oscillator arrays. Among these antennas, the large parabolic
cylindrical reflector antenna is favored by more and more researchers due to its unique
advantages such as high gain, strong directivity, and multiple feeds [5]. Since the 1950s,
many countries have built a number of typical cylindrical reflector antennas in succession,
such as the Ooty Radio Telescope [6], the Molonglo Observatory Synthesis Telescope
of Australia [7], and the Nagoya IPS Stations of Japan [8]. China has also proposed a
specific experimental prototype of the parabolic cylindrical reflector antennas in the Tianlai
Project [9]. Some scholars have carried out the structural design and mechanical analysis of
these parabolic cylindrical reflector antennas [10]. In 2015, China built an antenna array
for dark energy detection that consisted of three 45 x 15 m parabolic cylindrical reflector
antennas and sixteen parabolic reflector antennas [11]. All of these illustrate that there are
broad development and application prospects for parabolic cylindrical reflector antennas.

Parabolic cylindrical reflector antennas can be divided into fixed antennas and movable
antennas according to different observation objects [12]. The feed of the movable antenna is
fixed to the reflector surface through brackets. Then, the reflector surface is mounted on the
pitch axis through the back frame structure. Generally, the weight of an antenna is roughly
proportional to the square of the aperture for movable antennas [13]. In comparison with
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the fixed antenna, the movable reflector antenna can observe more signal sources and
track a single signal source for a longer time. With increasing demands of observation,
the aperture of the antenna becomes larger, which is followed by some challenges in
mechanical rotation [14-16], feed support [17], and structural weight [18]. Furthermore,
excessive weight brings great challenges regarding the construction process and production
cost. It also causes a negative impact on the service life of reflector antennas. For example,
since the start of its observations in 2001, the azimuth track of the Green Bank Telescope
(GBT) has presented a series of problems due to its heavy weight and insufficient design,
including tangential slippage of the base and wear plates, excessive tilting of the azimuth
wheels, surface deterioration between the wear and base plates, fatigue fracture of bolts,
cracks in wear plates, and so on [19-21].

Based on the background above, it has been stated that the huge weight of a large-
aperture reflector is a critical challenge to the mechanical mechanism of movable antennas,
which appeals to numerous scholars. Some scholars have committed to developing the
design of mechanical systems and actively adjusting the reflector surface to improve the
working performance [22-24]. Alternatively, some scholars have proposed some optimization
ideas to reduce the weight and construction cost of reflector structures [25-27]. Most studies
regard the movable reflector antenna on the ground. The gravity of the superstructure is
concentrated on the azimuth mechanism, resulting in the range of problems mentioned
above. In contrast, the movable reflector antenna set on the water surface can effectively
resist the influence of gravity through buoyancy. Nevertheless, to the authors” knowledge,
there are few studies on this [28].

Hence, a floating cylindrical reflector antenna (FCRA) is put forward in this study
based on the current research. The buoyancy of water can resist the gravity of the structure.
Then, the elevation angle of the reflector surface can be adjusted via the position change of
the gravity center based on the moving mass inside the FCRA. The moving mass control
has been studied on the roll control of flexible aircraft and the deformation control of
flexible wings [29,30]. Hence, a moving mass gear drive method was adopted here to
control the elevation angle adjustment for the reflector. There are several advantages of
FCRAs. The vast ocean space can be utilized to expand the sites of this movable reflector
antenna. It can be combined with existing radio telescopes on land to form a very long
baseline interferometry (VLBI) network. Furthermore, the size of a VLBI network can be
extended to the scale of the Earth’s diameter with the good mobility of an FCRA. Thus, a
better observation performance can be obtained, and more signal sources can be tracked.

Further, in consideration of the effect of structural deformation on reflector accuracy;, it
is necessary to perform structural health monitoring (SHM) for the back frame structure of
an FCRA. Known as shape sensing, the reconstruction of full-field structural deformation
is a key component of SHM by utilizing discrete in situ strain measurements. Tessler and
Spangler [31] developed a computationally efficient methodology called the inverse finite
element method (iFEM) for the purpose of performing accurate shape sensing of plate and
shell structures by using a three-node triangular inverse-shell element (iMIN3). The pro-
posed method is based on a least-squares variational principle to reconstruct the full-field
deformation from measured surface strains. Subsequently, more types of elements have
been developed based on the work of Tessler, such as the four-node inverse-shell element
(iQS4) [32] and the inverse beam—frame element [33]. Regarding the application of iFEM,
it has been utilized in an offshore structure [34], a cantilever plate [35], a wing frame [36],
a wind turbine tower [37], and so on. Numerous investigations have demonstrated the
unique suitability of iFEM in terms of structural deformation monitoring. However, regard-
ing the SHM of the back frame structure during the angle adjustment process, there is little
research on the deformation reconstruction for the complex structure with over-constraints
under a mechanism motion process.

In this paper, a new FCRA driven by a moving mass is developed using parametric
design. The mechanism behaviors of this FCRA are analyzed via the mutual verification
of the theoretical model, software simulation, and a prototype test. The shape sensing of
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the back frame is carried out via iFEM methodology to reconstruct the three-dimensional
displacement of the over-constrained structure during the angle adjustment process by
using several quasi-static sampling moments. The paper is organized as follows. The
structural design of the FCRA is introduced in Section 2. Then, the non-dimensional
design parameters, kinematic relationship, water surface constraint, and structural stability
are analyzed in Section 3. The elevation angle adjustment process is studied by using a
prototype model test and software simulation in Section 4. Further, the iFEM algorithm
based on the iQS4 element is briefly reviewed, and the deformation analysis and shape
sensing for the back frame of the FCRA are carried out in Section 5. The conclusions are
provided at the end of Section 6.

2. Structure Design

FCRA is composed of the reflector back frame and the trolley, as shown in Figure 1. The
reflector back frame placed directly on the water surface is simplified to a semi-cylindrical
shell with a circular arc track. The trolley with four gear wheels is connected to the track
by the means of mutual gear meshing. The trolley rotates under the motor drive as a
moving mass. Hence, FCRA is driven to realize the structure rotation and the elevation
angle adjustment via the change in relative position between the back frame and the trolley.
The track is directly fixed with the semi-cylindrical shell so as to improve the strength and
stiffness of the back frame.

Arc track Side plate

MC -

D Semi-cylindrical shell

(a) (b)

/

Arc track

Trolley

Passive wheel
Active wheel

(c)

Figure 1. Structure design of FCRA. (a) Vertical view, (b) Axonometric view, (¢) Axonometric view
without semi-cylindrical shell.

Based on the structural design above, the transmission mechanism is one of the
most important parts to fulfill the rotation for the FCRA. The internal ring gear meshing
transmission mode is adopted here by parametric modeling as listed in Table 1. The gear
model and the internal gear ring model are drawn by Pro-E in Figure 1.

It is worth mentioning that the modules of the gear and internal gear ring should
be consistent to achieve the meshing transmission. The width of the circular arc track is
150 mm, referring to the internal gear ring in Table 1. Moreover, the back frame is covered
with track. Thus, the design length along the longitudinal direction of the semi-cylindrical
shell is approximately 150 mm.
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Table 1. Design parameters of gear and ring.

Design Parameters Gear Internal Ring Gear Unit
Module m 2 2 mm

Number of teeth z 20 240 \
Pitch diameter d 40 480 mm
Addendum circle diameter d, 44 476 mm
Dedendum circle diameter dy 35 485 mm
Base circle diameter d, 44 451 mm
Tooth breadth b 20 150 mm
Pressure angle « 20 20 deg

3. Parameter Analyses

Some parameters are defined and analyzed to explore the relationship between the
elevation angle adjustment and the trolley rotation. The influence of each variable on the
rotation capacity and the structural stability of the FCRA is investigated below.

3.1. Parameter Definitions

The radius of the reflector surface is defined as R. The longitudinal length of the FCRA
is L. The back frame shell thickness is t. The total track width is L; and the track thickness
is t1. The density of water and the density of the back frame are p;, and p, respectively. The
FCRA mass m is divided into several parts, which are side plate masses 1, semi-cylindrical
shell mass m;, track masses mt, and trolley mass m;. The first three parts constitute the mass
of the back frame, which is defined as m. = m;, + m; + m;. These masses of each part in the
back frame can be calculated as my, = TR?tp, m; ~ mRtLp, and m; ~ 7Rt L1p, respectively.

Assuming that the aperture D of the FCRA is 500 mm, the initial values of each design
parameter are listed in Table 2 based on the model in Section 2, while reflector radius R and
water density p, are kept constant as their initial values. To easily study the effects of these
parameters, the control variables are defined as the non-dimensional variables in Table 3.

Table 2. Initial values of design parameters.

Design Parameter Value Unit
Reflector aperture D 500 mm
Reflector radius R 250 mm
Longitudinal length L 150 mm
Shell thickness ¢ 5 mm
Track width L; 150 mm
Track thickness t; 10 mm
Back frame density p 1.2 x 10° kg/m?3
Water density py 1.0 x 10° kg/ m>

Table 3. Ranges of non-dimensional control variables.

Control Variable Initial Value Range
a=t/R 0.02 [0.02, 0.10]
b=L/R 0.6 [0.4,2.0]

c=mg/m 0.3 [0.3,1.0)
n = p/pw 12 [1,10]
a =t/R 0.02 [0.02, 0.10]
by =L1/R 0.6 [0.4,2.0]

3.2. Kinematic Relationship and Water Surface Constraint

The intersecting surface of the cylindrical paraboloid reflector is simplified into a
parabola located in 2-dimensional Cartesian coordinate system XOY of Figure 2, the func-
tion of which is defined as pz = x> + . It is assumed that the origin O is set up at the
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circle center of the semi-cylindrical shell. The Z axis is perpendicular to this plane by the
right-hand rule. The trolley is simplified as a moving mass.

Figure 2. Parameter definitions (upright state of FCRA).

Since the FCRA is placed directly on the water, the immersion depth / into the water’s
surface is expressed by the central angle 6 of the arc under the water’s surface (Figure 2) as

h-R(l—cosi) €))

As simplified in the XOY plane, the reflector motion is indicated by the elevation angle
B between the focal diameter O’F and axis X, where points O’ and F are the vertex and
focus of the reflect parabola, respectively, in Figure 2. The trolley is located at the center of
the track while the focal diameter O’F of the reflector in the upright state coincides with
axis Y of the global coordinate system in Figure 2.

To declare the relationship between the moving mass position and the reflector eleva-
tion angle, the FCRA motion process only considering the rigid body kinematics is divided
into two stages as shown in Figure 3, namely moving mass motion and structure rotation.

Y

F

Back frame -~ Back frame -~

Reflector surface Reflector surface\”
Water surface

o

(b)

Figure 3. Moving mass motion and structural rotation. (a) Stage 1, mass moving relative to the track,

(b) Stage 2, structure rotation.

Assuming that the back frame structure is immobile at the first stage in Figure 3a, only
the motion of moving mass relative to the track is taken into account. The relative motion
angle between the moving mass and the track is defined as .

At the second stage, the back frame structure is released to rotate around the central
axis until there is an equilibrium for the whole structure. The elevation angle p of the
reflector and the position of the moving mass are shown in Figure 3b. There is a torque
equilibrium equation as m.R.sing = msRssina. Substituting the non-dimensional variables,
it is expressed as Appendix A Equation (A1), where ¢ is the angle between axis Y and the
focus diameter O’F in the equilibrium. « is the angle between the equilibrium position and
initial position of the moving mass. The left and the right terms are the torque generated by
the gravity of the back frame and the moving mass, respectively. The back frame centroid
position R, along the radial is written as Appendix A Equation (A2). In accordance with the
geometric relationship in Figure 3, relative motion angle -y and the elevation angle 8 have
relationships with the rotation angle ¢ and « as « + ¢ = y and § + ¢ = 90°. Then, the torque
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equilibrium equation can be rewritten as Appendix A Equation (A3). Then, the elevation
angle B is expressed as

2(1 —c)(2a + 3ab + 3ayby) 1

t =
anp 3rc(a+ab+aby)siny  tanvy

2

According to the expression 8 = 90° — ¢, the reflector in the upright state of g = 90°
becomes horizontal along with the enlargement of ¢ and the reduction of 8. Therefore,
the upper-limit Bmax is 90° while the lower-limit B, depends on the rotation angle ¢ of
the FCRA.

The rotation capacity is directly limited by the immersion depth & of the FCRA into
the water’s surface as shown in Figures 2 and 3b. This critical state of rotation capacity ¢ is
determined as the position (Figure 2) of the back frame end reaching the water’s surface. It
means that this B is equal to the half central angle of the arc under the water’s surface,
namely 6/2. According to the Archimedes principle, the relationship between the gravity
of the FCRA and the volume of water discharge can be written as mg = p,gVd = p,,gLR?
(0 — sind)/2. It is expressed by non-dimensional variables as shown in Appendix A
Equation (A4). Substituting Bmin into Appendix A Equation (A4), it can be reduced as

i nrt(a+ab+ ab
Pmin — SIN Brin €OS Prmin = ( b(1—c¢) = 3)

Particularly, the smaller total weight m becomes, the smaller lower-limit B, and the
larger rotation capacity ¢ of the FCRA can achieve.

In addition, the rotation capacity meets the kinematic relationship between reflector
elevation angle adjustment and moving mass rotation, namely Equation (2). Since the reflec-
tor elevation angle 8 turns into the lower-limit B, under the constraint of Equation (3), the
relative motion angle y becomes larger based on Equation (2). In general, the lower-limit
Bmin represents the rotation capacity of the FCRA. The lower i, becomes, the larger the
rotation capacity and elevation angle adjustment range, which means that the observation
signal range of the FCRA is wider.

3.3. Structural Stability

Considering that the FCRA is located on water like ships [38,39], the structural sta-
bility should be guaranteed to avoid capsizing. Herein, only the transverse stability and
initial stability are investigated with respect to the structural characteristics and working
requirements. Assuming that a small heel angle J occurs as shown in Figure 4, G, B, and By
are the centers of gravity, buoyancy without heeling, and buoyancy with a slight heeling
angle. According to the position of G and By, it can be seen that the condition GBsiné < BB;
can return the equilibrium under its own restoration moment after the heeling.

Figure 4. Left view before and after heeling.

Before the FCRA heels, combining with Appendix A Equation (A4), the distance
between the center of gravity and the initial floating center is calculated as Appendix A
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Equation (A5). It should be mentioned that the position of G may be lower than the position
of B when the mass of the trolley accounts for a large proportion of the mass of the FCRA.
In this case, Appendix A Equation (A5) is still valid for the stability of the FCRA.

After the FCRA has a slight heeling, in accordance with the principle of the center
of gravity movement and Appendix A Equation (A4), the distance of the floating center
movement can be written as Appendix A Equation (A6). Then, the condition to ensure the
FCRA is restored to the horizontal floating state with the heeling angle § can be described
as Appendix A Equation (A7). It can be approximated that cosé ~ 1. Then, the stability
parameter S is defined as

S — b3 — 4psin3 g +4n(2a + 3ab + 3a1by) + 6nm(a + ab +a1b1)ﬁ >0 4)

Hence, the stability of the FCRA increases with the increase in the value of S, which
indicates the restorability of the FCRA when a small heeling occurs.

3.4. Parameter Study

The initial values of each design parameter and corresponding non-dimensional
variable are kept the same as listed in Tables 2 and 3. The ranges of these non-dimensional
control variables are consistent with the range in Table 3.

To investigate the relationship of these variables with the lower-limit B, and the
stability parameter S, univariate curves of each non-dimensional parameter are drawn in
Figure 5 based on Equations (3) and (4) while the rest of the variables are constants listed in
Table 3.

In Figure 5, it is obvious that only the variable b corresponding to longitudinal length
has a negative correlation with the lower-limit B,in, and the other variables are positively
correlated with the lower-limit Bpin. By selecting reasonable values of these parameters,
the lower-limit B, can be controlled below 50° so that the rotation range is about 0°
to 40°. Comparing the change in the lower-limit B, in Figure 5, it can be seen that
shell thickness a, the ratio of the trolley mass to FCRA mass c, and back frame density n
have great influence on the lower-limit S,i, with the differences as high as 40°, while the
influence range of the others is somewhat small. Figure 5a,e represent that the effect of shell
thickness a on the lower-limit S, is greater than track thickness a; when a and a; are in
the same range. Longitudinal length b has a greater influence on the lower-limit B, than
total track width by as illustrated in Figure 5b,f. Additionally, the lower-limit B, becomes
better with the increase in longitudinal length b while the lower-limit B, becomes worse
with the increase in total track width b;.

There is positive correlation between these parameters and stability parameter S except
the ratio of the trolley mass to FCRA mass c in Figure 5. There is transition in the curve of ¢
and S as illustrated in Figure 5c. The corresponding value of S in the transition phase is
below zero, which means that the value of ¢ cannot meet the stability requirements (refer to
Equation (4)). In addition, the value of ¢ in the ascending phase is invalid as the value of
Bmin cannot exceed 90°. In Figure 5, longitudinal length b and back frame density n have
great influence on structural stability, followed by shell thickness 4, the ratio of trolley mass
to FCRA mass ¢, and total track width by, and track thickness a; has the least influence on
structural stability.

In summary, on the basis of ensuring the stability of the FCRA, the optimal parameter
combination for obtaining the maximum rotation capacity of the FCRA isa = 0.02, b = 2,
c=03,n=1,a; =0.02,and b; =04.
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4. Mechanism Analysis

The elevation angle adjustments of the FCRA are conducted by a prototype model
test and software simulation to verify the rotation feasibility of the moving mass gear
drive method.

4.1. Model of Analysis and Prototype

The prototype shown in Figure 6 is geometrically the same as the model in Section 3.
The back frame is made of resin material whose density is 1.2 x 103 kg/m?>. The four wheels
of the trolley are made of steel and the density is 7.8 x 103 kg/m3. After adding load to
the trolley, the masses of the trolley and back frame are 513.9 g and 292.3 g. The trolley is
driven by the motor with wireless remote control. To easily observe the movement of the
trolley and the rotation angle of the structure, the transparent side plates have a scale line
every five degrees from the center along the radial direction. By measuring the size of each
part for the prototype model, the actual initial values of each control variable in Table 3 are
improved toa =0.024, b = 0.6, c = 0.637, n =1.2, a1 = 0.024, and b; = 0.6.
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Figure 6. Prototype model.

The software Adams (MSC, Los Angeles, CA, USA, 2013) is employed here to study
the elevation angle adjustment process of the FCRA. To match the prototype model test, the
non-dimensional control parameters of the analysis model in ADMAS are kept consistent
with the prototype model. To facilitate the display of internal structure, the shell is hidden
in Figure 7b. The rotating pairs are arranged at the center of the back frame and the axles of
the trolley. The same as the prototype model, the drive of the analysis model is applied to
rotating pairs of back wheels. The contact friction is defined at the contact surfaces between
the trolley and tracks. The tracks and the back frame shell are in a fixed form.

(a) (b)

Figure 7. Analysis model. (a) Model in axonometric view, (b) Model without shell.

4.2. Rotation Process

The rotation process is one of the most important parts to verify the elevation angle
adjustment for the FCRA. From the scale lines on the transparent side plate of the model,
the relative motion angles -y of the trolley and the rotation angles ¢ of the back frame can
be recorded. The elevation angle 5 can be further calculated according to  + ¢ = 90°. The
same relative motion angles v in prototype tests are selected in the software simulation.
These moments of rotation processes are listed in Figures 8 and 9. In order to observe
the elevation angle and the position of the trolley better, the software simulation results
are given in front view. Further, the kinematic relationships between o and 8 based on
the model test and software simulation are compared with the theoretical results from
Equation (2) in Section 3. The error analysis for the three is listed Table 4.
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Figure 8. Rotation process of test. (a) v =0°, f =90°, (b) vy =12.5°, B =80°, (c) ¥ = 20°, B =75°,
(d) y =32.5°, B = 65°.

(a) (b)

(c) (d)
Figure 9. Rotation process of simulation. (a) v = 0°, 8 =90°, (b) y =12.5°, f = 80.13°, (c) v =20°,  =74.21°,
(d) y=32.5° B =64.18°.
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Table 4. Error Analysis.

Elevation Angle Differences

Central Angle v : :
Tests (a) Simulation (b) Theory (c) aand ¢ bandc

0.0° 90° 90.00° 90.00° 0 0
12.5° 80° 80.13° 80.43° 0.53% 0.37%
20.0° 75° 74.21° 74.67° 0.44% 0.62%
32.5° 65° 64.18° 64.98° 0.03% 1.23%

From Figures 8 and 9, it is obvious that the results of software simulation match the
rotation process of the model test well. In the model test, the central angle 6 between the
model and the water’s surface is 120° when the trolley is at the initial position. Since Bin, is
equal to half of the central angle 6, the value of S, can be obtained as 60°. The lower-limit
Bmin calculated by the water’s surface constraint is 63.6°. It is approximately 6% larger than
the test result. It is inferred that the reasons for these differences have two parts. One part
is about the manufacturing errors in the prototype model and the other is the numerical
error of this theoretical solution to the transcendental equation Equation (3).

It can be seen from the differences in Table 4 that the errors between model test results
and theoretical results are kept within 0.55%, indicating that the model test also matches
theory well. The reason for the slight error may be because the scale line interval on the
transparent side plate is so large that the reading accuracy is not high enough.

The error of the software simulation is larger than the error of the model test, which
may be related to the contact setting between the trolley and the track in the software.
Another reason is that the method of measurement in the model test is to wait for the
trolley to reach a certain point until finding an equilibrium before reading the data, while
the method of measurement in the software simulation involves real-time monitoring data.
The structure is still in the motion state and does not reach the balance, which also results
in a certain error. In general, compared with the results from Equation (2), the errors of the
model test and software simulation are relatively small and within the acceptable range. It
is indicated that the theory is correct and the moving mass gear drive method is feasible.

5. Deformation Analysis and Reconstruction

The deformation analyses of several specific rotation states corresponding to the rota-
tion process of the prototype model test are carried out. The algorithm iFEM is performed
for deformation reconstruction of the back frame.

5.1. Inverse Finite Element Method

The core of the iFEM algorithm is to construct an inverse element and construct the
error functional between the analytical strain and measured strain based on the inverse
element. The purpose of reconstructing the structural deformation is realized by finding
the minimum value of the functional. Kefal et al. [32] developed a four-node inverse
quadrilateral shell (iQS4) element which has six degrees of freedom (DOFs) per node as
shown in Figure 10. Then, the element nodal displacement vector u' = [u'y uly u's u'4]" can
be expressed as ui,7 = [1g vg W Oxg Oyg%, (9=1,2,3, 4).

According to the linear strain—displacement relations and the plane-stress assumption
0 = 0 within the implication that the transverse-normal strain ¢,, does not contribute to the
strain energy, the strain components can be combined to describe the membrane strain e(u'),
bending curvatures k(u'), and transverse shear strain g(u). Then, the strain-displacement
relations are described as

[Sxx Eyy 'ny}T = e(ul) +zk (ul)i, [')’xz 'YyZ]T = g(ui) @)
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The deformation reconstruction based on the iFEM algorithm requires the surface
measurement strain data. Considering the discrete strain measurement method shown in
Figure 11, the strain sensors are arranged on the top and bottom surfaces of the structure.

-L1) ! (L1
3
1 2
(71‘71) {1:71)
(a) (b)

Figure 10. The four-node quadrilateral shell element (iQS4). (a) Element local coordinates,
(b) Isoparametric coordinates.
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Figure 11. Discrete surface strain measurement.

The measured membrane strains e and bending curvatures k® that correspond to their
analytic counterparts e(u') and k(u') given by Equation (5) can be determined from the
measured surface strain as

E;crx + Exx 1 8;& —&xx

€ =3q fwtew K =51 f ©)
+ — + =
'ny + ’)’xy ’)’xy - ’)/xy

The key formulas of the iFEM algorithm are derived from the extreme value of the
least-squares functional between the analytical strain in Equation (5) and measured strain
in Equation (6). In terms of the iQS4 element, the functional takes the form as

o(u) = nefe(w) ¢

2
+ ws

@)

2+wka(uf) K ’2
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The unknown variable of the functional is the element nodal displacement vector
u'. With regard to the variational principle and after some mathematical deduction, the
condition for the minimum value of the function can be simply expressed as

0D (u)
Ju

=Ku—F=0 (8)

Since the contribution of g* is much smaller than e® and k?, it can be neglected in the
calculation. With the nodal displacement vector transformed from the local coordinate to
the global coordinate and the standard finite element integration operation, the element
matrix of discrete structure is assembled into a linear equation. Furthermore, by imposing
the displacement boundary conditions such that the matrix K is non-singular, the iFEM
equation can be solved to obtain the unique solution. Since the matrix K only depends
on the mesh discretization and the sensor distribution, it only needs to be calculated once.
And the matrix F is dependent on the measured strain values, thus, it needs to be updated
at each time step during calculation.

5.2. Deformation Analyses

The aforementioned prototype model test has been analyzed and verified for the rigid
body motion of the FCRA. Herein, the panels and shell of the back frame are taken for
flexible deformation analysis. According to the physical size of the prototype model, the
diameter of two side panels and the longitudinal length of the shell are 250 mm and 75 mm,
and the thickness of the panels and shell is 3 mm. The material density of the back frame is
1.2 x 10% kg/m?> with an elastic modulus of 3.2 GPa and a Poisson’s ratio of 0.35.

The three-dimensional finite element model of the back frame is established in ABAQUS
(refer to Figure 12). To facilitate the mesh division and the application of boundary con-
straints, a small semi-circular hole is opened at the center of two side panels, and fixed
constraints are placed at the hole. Considering the weight of the back frame, the weight of
the trolley is equivalent to four concentrated forces applied at the contact point between
the wheels and the tracks. The range of water pressure is calculated by Equation (1) and
the hydrostatic pressure is applied to the outer surface of the back frame.
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Figure 12. Finite element model of back frame.

To obtain accurate reference solutions, the high-fidelity mesh discretization in Figure 12
is performed with 2352 quadrilateral shell elements and 14,112 DOFs. The FEM analyses of
the back frame at four rotational motion states recorded in Figures 8 and 9 are carried out
as the quasi-static sampling moments for the following deformation reconstructions. The
contours of total displacement for different rotation angles are presented in Figure 13.
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Figure 13. The FEM contours of total displacement in four rotation states. (a) f = 90°, ¢ =0°, (b) 8 =80°,
¢=10°,(c) B=75° ¢ =15°, (d) B =65°, ¢ =25°.

From the results of deformation analysis in four different rotation states, the defor-
mation of the panels and shell parts in the back frame becomes greater when the rotation
angle ¢ of the FCRA becomes larger. Comparing the displacement deformation contour
maps, only the deformation at ¢ = 0° shows a significant difference. The reason for this
phenomenon may be that the positions of the concentrated force are not accurate enough,
which leads to the rotation trend of the FCRA and some larger deformations in non-positive
elevation states.

5.3. Deformation Reconstruction by iFEM

Due to the over-constraint of the back frame in a specific motion state, there may be
discontinuous angular displacement at the connection between the panels and the shell.
Exploiting the advantage of the iFEM algorithm that it does not need to consider the
physical parameters such as external load during deformation reconstruction, the full-field
deformation reconstruction of a statically indeterminate structure is realized by combining
the sub-region division and iFEM algorithm. The reconstruction steps are as follows:

(1) The measured discrete in situ strains in the iFEM algorithm are derived from the
surface strains of FEM.

(2) The back frame structure is divided into three sub-regions according to the boundary
constraints, namely two side panels and a curved shell.

(3) The iFEM algorithm is utilized to reconstruct the deformation of two side panels with
fixed constraints.

(4) The nodal displacements of two side panels at the joints are derived as the boundary
constraints of the curved shell and input data in the iFEM code, then the deformation
of the curved shell is reconstructed.

(5) Integrating the reconstructed deformation of all sub-regions, the full-field deformation
of the statically indeterminate structure is reconstructed.
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The same mesh discretization as FEM and the above reconstruction steps are per-
formed for the back frame structure. The measuring points are arranged at the center of
each element and the discrete in situ strains in Figure 11 are derived from the strain results
of FEM. The total displacement in four rotation states inverted by the iFEM algorithm are
depicted in Figure 14. In addition, the inverse accuracy in four rotation states is demon-
strated by the reference solution given by FEM, and the differences between iFEM results
and FEM solutions are displayed in Table 5.
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Figure 14. The iFEM contours of total displacement for fine mesh in four rotation states. (a) f = 90°,
@=0°(b) B=80° ¢ =10° (c) B=75° ¢ =15°,(d) B =65°, ¢ =25°.

Table 5. Differences between iFEM and FEM results for different cases.

Elevation Angle B Differences Total Displacement Total Rotation
65° FEM and iFEM 5.55% 6.38%
75° FEM and iFEM 5.08% 6.38%
80° FEM and iFEM 4.15% 6.12%
90° FEM and iFEM 1.31% 5.60%
90° FEM and coarse iFEM 3.25% 6.41%

Further, another coarse mesh discretization method with 546 iQS4 elements and
3564 DOFs is adopted for the case at § = 90°. The in situ strains of this inverse finite
element (FE) model are also derived from the surface strains of FEM. Figure 15 displays
the total displacement fields of the coarse inverse FE model. And the differences between
iFEM results and FEM solutions are also listed in Table 5.
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Figure 15. The iFEM contour of total displacement for coarse mesh at f = 90°, ¢ = 0°.

From Figures 13 and 14, it is clear that there is little difference between FEM solutions
and iFEM reconstruction results. By comparing the deformation contours at = 90° in
Figures 13a, 14a, and 15, it is apparent that the full-field deformations reconstructed by
two inverse FE models are highly consistent with the deformation calculated by FEM.
With reference to the average reconstruction errors, the percentage errors of total rotation
reconstruction are larger than that of total displacement reconstruction. With the increase
in the rotation trend of the back frame, the reconstruction accuracy of the iFEM algorithm
generally decreases to a certain degree. There are some greater errors of the inverse FE
model in Figure 15 than in Figure 14 due to the coarser mesh of iQS4 elements. And it is
indicated in Table 5 that the maximum relative percentage error of this coarse model is
6.41%, which appears in total rotation. Nevertheless, the average differences are available
within the error range. These results suggest that the iFEM algorithm has an excellent
shape-sensing performance for the back frame of the FCRA.

6. Conclusions

In this work, a floating cylindrical reflector antenna driven by a moving mass gear is
developed to realize the elevation angle adjustment of the reflector surface. The specific
structural design parameters are stated for the back frame structure of this FCRA while
considering the kinematic relationship and water surface limitation. The effects of a
single control variable on the elevation angle and the stability parameter are discussed,
respectively. The prototype model test and software simulation are conducted to verify
the feasibility of the moving mass gear drive method and the accuracy of parametric
design. The deformation analyses for the back frame structure of the FCRA are carried out.
And the iFEM algorithm with sub-region divisions is used for shape sensing of the over-
constrained back frame structure during the angle adjustment process by four quasi-static
sampling moments.

Based on the parametric analysis of the FCRA, the optimal parameter combination
for the maximum rotation range isa = 0.02, b =2, ¢ = 0.3, n =1, 3y = 0.02, and b; = 04
while ensuring the stability of the FCRA. The errors in the rotation process between the
theoretical calculation, software simulation, and prototype test are within 1.5%, which
indicated that the parametric design is correct and the moving mass gear drive method is
feasible. The deformation analysis of the back frame revealed that the total displacement
increases with the growth of the rotation angle ¢. The average differences in deformation
reconstruction by iFEM are below 6.5%. It suggests that the iFEM algorithm with sub-
regions is very suitable for the shape sensing of the over-constrained back frame structure.
It is also confirmed that the iFEM algorithm by several quasi-static sampling can fulfill the
deformation reconstruction with high precision during the rotation process.

Further work will focus on the influence of deformation on the reflector surface
accuracy and technology development for the future applications of the FCRA.
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Appendix A

Adopting the non-dimensional variables, the torque equilibrium equation can be
expressed as

Resing = %R sina (A1)
The back frame centroid position R, along the radial is described as

4R 2R
R _ Sy + =5 (my 4+ my) _ 2(2a+ 3ab + 3a1by) R (A2)
;g 37(a+ab+ aiby)

In accordance with the geometric relationship, relative motion angle y and the ele-
vation angle B have relationships with angle g and v as« + ¢ =y and  + ¢ =90°. Then,
Equation (A1) can be rewritten as

2(2a + 3ab + 3(1119]) c
37t(a+ab+aiby)

0sp = [~ cos( + )] (A3)

The relationship between the gravity of the FCRA and the volume of water discharge
is expressed by non-dimensional variables as

(a+ab + a;b))ntR3py
1-c¢

g= %bRg’pwg(B — sin ) (A4)

Combining with Equation (A4), the distance between the center of gravity and the
initial floating center before the FCRA heels is calculated as

2b(1 — ¢) sin® % —2n(2a + 3ab + 3a1b1)(1 — ¢) — 3nm(a + ab + a1by)c

GB = 3nrt(a+ab+ aiby)

R (A5

After the FCRA has a slight heeling, the distance of the floating center movement can
be expressed as
B9
~ énm(a+ab+aib)

BB Rtand (A6)

Then, the condition to ensure the FCRA is restored to the horizontal floating state after
the heeling angle 6 can be described as

4bsin® g — 4n(2a + 3ab + 3a1by) — 6nm(a +ab+a1b1)1—ic cosé—b> <0 (A7)
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