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Abstract: For the vehicular platoon consisting of connected automotive vehicles, time delays degrade
both the internal stability and string stability. In this study, the internal stability and string stability
of the vehicular platoon suffering from sensing delay and communication delay are investigated.
In the internal stability analysis, the necessary and sufficient internal stability condition is obtained
and the exact time delay margins (ETDMs) are derived via the cluster treatment of characteristic root
(CTCR) paradigm. A Dixon resultant matrix–based method is proposed to determine the kernel and
offspring hypersurfaces of the CTCR paradigm, and then the computational burden of deriving the
ETDMs is reduced significantly. In the string stability analysis, we first propose the string stability
conditions for the situation no matter how large the frequency of the leader vehicle’s maneuver is.
Furthermore, the more practical string stability conditions are studied by considering only the region
of low frequency, where most of the energy of the spacing errors exists. Then, a lower bound of the
time headway is deduced to enhance road capacity, so the potential of the vehicular platoon is fully
motivated. Numerical simulations are provided to illustrate the effectiveness of the theoretical claims.

Keywords: vehicular platoon; sensing delay; communication delay; internal stability; string stability;
CTCR; time headway

1. Introduction

Vehicular platoon technology is a promising approach to improving traffic capacity,
enhancing highway safety, and reducing exhaust emissions and fuel consumption [1,2].
A vehicular platoon consists of a group of coordinated vehicles that are connected au-
tonomously by using vehicle–to–vehicle (V2V) and vehicle–to–infrastructure (V2I) commu-
nication technologies [3]. To maintain a stable vehicular platoon, it is crucial to ensure both
the internal stability and string stability [4]. The internal stability refers to the convergence
of the trajectories of all the vehicles within the platoon [5]. On the other hand, the string
stability implies that disturbances should not amplify when propagating along the vehicle
string [6].

In the vehicular platoon, time delays are introduced due to the sensing time and
limited communication bandwidth, which are unavoidable aspects of using the sensors
and wireless communication [7,8]. These time delays are widely recognized as the primary
factors that can significantly degrade the performance of the vehicular platoon and poten-
tially lead to the internal instability or string instability [9]. Hence, it is essential to study
the stability of the vehicular platoon with sensing delay and communication delay.

Numerous studies have been conducted on delay–dependent stability analysis of
vehicular platoons. For investigating the internal stability of the system with multiple
delays, both the exponential convergence rates of the system’s states and delay margin are
estimated by using the Lyapunov–Razumikhin theorem [10]. For the vehicular platoon with
heterogeneous communication delays, the sufficient internal stability conditions are solved
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by using the Lyapunov–Krasovskii method [11]. The Nyquist criterion has been utilized
to investigate the internal stability affected by the communication delay and determine
the maximum allowable time delay [12]. Most existing studies of analyzing the internal
stability of the vehicular platoon with time delays rely on the Lyapunov–Razumikhin
and Lyapunov–Krasovskii functions [13,14]. However, these studies can only obtain the
sufficient stability conditions, rather than the necessary and sufficient conditions, resulting
in relatively conservative results. Thus, the exact (non–conservative) time delay margins
(ETDMs) could barely be solved using the above–mentioned methods. Additionally, since
these studies involve solving the linear matrix inequalities, the computational burden
exponentially increases with the dimension of the matrix.

For solving the ETDMs of the vehicular platoon, a crucial stability paradigm called
cluster treatment of characteristic root (CTCR) is deployed in a different way [15]. The CTCR
paradigm provides a comprehensive understanding of the loci of the purely imaginary
characteristic roots of the closed–loop platoon dynamics and offers a systematic method of
determining the exact and exhaustive stability for both the single–delay and multi–delay
cases. These loci represent the potential delay margins in the delay space, and they are
located on the kernel and offspring hypersurfaces within the CTCR paradigm. The CTCR
paradigm enables a graphical representation of the delay margins and can be implemented
numerically [16]. By combining the CTCR paradigm with the Rekasius transformation, a
necessary and sufficient internal stability condition is derived for the vehicular platoon
with time delays [17]. For the vehicular platoon under generic communication topologies
with two time delays, a resultant matrix–based approach is proposed to determine the
kernel and offspring hypersurfaces of the CTCR paradigm [18,19].

Though the CTCR paradigm can be used to derive the ETDMs of the vehicular platoon,
it bears a heavy computational burden due to its numerical and time–consuming frequency
sweeping process [20]. The frequency sweeping process involves high–dimensional matrix
computation, and as the dimensions of the matrices in the CTCR paradigm increase, the
computational burden grows exponentially. Specifically, the vehicular platoon with time
delays is a third–order system (its states mainly include position, velocity, and accelera-
tion) in essence. This naturally leads to high–dimensional matrix computation. Existing
approaches of deriving the kernel and offspring hypersurfaces of the CTCR paradigm, such
as the Sylvester resultant [21] and extended Kronecker summation [22], face this challenge.
For example, the extended Kronecker summation method is preferable to be combined with
the CTCR paradigm, but it needs to construct a high–order auxiliary characteristic equation
(ACE). Thus, there is an urgent need for a more efficient and streamlined approach that can
alleviate the computational burden while ensuring the accurate analysis of the ETDMs of
the vehicular platoon.

In addition to the internal stability analysis, studying the string stability of the ve-
hicular platoon with time delays is also an important research topic. The string stability
conditions are obtained for a second–order vehicular platoon (its states mainly include
position and velocity) with a single delay, and the thresholds of the controller parameters
are further provided according to the delay margin [23]. For the vehicular platoon with
communication delays, the string stability analysis is achieved by scaling the trigonometric
functions with the delays [24]. The delay terms are approximated by using the second-order
Taylor series expansion near zero to derive the necessary string stability conditions [25].
The Padé approximation, which offers better precision in approximating the delay terms
compared to the Taylor series expansion, has been used to obtain the less conservative
string stability conditions [26]. It is worth noting that the aforementioned string stability
analysis methods primarily focus on the disturbances acting on the leader vehicle and
often neglect any limitations on the frequencies of the spacing errors. However, in practical
scenarios, the leader vehicle is typically constrained by the physical and mechanical factors,
resulting in less frequent maneuvers. The low–frequency region contains a significant
portion of the energy of the spacing errors, making it critical for the string stability analysis.
Unfortunately, this aspect has been overlooked in the previous studies.
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It is demonstrated that the traditional proportional controller, when applied to the
predecessor–following (PF) topology with the constant distance (CD) policy, cannot guar-
antee the string stability of a vehicular platoon [23]. To address this issue, one possible
solution is to adopt the constant time headway (CTH) policy, where the distance between
the successive vehicles is adjusted based on the velocity of the following vehicles. The
CTH policy has shown the improved string stability characteristics compared to the CD
policy by increasing the time headway. However, increasing the time headway reduces
road capacity and increases fuel consumption. Therefore, it is crucial to determine the
minimum allowable time headway with a trade–off. For a second–order platoon with
the CTH policy, a sliding-mode controller is designed to guarantee the string stability;
meanwhile, the bound of the time headway is obtained by analyzing the sufficient string
stability conditions [27]. In [28], the multiple–predecessor following (MPF) topology is
used to represent the communication relationship between the followers, and it is proved
that the bound of the time headway can be reduced by increasing the number of followers.
Then, the communication delay is considered in the controller design of a third–order
vehicular platoon, and a lower bound of the time headway, which can compensate for the
effects of communications delays, is achieved by introducing the acceleration feedback [29].

The purpose of this paper is to analyze the internal stability and string stability of the
vehicular platoon with sensing delay and communication delay under PF topology. For
the internal stability analysis, a Dixon resultant matrix–based method instead of the well–
known Sylvester resultant is proposed to determine the kernel and offspring hypersurfaces
of the CTCR paradigm, and then the computational burden of deriving the ETDMs for
the internal stability analysis is reduced elegantly. The above strength is also exhibited by
comparative simulation. For the string stability analysis, we first consider the situation
no matter how large the frequency of the leader vehicle’s maneuver is. The sufficient
string stability conditions are obtained, and the bound of the time headway is derived.
Furthermore, different from [29], the more practical string stability conditions are studied
by considering only the region of low frequency, where most of the energy of the spacing
errors exists. Under the limitation of low frequency, a lower bound of the time headway is
derived, which means that the road capacity can be further improved. The architecture of
this paper is depicted in Figure 1.
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Figure 1. Architecture of the stability analysis of the vehicular platoon.

2. Problem Statement
2.1. Preliminaries

In this subsection, the model of the communication topology, definition of the Dixon
resultant, and CTCR paradigm are demonstrated.

Firstly, the model of the communication topology is given. The platoon consists of
one leader and N followers. In our work, the commonly used PF topology is chosen as the
communication topology, as illustrated in Figure 2. The red arrows denote the transmission
of information (i.e., position and velocity) through onboard sensors like radars, while the
blue dashed arrows represent the transmission of information (i.e., acceleration) through
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wireless communication networks. Furthermore, the integrated sensors are used to detect
the position and velocity information of the preceding vehicle simultaneously, ensuring an
identical sensing time for the above types of information [30].
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The adjacent matrix of the PF topology is defined as

A = [aij]N×N =


0 0
1 0 0

. . . . . . . . .
1 0 0

1 0


where aij = 1 represents that the follower i can obtain information from the follower j;
otherwise, aij = 0. i = 1, 2, · · · , N, j = 1, 2, · · · , N. The indegree matrix is characterized by
D = diag

{
deg1, deg2, · · · , degN

}
, degi = ∑N

j=1 aij. According to the two above–mentioned
matrices, the Laplacian matrix is modeled by L = D −A. Then, the pinning matrix P ,
which characterizes the information flow from the leader to the followers, is defined as

P = [pii]N×N = diag{1, 0, · · · , 0}

where pii = 1 represents that the follower i can receive the information from the leader;
otherwise, pii = 0. We utilize the augmented Laplacian matrix L̃ = L+ P to characterize
the communication topology. For PF topology, every eigenvalue of L̃ is 1.

Secondly, the definition of the Dixon resultant is given. The Dixon resultant is a peer
methodology to reveal the sufficient and necessary conditions of the nontrivial common
solutions of the polynomial equations [31]. It outperforms the commonly used resultant
formulation (i.e., Sylvester resultant) in computational efficiency [21]. The determinant of
the Dixon resultant is equal to two polynomials, which can be used to implement the first
step of the CTCR paradigm. The two polynomials are denoted as ψ1(x) and ψ2(x), where
x is a variable. Then, the Dixon polynomial is given by

µ(x, α) =
1

(x− α)

∣∣∣∣∣ψ1(x) ψ2(x)

ψ1(α) ψ2(α)

∣∣∣∣∣ (1)

where ψ1(α) and ψ2(α) stand for replacing x by a dummy variable α. µ(x, α) is the degree
of dmax in α, where dmax = max[deg(ψ1(x))deg(ψ2(x))], and the notations deg(ψ1(x)) and
deg(ψ2(x)) represent the degrees of ψ1(x) and ψ2(x) in x, respectively. As each common
zero of ψ1(x) and ψ2(x) is also a zero of µ(x, α) regardless of α values, the coefficient of
each power product of α in µ(x, α) should be zero at the common zero of ψ1(x) and ψ2(x).
In view of this, dmax equations containing these coefficients are obtained as the polynomials
in x. The coefficient matrix is called the Dixon matrix D(ψ1(x), ψ2(x)). Then, the dmax
equations are written in the following form:

D(ψ1(x), ψ2(x))


1
x
...

xdmax−1

 =


0
0
...
0

 (2)
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If there exists a nontrivial solution for ψ1(x) and ψ2(x), D(ψ1(x), ψ2(x)) must be
singular [31].

det[D(ψ1(x), ψ2(x))] = 0 (3)

The determinant in (3) is called the Dixon resultant.
At last, some definitions of the CTCR paradigm are provided. The CTCR paradigm

describes the knowledge of the complete loci of the purely imaginary characteristic roots
in the delay space [15,32]. These loci are called “stability switching” hypersurfaces [33],
which are the only possible stability switching locations. Therefore, the CTCR paradigm
can be used to compute the purely imaginary characteristic roots and ETDMs by drawing
the hypersurfaces. For more details about the CTCR paradigm refer to [15,32,33].

Definition 1. Kernel hypersurfaces: The hypersurfaces contain all the delay points(τ1, τ2), where
an imaginary root (s = ι·ω, ι2 = −1) is created and the constraint 0 < τkω < 2π, k = 1, 2 is
satisfied. The points on the kernel hypersurfaces contain the smallest delay compositions, which
correspond to all possible imaginary roots.

Definition 2. Offspring hypersurfaces: The hypersurfaces are obtained from the kernel hyper-
surfaces by using the periodicity of the imaginary roots with respect to the delays. The points
on the offspring hypersurfaces are easily derived from those on the kernel hypersurfaces by using
the transformation 〈{

τ1 +
2π

ω
q1, τ2 +

2π

ω
q2

}
, ω

〉
(4)

Definition 3. Root tendency: For the imaginary roots ι·ω, ι2 = −1 on the kernel hypersurfaces
and offspring hypersurfaces, the root tendency of the delay τk, k = 1, 2 is defined as

RT| τk
s=ι·ω = sgn

[
Re
(

∂s
∂τk

∣∣∣∣
s=ι·ω

)]
(5)

The root tendency RT depicts the direction of the root crossing across the kernel
and offspring hypersurfaces as one of the delays increases infinitesimally. RT is −1 for
stabilizing root crossing and +1 for destabilizing root crossing [34]. Then, by counting the
number of the unstable characteristic roots of each region in the CTCR paradigm, the stable
and unstable regions can be distinguished and the ETDMs are obtained.

2.2. Vehicle Dynamics and Platoon Control Objective

Within our framework, the longitudinal dynamics of the vehicles are denoted as
.
ri(t) = vi(t).
vi(t) = ai(t).
ai(t) = − 1

T ai(t) + 1
T ui(t)

(6)

where ri(t), vi(t), ai(t) are the position, velocity, and acceleration of the i-th vehicle, respec-
tively. T > 0 is the time constant of the drivetrain. The propelling force ui represents the
control input.

The longitudinal dynamics of the i-th vehicle can also be written in the state-
space expression:

.
xi(t) = Axi(t) + Bui(t) (7)
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where xi(t) = [ri(t), vi(t), ai(t)]
T and

A =

0 1 0
0 0 1
0 0 − 1

T

, B =

0
0
1
T


It is assumed that both the sensing delay and communication delay exist in the vehic-

ular platoon. The objective of the platoon control under PF topology can be described as:
ri(t− τ1)→ ri−1(t− τ1)− d− hvi(t− τ1)
vi(t− τ1)→ vi−1(t− τ1)
ai(t− τ2)→ ai−1(t− τ2)

(8)

where τ1, τ2 are the sensing delay and communication delay, respectively. Our proposed
delay structure is based on a realistic scenario in which the position and velocity can be
sensed by the neighboring vehicles, while the acceleration is communicated through V2V
communication. Then, these two different ways of acquiring information introduce two
different delays [30]. To focus on deriving the ETDMs, we assume that τ1, τ2 are both
constant. In reality, one may use a buffer memory to ensure that the sensing delay τ1
and communication delay τ2 are further delayed intentionally (if required) to be constant.
Therein, we choose the CTH policy as the inter–vehicle spacing policy. d and h are the
desired standstill spacing and time headway between two successive vehicles, respectively.

2.3. Closed–Loop Dynamics of the Vehicular Platoon with Sensing Delay and
Communication Delay

According to the control objective (8), the spacing error of the i-th vehicle is represented as

ei(t) = ri−1(t)− ri(t)− d− hvi(t) (9)

With respect to the sensing delay τ1 and communication delay τ2, the distributed
controller is given by

ui(t) = kr[ri−1(t− τ1)− ri(t− τ1)− d− hvi(t− τ1)]
+kv[vi−1(t− τ1)− vi(t− τ1)]
+ka[ai−1(t− τ2)− ai(t− τ2)]

(10)

where kr > 0, kv > 0, ka > 0 are the controller gains for position, velocity, and
acceleration, respectively.

By applying the distributed controller (10) for the longitudinal vehicle dynamics (7),
the governing equation with respect to the spacing error of the i-th follower is obtained as

T
...
e i(t) +

..
ei(t) + ka

..
ei(t− τ2) + (hkr + kv)

.
ei(t− τ1) + krei(t− τ1)

= ka
..
ei−1(t− τ2) + kv

.
ei−1(t− τ1) + krei(t− τ1)

(11)

The lumped error vector is defined as e = [e1, · · · , eN ,
.
e1, · · · ,

.
eN ,

..
e1, · · · ,

..
eN ]

T. Thus,
the closed–loop dynamics of the vehicular platoon can be written as

.
e(t) = (A⊗ IN)e(t)− [(BK1)⊗ L̃+ (hBK2)⊗ IN ]e(t− τ1)− [(BK3)⊗ L̃]e(t− τ2) (12)

where IN denotes the N-dimensional identity matrix, and ⊗ is the Kronecker product
operation. K1 = [kr, kv, 0], K2 = [0, kr, 0], K3 = [0, 0, ka].

The characteristic polynomial of (12) is calculated as
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f (s) = det
{

sI3N − (A⊗ IN) + [(BK1)⊗ L̃+ (hBK2)⊗ IN ]e−τ1s + [(BK3)⊗ L̃]e−τ2s
}

=

∣∣∣∣∣∣
sIN −IN 0N
0N sIN −IN

kre−τ1s

T L̃ kve−τ1s

T L̃+ hkre−τ1s

T IN sIN + 1
T IN + kae−τ2s

T L̃

∣∣∣∣∣∣
= det(sIN)det

 sIN −IN
kve−τ1s

T L̃+ hkre−τ1s

T IN sIN + 1
T IN + kae−τ2s

T L̃

− [ 0N
kre−τ1s

T L̃

]
(sIN)

−1[ −IN 0N
]

= det(sIN)det(sIN)det
[
sIN + 1

T IN + kae−τ2s

T L̃ − ( kv
T L̃+ hkr

T IN + kr
sT L̃)e−τ1s(sIN)

−1(−IN)
]

=
N
∏
i=1

[s3 + 1+kae−τ2s

T s2 + (kv+hkr)e−τ1s

T s + kre−τ1s

T ]

(13)

where s is the Laplace variable, and L̃ is a lower triangular matrix with all the elements of
its diagonal being 1.

According to (13), the closed–loop platoon dynamics (12) can be decomposed into N
subsystems. The characteristic equation of each subsystem is given by

fi(s) = s3 +
1 + kae−τ2s

T
s2 +

(kv + hkr)e−τ1s

T
s +

kre−τ1s

T
(14)

3. Internal Stability Analysis

To reduce the computational burden of calculating the ETDMs of the vehicular platoon,
we propose a Dixon resultant matrix-based method to determine the kernel and offspring
hypersurfaces of the CTCR paradigm. In this section, it is shown that the dimension of our
designed Dixon matrix is only half of that of the well–known Sylvester matrix.

The closed–loop platoon dynamics described by (12) should be primarily stable for
the delay–free case [29]. Therefore, before analyzing the internal stability for the delay case,
we first analyze the internal stability for the delay–free case, and a prerequisite is given.

For the delay-free case with τ1 = τ2 = 0, (14) becomes

fi(s) = s3 +
1 + ka

T
s2 +

kv + hkr

T
s +

kr

T
(15)

For a stable platoon, every fi(s) = 0 in (15) should be Hurwitz stable. A lemma for
the delay–free case is given as follows.

Lemma 1. The closed-loop platoon dynamics (12) are internally stable for the delay–free case if the
following inequality holds:

(1 + ka)(kv + hkr)− Tkr > 0 (16)

Proof. The stability of fi(s) = 0 in (15) is easy to examine based on the Routh–Hurwitz
stability criterion, shown in

s3 1 kv+hkr
T

s2 1+ka
T

kr
T

s1 (1+ka)(kv+hkr)−Tkr
T(1+ka)

s0 kr
T

(17)

By considering the definition that kr > 0, kv > 0, ka > 0 in (10), the inequality in (16)
is derived. �
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Remark 1. Lemma 1 provides a necessary and sufficient internal stability condition of the closed–
loop platoon dynamics described by (12) for the delay–free case, but it is just a necessary condition
for the delay case. For τ1 > 0 and τ2 > 0 , the internal stability of the closed–loop platoon dynamics
described by (12) not only relies on the control gains, but also depends on the sensing delay τ1 and
communication delay τ2 .

As the stability analysis procedure is identical for each subsystem, the subscript i is
omitted afterward for clarity.

To establish the CTCR paradigm, we first replace the exponential terms in (14) by

e−ι·τkω = cos(τkω)− ι· sin(τkω), k = 1, 2 (18)

The cosine and sine functions are replaced by the half–angle tangent functions:

cos(τkω) =
1− z2

k
1 + z2

k
, sin(τkω) =

2zk

1 + z2
k

, zk = tan
(τkω

2

)
(19)

where zk are the auxiliary variables.
Then, the infinite dimension polynomial (14) is transformed into a finite dimension

polynomial in ω:

f (ω, z1, z2) =
3

∑
m=0

bm(z1, z2)ω
m + ι·

3

∑
m=0

cm(z1, z2)ω
m (20)

where bm(z1, z2) and cm(z1, z2) are the corresponding coefficients of ω.
If there exists an imaginary solution for (14) at s = ι·ω, both the real and imaginary

parts of (20) should be zero simultaneously:

ψ1(ω) = Re( f (ω, z1, z2)) =
3

∑
m=0

bm(z1, z2)ω
m = 0 (21a)

ψ2(ω) = Im( f (ω, z1, z2)) =
3

∑
m=0

cm(z1, z2)ω
m = 0 (21b)

To reduce the computational complexity, we choose the Dixon resultant instead of
the popular Sylvester resultant to solve z1, and z2. The necessary condition for (21a)
and (21b) to have a common imaginary root, i.e., ι·ω, is described by the Dixon matrix
D(ψ1(ω), ψ2(ω)) in (2). By scanning the parameters τ1ω, τ2ω in [0, 2π], the graphical
description of τ1ω, τ2ω is derived for the case that (3) holds. Then, the values of z1, z2 are
obtained according to (19). The imaginary root ι·ω can be solved by substituting the values
of z1, z2 into (21a) or (21b).

The Dixon resultant D(ψ1(ω), ψ2(ω)) constitutes a closed–form description of the
kernel and offspring hypersurfaces of the CTCR paradigm. Next, by utilizing the remaining
procedure of the CTCR paradigm, the ETDMs < τ1, τ2 > are obtained. The remaining
procedure of the CTCR paradigm is omitted here, and more details are presented in the
literature [15,32,33].

Remark 2. The Dixon resultant is computationally more efficient than the well–known Sylvester
resultant and other popular methods (e.g., ACE combined with Kronecker summation [22]). Espe-
cially, for the third–order vehicular platoon with sensing delay and communication delay, the size
of the Dixon matrix is just 3× 3, but the sizes of the Sylvester matrix and ACE matrix are 6× 6
and 9× 9, respectively. Therefore, the Dixon resultant consumes less computational burden and is
preferable to compute the ETDMs of the vehicular platoon.
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4. String Stability Analysis

By taking the Laplace transform of the governing Equation (11), the spacing error
transfer function of the i-th vehicle is obtained as

Gi(s) =
Ei(s)

Ei−1(s)
=

kas2e−τ2s + kvse−τ1s + kre−τ1s

Ts3 + s2 + kas2e−τ2s + (hkr + kv)se−τ1s + kre−τ1s (22)

where Ei(s) is Laplace transform of the spacing error ei(t). Gi(s) describes how the spacing
error propagates upstream in the vehicular platoon. For a string–stable platoon, when the
leader vehicle performs a sinusoidal acceleration maneuver at the frequency ω, there must
exist [23]

|Gi(ι·ω)| ≤ 1 (23)

Theorem 1. For any scalar ω > 0, the closed–loop platoon dynamics described by (12) are
string–stable if one of the following conditions is satisfied.

∆ < 0 ∧ β6 > 0 ∧ β2 > 0 (24a)

∆ ≥ 0 ∧ β6 > 0 ∧ β4 > 0 ∧ β2 > 0 (24b)

where 
∆ = β2

4 − 4Tkrβ6β2,
β6 = T − 2kaτ2,
β4 = 1− 2Thkr − 2Tkv − 2ka − 2(Tkr + hkr + kv)τ1
−2hkrka|τ2 − τ1|,

β2 = h2kr + 2hkv − 2.

With respect to the string stability conditions (24), the bound of the time headway is deduced by

h > hA,min =
2(T + τ1)

1− 2ka − 2Tkrτ1
(25)

Proof. We define Gi(ι·ω) = N
N+M , where

N = [−kaω2 cos(τ2ω) + kvω sin(τ1ω) + kr cos(τ1ω)]
+ι·[kaω2 sin(τ2ω) + kvω cos(τ1ω)− kr sin(τ1ω)]

M = [−ω2 + hkrω sin(τ1ω)] + ι·[−Tω3 + hkrω cos(τ1ω)]

When the vehicular platoon is string stable as (23), there exists

|M + N|2 − |N|2 = T2ω6 − 2Tkaω5 sin(τ2ω) + ω4 − 2T(hkr + kv)ω4 cos(τ1ω)
+2kaω4 cos(τ2ω) + 2(Tkr − hkr − kv)ω3 sin(τ1ω)
+2hkrkaω3 sin(τ2 − τ1)ω + (h2k2

r + 2hkrkv)ω2

−2krω2 cos(τ1ω) ≥ 0

(26)

According to the facts that ± sin(τkω) ≥ −τkω and ± cos(τkω) ≥ −1, k = 1, 2, it is
obtained that

|M + N|2 − |N|2 ≥ Tβ6ω6 + β4ω4 + krβ2ω2 ≥ 0 (27)

If one of the conditions (24) is satisfied, the inequality in (27) is fulfilled for ω > 0.
Then, the bound of the time headway is deduced by (24b). When (24b) is satisfied,

β2 > 0 and β4 > 0 can be rewritten as

kv >
1
h
− hkr

2
(28a)
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kv <
1− 2ka − 2Tkrτ1 − 2hkr(T + τ1 + ka|τ2 − τ1|)

2(T + τ1)
(28b)

By combining (28a) and (28b), we obtain

(1− 2ka − 2Tkrτ1)h− 2(T + τ1)− [Tkr + krτ1 + 2krka

∣∣∣τ2 − τ1

∣∣∣]h2 > 0 (29)

Due to that Tkr + krτ1 + 2krka|τ2 − τ1|> 0 , (29) is reduced to

(1− 2ka − 2Tkrτ1)h− 2(T + τ1) > 0 (30)

After some simplifications, the bound of the time headway is given by

h > hA,min =
2(T + τ1)

1− 2ka − 2Tkrτ1
(31)

This completes the proof of Theorem 1. �

Remark 3. Theorem 1 provides a sufficient condition to guarantee the string stability of the vehicular
platoon with sensing delay and communication delay, no matter how large the frequencyωof
the leader vehicle’s maneuver is. Moreover, Theorem 1 reveals that both the sensing delay and
communication delay have a negative impact on the string stability of the platoon and restrict the
available ranges of selecting the controller gains kr, kv, ka.

Remark 4. Theorem 1 deduces the minimum time headway of the vehicular platoon for ω > 0 when
the string stability conditions are satisfied. By taking into account the objective of enhancing road
capacity, it is desirable to set the time headway as close as possible tohA,min. By doing so, the platoon
can achieve a high level of efficiency in utilizing the available road space while maintaining the
string stability.

In practice, the leader vehicle is unlikely to maneuver with high frequency due to
the physical and mechanical constraints. Most of the energy of the spacing errors is in the
region of low frequency, so this region is most critical for analyzing the string stability. Next,
we only consider the low-frequency maneuver of the leader vehicle, aiming at providing a
more practical string stability criterion.

Theorem 2. For the low frequency ω satisfying sin(τkω) > 0 and cos(τkω) > 0, k = 1, 2, the
closed–loop platoon dynamics described by (12) are string–stable if one of the following conditions
is satisfied.

∆ < 0 ∧ β6 > 0 ∧ β2 > 0 (32a)

∆ ≥ 0 ∧ β6 > 0 ∧ β4 > 0 ∧ β2 > 0 (32b)

where 
∆ = β

2
4 − 4krβ6β2,

β6 = T2 − 2Tkaτ2 − kaτ2
2 ,

β4 = 1− 2Thkr − 2Tkv + 2ka − 2(hkr + kv)τ1 + θ,

θ =

{
0, τ1 ≤ τ2

2hkrka(τ1 − τ2), τ1 > τ2
.

With respect to the string stability conditions (32), the bound of the time headway is given by

h > hL,min =
2(T + τ1)

1 + 2ka
(33)
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Proof. According to the assumption of Theorem 2, there exist that sin(τkω) > 0,− sin(τkω) >
−τkω, cos(τkω) = 1− 2 sin2(0.5τkω) > 1− 0.5τ2

k ω2, and − cos(τkω) > −1, k = 1, 2. Thus,
the inequality in (26) can be simplified as

|M + N|2 − |N|2 ≥ β6ω6 + β4ω4 + krβ2ω2 ≥ 0 (34)

When the inequality (34) is established, the string stability conditions for the low
frequency ω can be obtained as (32a) and (32b).

Then, for low–frequency maneuver, the bound of the time headway (33) can be
deduced from (32b). It is assumed that ∆ ≥ 0 and β6 > 0. β4 > 0 and β2 > 0 can be
rewritten as

kv >
1
h
− hkr

2
(35a)

kv <
1− 2Thkr + 2ka − 2hkrτ1 + θ

2(T + τ1)
(35b)

Since that θ is different for the situations that τ1 < τ2 and τ1 > τ2, these two situations
are analyzed as follows, respectively.

Firstly, we consider the situation that τ1 < τ2, i.e., θ = 0. By combining (35a) and (35b),
one achieves

h(1 + 2ka)− 2(T + τ1)− h2kr(T + τ1) > 0 (36)

Due to that T + τ1 > 0, the bound of the time headway for low frequency (33) can be
obtained by reorganizing (36).

Secondly, by considering the other situation that τ1 > τ2, i.e., θ = 2hkrka(τ1 − τ2), we
combine (35a) and (35b) to achieve

h(1 + 2ka)− 2(T + τ1)− h2kr[τ1 + T − 2ka(τ1 − τ2)] > 0 (37)

By assuming that T > (2ka − 1)τ1 − 2kaτ2, the bound of the time headway can still
be represented by (33), which is the same as the result of the situation that τ1 < τ2. Thus,
for the above two situations that τ1 < τ2 and τ1 > τ2, the bound of the time headway for
low-frequency can be both derived as (33). �

Remark 5. Theorem 2 provides a sufficient condition to guarantee the string stability of the
vehicular platoon for the region of low frequency, in which most of the energy of the spacing errors
exists. Compared to Theorem 1 that no matter how large the frequency of the leader vehicle’s
maneuver is, Theorem 2 is more practical. Theorem 2 relaxes the constraints of the controller
gains kr, kv, ka, which can be observed by comparing (32) with (24), so it benefits the controller
synthesis for the vehicular platoon with sensing delay and communication delay.

Remark 6. By comparing the bound of the time headway for all frequency (25) and that for
low frequency (33), it is found that hL,min in Theorem 2 is smaller than hA,min in Theorem 1
when τ1 < 2ka/Tkr. It means that the time headway of the vehicular platoon can be further reduced
to improve road capacity in practice.

Remark 7. The lower bound of the time headway derived in Theorem 2 is similar to the recent
research [29], but there are distinctions between the two results. In [29], on the account of neglecting
the impact of low frequency on the string stability, hL,min is seemed suitable for all frequencies.
On the contrary, we reveal that hL,min just appears at low frequency.

5. Numerical Simulations

In this section, numerical simulations are implemented to verify the correctness of the
main results. A vehicular platoon including five followers and one leader is considered
under PF topology. The main parameters, including the time constant of the drivetrain [35],
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time headway [36], and controller gains [28] are provided in Table 1. These parameters
satisfy Lemma 1, so the vehicular platoon is internally stable for the delay–free case.

Table 1. Vehicular platoon and controller parameters.

Parameter Description Value Unit

T Time constant of the drivetrain 0.4 s
d Standstill spacing 10 m
h Time headway 2 s

vmax Maximum velocity 55.6 m/s
vmin Minimum velocity 0 m/s

kr, kv, ka Controller gains 0.2, 0.9, 0.05 -

In the following, we conduct two types of simulations to evaluate the internal stability
and string stability of the vehicular platoon with sensing delay and communication delay.

5.1. Internal Stability Verification

In this simulation, the leader vehicle maneuvers at a constant velocity of 25 m/s
(i.e., 90 km/h). By utilizing our proposed internal stability analysis method, the kernel
and offspring hypersurfaces of the CTCR diagram are depicted in Figure 3. The kernel
hypersurfaces (KHs) and offspring hypersurfaces (OHs) are represented as red and blue,
respectively. The stable region is marked as the shaded zone in Figure 3b, which is an
exact and exhaustive stability map for the vehicular platoon with sensing delay and
communication delay. It is remarked that there is no stable region outside the shaded zone.
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space representation.

In order to verify the results, we consider two different points “a” (i.e., < τ1, τ2 >=< 0.4 s,
2 s >) and “b” (i.e., < τ1, τ2 > = < 2 s, 2 s >), which are inside and outside the stable
region, respectively. The spacing error and velocity of the vehicles for the point “a” are
exhibited in Figure 4, and those for the point “b” are exhibited in Figure 5. It is seen that
the spacing errors and velocities of the follower vehicles converge in Figure 4, such that the
internal stability is guaranteed. On the contrary, the spacing errors and velocities diverge
in Figure 5, so the instability occurs. Thus, the simulation results verify the effectiveness of
our proposed internal stability analysis method.
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Furthermore, we compare the computational efficiency of our proposed Dixon re-
sultant matrix–based method to that of the other two state–of–the–art methods, i.e., the
Sylvester resultant matrix-based method [21] and ACE combined with Kronecker sum-
mation [22]. The three methods are all combined with the CTCR paradigm to compute
the ETDMs for the identical vehicular platoon. The three programs are simulated in an
identical computer, which has a 2.93 GHz Intel Core 2 Duo and 4 GB RAM, and has Matlab
2017a installed. Simulation time is exhibited in Table 2. It is seen that our proposed method
consumes the least simulation time. The simulation time of our proposed method is less
than that of the Sylvester resultant matrix–based method by two orders of magnitude, and
less than that of ACE combined with Kronecker summation by three orders of magnitude.
In conclusion, the computational burden of applying the CTCR paradigm to compute the
ETDMs is elegantly reduced by our proposed method.

Table 2. Simulation time.

Method Simulation Time (min)

The proposed method 0.05
Sylvester resultant matrix–based method in [21] 2.1

ACE combined with Kronecker summation in [22] 27.3

5.2. String Stability Verification

The main results of the string stability conditions and the bound of the time headway
derived in Theorem 1 and Theorem 2 are verified in Case 1 and Case 2, respectively.
The sensing delay and communication delay are set as < τ1, τ2 > = < 0.01 s, 0.1 s >,
which satisfy the string stability conditions (24b) and (32b) with the parameters in Table 1.
Meanwhile, the acceleration and deceleration of the leader vehicle are considered as the
perturbations of the vehicular platoon.
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Case 1: The sinusoidal perturbations are applied as the acceleration of the leader
vehicle, which are arranged as

a0(t) =


sin(π4 t) m/s2, 20 s ≤ t ≤ 36 s
−2 sin(π4 t) m/s2, 80 s ≤ t ≤ 96 s
0, otherwise.

(38)

With the vehicular platoon and controller parameters in Table 1, the bound of the
time headway (25) is hA,min = 0.9127 s. To satisfy the string stability conditions derived
in Theorem 1, we set the time headway as h = 1.5964 s > hA,min. The performance of
the vehicular platoon is given in Figure 6. It is seen that the spacing errors decay when
propagating along the vehicle string, which illustrates the correctness of the string stability
conditions proposed in Theorem 1. On the other hand, by choosing h = 0.7764 s < hA,min,
the string stability of the vehicular platoon can not be guaranteed, as shown in Figure 7.
Thus, the bound of the time headway (25) is valid.
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Figure 6. Performance of the vehicular platoon with h > hA,min: (a) Spacing error. (b) Velocity.
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Figure 7. Performance of the vehicular platoon with h < hA,min: (a) Spacing error. (b) Velocity.

Case 2: To examine the main results proposed in Theorem 2, we reduce the frequency of
the perturbations from 1/4 rad/s to 1/16 rad/s, and hence the low–frequency perturbations
are given by

a0(t) =


sin( π

16 t) m/s2, 20 s ≤ t ≤ 36 s
−2 sin( π

16 t) m/s2, 80 s ≤ t ≤ 96 s
0, otherwise.

(39)

Compared to Case 1, the bound of the time headway for low frequency (33) can be
reduced to hL,min= 0.7455 s. The time headway is set as h = 0.7746 s > hL,min in Case 2,
which is unavailable to guarantee the string stability according to Theorem 2. Then, for the
vehicular platoon with the low–frequency perturbations, the spacing errors are attenuated
among the followers, as shown in Figure 8. The result illustrates that a lower time headway
can be used to hold the string stability for the low–frequency perturbations. After that, by
choosing that h = 0.5432 s < hL,min, the vehicular platoon is not string–stable in Figure 9.
Thus, the string stability conditions and the lower bound of the time headway derived in
Theorem 2 are validated as effective.
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Figure 8. Performance of the vehicular platoon influenced by low–frequency perturbations with
hL,min < h < hA,min: (a) Spacing error. (b) Velocity.
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Figure 9. Performance of the vehicular platoon influenced by low–frequency perturbations with
h < hL,min: (a) Spacing error. (b) Velocity.

Case 3: In this case, the leader vehicle undergoes the “acceleration–cruise–brake”
scenario, which is more commonly used in the real world. The acceleration and deceleration
of the leader vehicle are given by

a0(t) =


1 m/s2, 20 s ≤ t ≤ 23 s
−2 m/s2, 80 s ≤ t ≤ 83 s
0, otherwise.

(40)

It is obvious that the acceleration and deceleration of the leader vehicle in this scenario
are the low–frequency perturbations. Thus, the time headway is set as h = 0.7746 s > hL,min,
which is available to guarantee the string stability. To demonstrate the practical significance
of our proposed results for the vehicular platoon control, an additional simulation is
performed under the above three cases from the perspective of the tracking performance
and ride comfort, where the string stability conditions are satisfied. The definitions of the
above performances are designed according to [37].

Tracking performance:

JTi = ωe

∞

∑
t=0

e2
i (t) + ωv

∞

∑
t=0

(vi(t)− vi−1(t))
2 (41)

Ride comfort:

JCi = ωc

∞

∑
t=0

( .
ai(t)

)2 (42)

where ωe = 0.01, ωv = 0.01, and ωc = 0.001 are the weighting parameters of the spacing
error, relative velocity, and derivative of acceleration, respectively.

Table 3 shows the simulation results of the above three cases. For the tracking perfor-
mance, the values under the three cases decrease with the vehicle index, illustrating that
the spacing errors and relative velocity errors decrease upstream, which also states that
the vehicular platoon is string-stable. Then, one can see that the values of JTi and JCi of
Case 2 are smaller than that of Case 1. This means that when subjected to the sinusoidal
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perturbations, the vehicular platoon for low frequency has better properties in the tracking
performance and ride comfort than that for high frequency. Moreover, the values of JTi
and JCi of Case 2 are smaller than those of Case 3. This means that when subjected to
low frequency, the vehicular platoon under the sinusoidal perturbations exhibits better
performance indicators than that in the “acceleration–cruise–brake” scenarios. The above
statistical evaluation is conducted on the vehicular platoon that satisfies the string stability
conditions in the three different scenarios, and indicates the practical significance of our
proposed results for the vehicular platoon control.

Table 3. The tracking performance and ride comfort in the different scenarios.

Vehicle Index
Tracking Performance Ride Comfort

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

1 46.4875 14.9060 23.2915 0.5238 0.1196 0.5120
2 35.3689 13.6805 22.3953 0.2825 0.0748 0.3605
3 27.9918 12.6983 22.0915 0.1614 0.0557 0.2972
4 22.9289 11.8603 22.0800 0.0949 0.0442 0.2593
5 19.3520 11.1278 22.0581 0.0568 0.0363 0.2345

6. Conclusions

For a vehicular platoon in the presence of sensing delay and communication delay,
this paper deduces a necessary and sufficient internal stability condition and two types
of sufficient string stability conditions. In the internal stability analysis, the ETDMs are
obtained by revealing the kernel and offspring hypersurfaces of the CTCR paradigm, in
which the Dixon resultant is utilized instead of the well–known Sylvester resultant, and
then the computational burden is reduced significantly. The strength of our proposed
method is exhibited by comparative simulation that the simulation time of our proposed
method of computing the ETDMs is just 0.05 min, which is less than that of the Sylvester
resultant matrix–based method by two orders of magnitude, and less than that of ACE
combined with Kronecker summation by three orders of magnitude. In the string stability
analysis, we provide the results for the situation no matter how large the frequency of the
leader vehicle’s maneuver is. Furthermore, a more practical string stability condition is
studied by considering only the region of low frequency, where most of the energy of the
spacing errors exists. Based on this, a lower bound of the time headway is deduced for
low frequency, which can be used to increase road capacity and decrease fuel consumption.
Simulation results show that in different scenarios, the spacing errors propagate along
the vehicular platoon without divergence when the time headways are larger than our
proposed bounds.

In this article, we focus on conducting the stability analysis of the homogeneous
vehicular platoon with the sensing delay and communication delay. However, vehicular
platoons on the real–world roads may be composed of different types of vehicles. Hence,
our future work is to analyze the internal and string stability of the heterogeneous vehicular
platoon with the sensing delay and communication delay.
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