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Abstract: Water scarcity is a challenging global risk. Urban wastewater treatment technologies,
which utilize processes based on single-stage ultrafiltration (UF) or nanofiltration (NF), have the
potential to offer lean-and-green cost-effective solutions. Robustifying the effectiveness of water
treatment is a complex multidimensional characteristic problem. In this study, a non-linear Taguchi-
type orthogonal-array (OA) sampler is enriched with an emergent stigmergic clustering procedure
to conduct the screening/optimization of multiple UF/NF aquametric performance metrics. The
stochastic solver employs the Databionic swarm intelligence routine to classify the resulting multi-
response dataset. Next, a cluster separation measure, the Davies–Bouldin index, is used to evaluate
input and output relationships. The self-organized bionic-classifier data-partition appropriateness
is matched for signatures between the emergent stigmergic clustering memberships and the OA
factorial vector sequences. To illustrate the proposed methodology, recently-published multi-response
multifactorial L9(34) OA-planned experiments from two interesting UF-/NF-membrane processes are
examined. In the study, seven UF-membrane process characteristics and six NF-membrane process
characteristics are tested (1) in relationship to four controlling factors and (2) to synchronously
evaluate individual factorial curvatures. The results are compared with other ordinary clustering
methods and their performances are discussed. The unsupervised robust bionic prediction reveals
that the permeate flux influences both the UF-/NF-membrane process performances. For the UF
process and a three-cluster model, the Davies–Bouldin index was minimized at values of 1.89 and 1.27
for the centroid and medoid centrotypes, respectively. For the NF process and a two-cluster model,
the Davies–Bouldin index was minimized for both centrotypes at values close to 0.4, which was fairly
close to the self-validation value. The advantage of this proposed data-centric engineering scheme
relies on its emergent and self-organized clustering capability, which retraces its appropriateness to
the fractional factorial rigid structure and, hence, it may become useful for screening and optimizing
small-data wastewater operating conditions.

Keywords: ultrafitration; nanofiltration; lean and green; Taguchi methods; unsupervised classifier;
swarm intelligence; emergence; self-organization; bionic clustering; similarity measure; machine
learning

1. Introduction

The planetary priorities for clean water and sanitation have been established by the
United Nations in the Sustainable Development Goal (SDG) #6: “80% of wastewater goes
into waterways without adequate treatment” [1]. “Since water stress affects more than
2 billion people (with this figure projected to increase)”, consequently, “80% of the countries
have laid the foundations for integrated water resources management”. Already, more
than four billion people experience the effects of water scarcity as a two-end problem:
(1) water shortage due to water unavailability, and (2) water stress due to growing con-
sumption [2–4]. A water footing framework facilitates the tracking down and mapping of
water flows, thus permitting a resource assessment from an environmental management
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perspective [5–7]. There is a strong interplay among the different framework aspects,
which implicate the dimensions of the water quantity and quality on the ‘three-colored’
water-footing avenues: (1) green (rainwater), (2) blue (ground and surface water) and
(3) grey (polluted water) [8–16]. As agriculture may consume up to 92% of the green, blue
and grey water-footing flows, this area becomes the spotlight for finding opportunities to
manage water availability and consumption [17–21]. Grey water attracts a fair share of the
evolving technological ingenuity due to the innate complexities of coping with wastewater
physicochemical phenomena. Wastewater reuse is indispensable, particularly when there
are great supply shortages in arid and semi-arid regions [22–27]. Improve wastewater
recycling efficiency is imperative to continuously developing and optimizing a broad range
of older and current separation treatments [28–32]. Water separation techniques that exploit
the modern advances of nanofiltration and ultrafiltration processes are becoming popular in
containing pollution by regulating contaminant removal from wastewater systems [33–45].

To achieve sustainable development goals, in an endeavor to curb pollution, innovative
solutions (SDG #9) should encompass lean, green and artificial intelligence technologies,
which are proven in boosting operational performance in production [46–52]. Green, lean
and six sigma (modern quality management) practices can be the catalysts for orches-
trating the manufacturing of prosperous products by optimizing upstream processes. By
combining a rapid-response mentality with outcome effectuation through proper project
selection rules, they are bound to assist operations in remaining profitable in a circular
economy [53,54]. Generally speaking, waste reduction projects require an integrated lean–
green approach to be effective in deploying and monitoring the right environmental mea-
sures and, hence, in accomplishing the aim of process performance enhancement [55,56].
Lean six sigma projects, which are supported by artificial intelligence know-how, lead to
superior business results because they accelerate the innovation cycle time [57,58].

The sustainability factor is vital in improving water purification processes [59]; it
stands as a broad indicator which tracks down checks and balances in production while as-
certaining which operations are conducted in an environmentally sound manner.
Ultrafiltration- and nanofiltration-membrane processes cover a wide range of water purity
demands to complement reverse osmosis treatment capabilities. The tailored design of
nanofiltration membranes can push the limits of separation by optimizing their property
performance relationships [60]. At any rate, it is noted that optimizing water quality is a
challenging task because of the ever-present influence and extent of uncertainty in the influx
water volume [61]. A new tactic to optimize water recycling efficiency, which is chiefly
intended for irrigation purposes, is to allow ultrafiltration and nanofiltration processes to
compete with each other against a particular outcome [62]. Then, the most appropriate
process is selected, thus achieving an optimal filtering performance. For this purpose, intro-
ducing artificial intelligence methods in screening and optimization wastewater recovery
studies could unravel the arduous part of data manipulation and model prediction that
wastewater treatment professionals and engineers are often confronted with [63].

An aquametric analysis is a multivariate environmental problem and, thus, it requires
the implementation of formal experimental design and statistical inference methods to
comprehend it [64,65]. Since the screening and optimization of recycling efficiencies are
scaled at a plant level, industrial-type experimentation becomes pivotal in understanding,
in an empirical way, how the specific wastewater treatment behaves. Engineers and sci-
entists adopt fractional factorial designs (FFDs) to reduce the amount of research work
by focusing on the minimization of the number of performed trials [66,67]. Clearly, it is
a lean-and-green approach because it reduces: (1) the use of trial materials, (2) the waste
generated from untuned processes, (3) the waste generated from unstructured product
trials, (4) the industrial research manhours, (5) equipment unavailability, (6) production
rescheduling and (7) the total operations research costs. FFDs also bring the agile aspect
into the experimentation because they are ‘by-design’ generic, adaptable and responsive
schemes and, hence, they may be applied and explained to any operational situation which
is worthwhile to monitor and improve. Orthogonal arrays (OAs) are members of the FFD
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family of trial planners in the field of design of experiments (DOE) [66,67]. OAs have
found a niche in the contemporary robust engineering philosophy, which asserts that the
‘designed-in’ quality aspect in products is redeemed with rapid product launches in the
market and lower production costs [68]. A practical DOE approach, known as the Taguchi
method, recommends: (1) OAs as trial planners, (2) data reduction methods based on repli-
cate data means and signal-to-noise ratios (SNRs) and (3) analysis of variance (ANOVA)
to carry out the multifactorial statistical treatment [67]. Even though the Taguchi quality
philosophy suggests that the experiments should be carried out on the production line to be
relevant and effective, the research activities are materialized by fast “off-line” trials. This
means that the targeted process(es) should be isolated for ‘quick-gains’ research projects.
Consequently, production is interrupted to divert production machinery to be utilized in
experiments. Programming machinery downtime and equipment unavailability for pro-
duction trials disrupts the regular production line schedule. Therefore, the industrial trials
are brief, and they are executed with great urgency and the minimum possible duration.

This work will undertake the evaluation two separation systems, which rely on
published ultrafiltration- and nanofiltration-membrane technologies, using a state-of-the-art
artificial intelligence method. The operational demands are anticipated to impose limited
access to the wastewater treatment facility for lengthy experiments to be conducted, since
they would incur noticeable downtime losses. Non-linear OAs have been recommended
to formulate the experimental recipes for the examined controlling factors in a published
study [62]. This is because filtration phenomena may introduce curvature dependencies
into the multivariate input–output relationships; non-linear OAs offer a minimum-effort
opportunity to capture strong deviations from linearity. Moreover, lone replicates are
planned for both the tested filtration processes in order to succeed in gaining additional
resource and time savings [62]. Running the trials in the saturation mode, the experimenter
aspires to extract the maximum information from the implemented OA scheme [66]. In
accordance with the classical Taguchi method, the screening and optimization tasks will be
conducted in a combined single effort [67]. This means extra resource and time savings
are realized because a two-task project is reduced to just a single one; all data collection is
completed in a single session. Meanwhile, preparing unreplicated factorial experiments in
order to learn how to profile intricate water processes and improve crop yield is neither
a new nor a rare prospect [69–71]. Nevertheless, the analysis toolset for treating generic
unreplicated OA datasets is fairly elaborate and extensive [72]. It is markedly differentiated
from being a simple multifactorial ANOVA exercise by the fact that saturated OAs do not
permit the estimation of the experimental error.

In the illustrated case study, it is the optimal aquametric profile of a combination of irri-
gation water indices that is sought. Multiple water quality characteristics will be considered
for both separation methods, each being relative to the specific wastewater filtration process.
Statistical techniques that could handle the simultaneous screening and optimization of
several process characteristics are well known and have been applied in chemical systems in
the past [73,74]. This work will involve synchronous multi-characteristic aquametrics with
the proviso that the investigated group of water process characteristics may be reducible
to a smaller list of characteristics before the screening/optimization task commences. The
ensuing reduction in output variates will be determined by the potential presence of cor-
relations among the process characteristics and the extent of the variability within the
response dataset. Moreover, the perspective will be different in this work, because the
aquametric profiling will be framed such that a reverse-matching classification solution
will be pursued first. No formal analysis of variance or regression methods are neces-
sitated after this step. Technically, it is insinuated that classification may be substituted
for both screening and optimization tasks in structured DOE datasets. The selection of a
self-organized stochastic engine with several attractive properties is crucial to maneuver
around the obscured effect of the uncertainty that is hidden behind the unreplicated, satu-
rated, multivariate OA dataset [75,76]. The probabilities of ‘becoming’ are hinged upon
the arrow of time and they are seasoned to actualities as the dual agents of emergence and
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self-organization take over the wheel of the proposed bionic solver. Both cultures of data
analysis (statistical/algorithmic) are used to create a statistical hierarchy of the profiled
effects [77]. The main component of the stochastic solver emphasizes the robustness of the
implemented algorithmic engine. The most striking feature is the negation of the necessity
for a global objective function to guide the solver procedure. This lessens the possibility of
subjectively selecting a route to narrow down the screening/optimization path; it makes
the solution more abstract and it definitely differentiates it from other smart aquametric
approaches [78–80].

The recommended algorithm that will be tested on the non-linear OAs was devised
by Thrun and Ultsch [81]. It is a swarm intelligence solver that relies on self-organization
to propel the quest for an optimal clustering outcome. The solution grows out of the
emergence opportunities which are bided on by the stochastic fluctuations in the scrambling
databots (output data points) [82]. Even though the three-part published algorithm was
developed to handle a multidimensional-scaling big-data classification problem, it is the
small-and-dense data problem that is alternatively explored in this work. Regular swarm
technology was not contemplated in this endeavor due to the reported issues emanating
from such routines with regards to the solution accuracy in multi-objective applications
and the determination of stopping criteria [81]. Clearly, by design, the preset (OA) factorial
vectors are predisposed to ensure that all dataset partitions are viable in conformation to
the richness property. However, the topographical map facility of the algorithm, which
corrects for the two-dimensional projection of the databot assemblage errors by resorting
to a hypsometric tint depiction, becomes meaningless for such a small dataset and it will
not be taken advantage of.

The implemented intelligent engine will undergo a basic ‘psychometric’ pre-screening
to ameliorate the ‘acumen’ of the solver. The algorithmic pre-search preparation phase
will be enriched with a round of multi-response proximity analysis given that the distance
function to be introduced into the routine is unknown and open to suggestions [83]. Then,
the final selection of the preferred distance measure will be confirmed by optimizing the
goodness-of-fit of the nominated distance measures under the nonmetric assumption [84].
Since the natural clusters are identified by similarities based on a favorable distance metric,
true clusters may be retrieved. Then, the influence of each controlling factor may be
backtracked by matching the clustered dataset to each individual factorial vector in an
attempt to pair them through an appropriate cluster separation measure. The Davies–
Bouldin index [85] will be used in a rather unorthodox manner to directly approximate
the magnitude of the similarity between the clustered mini-dataset to the (OA) factorial
vector element sequence that creates it. It is the OA-induced factorial ‘pre-clustering’ that
offers a new way to fingerprint a clustered dataset structure. As a screening/optimization
exercise, it is intriguing, because the implemented bionic technology, which is borrowed
to facilitate the expediting of the multi-characteristic multifactorial analysis, it actually
demonstrates that a factorial group hierarchy may emerge without piloting the solver by a
debatable objective function [81], but, by using a smart combination of swarm intelligence,
self-organization and non-cooperative game theory [86]. It is the intrinsic properties of
randomness, irreducibility and the Nash equilibrium in non-cooperative game theory in the
emergent stigmergic classification solver that solidify the non-parametric (robust) annealing
scheme. The rest of the paper is organized as follows: (1) the methodology for matching
the bionic optimal clustering to the OA factorial vectors is outlined, (2) the datacentric
engineering analysis is presented in the Results section that covers the performance of ultra-
and nano-filtration membrane wastewater processes, (3) a Discussion section is provided to
re-evaluate the outcomes by checking the basic assumptions and comparing the solutions
with common clustering techniques, and (4) the key findings and future work are included
in a Conclusion section.
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2. Materials and Methods
2.1. Orthogonal Screening for Comparing Non-Linear Effects between Two Filtration Processes

The selection of a proper non-linear OA trial planner should be compatible with a
comprehensive DOE data-centric engineering strategy. This would permit the effective or-
ganizing of a fractional factorial screening phase, which is a prerequisite part for a discovery
project procedure [66,67]. Adopting the use of FFD-based planners, engineering researchers
anticipate the acceleration of the decision-making process cycle, which is afforded through
an economic programming of timely scheduled trials. In industrial experimentation, the
trial workload is the main culprit for creating bottlenecks in the knowledge discovery
process. Thus, OA samplers offer a way to relieve the mounting bulk of tests, which are
often required to comprehend complex physicochemical separation phenomena. Custom-
arily, the deployment of OA samplers significantly reduces the demand for generating
extensive datasets so as to empirically delineate the underlying physics of a manufacturing
process. It is the structured aspect of the OAs along with their compactness that allow
the creation of miniature hierarchical landscapes—quickly molded—with the purpose of
assessing the stochastic influence of the examined effects. The standardized motif of an
OA sampler allows a single prescribed matrix to allocate a minimum number of n trial
runs to be conducted in order to evaluate a number of as many as m examined controlling
factors. The trial-run schedule is usually a small fraction of the regular full-factorial recipe
combinations. An advantageous feature of linear OA planners is that the recipe list can be
driven to factorial saturation according to the relationship n = m + 1.

Even more intriguing is the situation for non-linear OAs, where the detection of curva-
ture effects is internally pre-accommodated in the sampler; factorial saturation is attained
for a number of trials as long as: n = 1 + 2 × m. This is a very important aspect in the devel-
opment of this study, because two different filtration process will have their performances
screened and compared by commonly recommended controlling factors. The novelty here
is that while the suggested factors are shared in both processes, their adjustments are set in
a mixed layout to reflect the diversification between the two applications. This means that
a group of factors will be tested on exactly the same control levels, yet in another group
of factors, the settings will be differentiated to capture the specific separation dynamics
that distinguishes each studied process. Therefore, the proposed data-centric engineering
approach intends to satisfy the scope of comparing the stochastic non-linear profiles of two
competitive filtration processes, which are examined with the same input factors but with
mixed input settings. The original Taguchi-type L9(34) OA, which will be demonstrated in
this work, will be utilized at its maximum sampling efficiency condition, i.e., by imposing
factorial saturation and trial unreplication. A substantial workload reduction is realized, as
the L9(34)-OA-scheduled trials necessitate only 11% of the respective full-factorial dataset.

2.2. The Naïve OA Sampler/Databionic-Swarm Classifier Profiler

To initiate the analysis procedure, the profiled m controlling factors are symbolized
as Xj for 1 ≤ j ≤ m (m ε N), and their respective factor settings are denoted as xij for
1 ≤ i ≤ n (n ∈ N) and 1 ≤ j ≤ m. Non-linear OA schemes are pre-assigned with kj levels
for the jth factor (1 ≤ j ≤ m) and 3 ≤ kj ≤ Kj (Kj ε N). The non-linear OA matrix is a
structured input array in which each participating column Xj may be visualized to play
the role of a preformed (standard) “membership identification” vector (Table 1). The OA
sampler dictates all combinations of the factor settings in the OA recipes. The generated
output matrix {ric}, with 1≤ i ≤ n and 1 ≤ c ≤ L (L ∈ N), is constructed by as many as L
multiple characteristic responses, Rc; each c-th matrix column is a single response vector
(Table 1). The data reduction step is initiated by collapsing the output matrix to a single
membership identification vector by implementing the Databionic swarm intelligence
classifier [81,82]. The Databionic swarm solver pilots the conversion of the small-and-
structured multi-characteristic dataset to a single vector, who’s entries are just clustered
memberships. To promptly steer the stigmergic classification process, it utilizes the unified
effect of three powerful nature-inspired agents: (1) emergence, (2) self-organization and
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(3) swarm intelligence. The transformed cluster vector, Id, is partitioned into a total number
of Z clusters with cluster members li | 1 ≤ li ≤ Z (Z ε N) and 1 ≤ i ≤ n (Table 1). Usually,
the maximum number of the tested clusters and the planned number of the factorial
settings are anticipated to be equal, but this is not a restricting condition to terminating the
classification process.

Table 1. Construction of the OA cluster-partitioned vector, including controlling factors (input),
multiple characteristics (output) and partitioned memberships.

run # X1 X2 . . . Xm
1 x11 x12 . . . x1m
2 x21 x22 . . . x2m
.
.
.

.

.

.

.

.

.
. . .

.

.

.
n xn1 xn2 . . . xnm


→



run # R1 R2 . . . RL
1 r11 r12 . . . r1L
2 r21 r22 . . . r2L
.
.
.

.

.

.

.

.

.
. . .

.

.

.
n rn1 rn2 . . . rnL


→



run # Id
1 l1
2 l2
. .
. .
. .
n ln


It is the ‘naïve processing’ tactic that enters at this point in the stigmergic data analysis

procedure. As suggested previously, the Xj vectors in an OA planner provide a mapping
of where in the output identification vector, Id, the bionically clustered members ought to
be located, if the partitions are separated enough to distinguish among the cluster centers.
Thus, the tactic here is to find out whether the output partitioning of the multi-response
dataset is similar to the rule (OA scheduler) that was imposed to create them (Figure 1). If
the number of controlling factors is m, then, there should be m times the application of the
proposed similarity measure estimations between the factorial vectors and the partitioned
output vector sequence. The Davies–Bouldin cluster separation measure [85] is adopted
for this proposed methodology because of its two attractive features: (1) the measure does
not depend on the number of the examined clusters, and (2) the measure is not affected
by the method that is deployed to cluster the multi-response dataset. Since the Davies–
Bouldin index is used to quantify the appropriateness of the partitions against the dataset,
it may also be applied to infer the appropriateness of the partitions against the rule of
the factorial (OA) vectors. For that matter, the comparison becomes meaningful since the
unsupervised and bionically clustered sequence is synchronously rated against a standard
measure stick. Thus, the efficacy of the investigated controlling factors is easily contrasted
by the magnitude of the Davies–Bouldin index. The smaller the Davies–Bouldin index
value is, the sharper the separation among the clusters may appear to be.

Figure 1. Factorial input cluster output similarity matching process.

It was due to the desirable inner workings of the Databionic classifier that the solver
was entrusted to undertake the division of a small-and-dense multifactorial multi- char-
acteristic non-linear OA dataset. The superior advantage was that the built-in emergent
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stigmergic tracker was capable of identifying globally optimized target states without
being navigated by a declared objective function. Its annealing driver steered the solution
toward a Nash equilibrium [86], which was successfully attained by harmoniously satis-
fying game theory agent interaction transactions and solver symmetry constraints. The
solver advances by utilizing three distinct algorithmic components: (1) a parameter-free
2D projection engine, (2) a parameter-free high-dimensional-data visualization facility
and (3) a zero-sensitivity cluster-membership identifier. The challenge for this solver is
to overcome the drawbacks that emanate from the intrinsic ‘data smallness’ stipulation.
Consequently, the topographic map was not exploited in this methodology since the visual
databot-driven activities do not create dense enough data patterns to highlight a strong
portrayal of the distributed clusters in the hypsometric tint. Nonmetric multidimensional
scaling was assessed by carrying out the classical visual/computational Shepard–Kruskal
psychometric combo-approach [83,84]; the dissimilarity trends were plotted on Shepard
graphs, and the distance-measure selection assessment was conducted by minimizing
the Kruskal stress performance. To pre-screen for appropriate distance-measure models,
the mini OA dataset dissimilarity estimations were obtained after attempting to fit five
popular metrics in data-centric engineering: (1) the Euclidean distance, (2) the maximum
(Chebyshev) distance, (3) the Manhattan distance, (4) the Canberra distance and (5) the
Minkowski distance (p = 4). The structure type of the clusters was locked at the ‘compact’
preference to enable the execution of the Databionic swarm intelligence module [81]. The
position was set at the ‘Projected Points’, which is the automatic clustering projection option
in the Databionic ‘Pswarm’ algorithm. Both centroid and medoid versions of the bionic
dendrogram predictions were collected to verify the predictions.

2.3. The UF-/NF-Membrane Process Treatment Dataset Description

A modern urban wastewater treatment case study was selected to illustrate the pro-
posed data-centric screening/optimization method. The recycling paradigm was compre-
hensive because it incorporated several unique technical features. The primary motivation
that led to the consideration of the specific experimental work grew out of the prospect
of engaging, in parallel, double single-stage UF-/NF-membrane processes to treat the
complex filtration problem of improving water availability for irrigation purposes. The de-
sired feature of choosing a single non-linear Taguchi-type L9(34) OA sampler to formulate
the experimental recipes for both filtration treatments simultaneously had common-core
and diversified process design controls. Firstly, all four selected controlling factors were
common to both the investigated recycling processes. The four factors (Table 1 of ref. [62])
are briefly re-stated here and re-coded for convenience, accordingly, to aid in the data
analysis that follows: (1) membrane type (A), (2) cross-flow velocity (B), (3) temperature
(C) and (4) transmembrane pressure (D).

The ensuing analysis also retains the factorial settings in the same order as in the
original study, i.e., the first, second and third levels are assigned to the predetermined low,
medium and high setting values, respectively. Common factorial settings are shared for
both UF-/NF-membrane processes for two out of the four controlling factors: the cross-flow
velocity and the temperature. However, the blended input model requires different factorial
settings for the three types of the examined UF/NF membranes to complement the three
operating settings of the transmembrane pressure, which are distinct for the two filtration
processes. With the exemption of the membrane types, which were organized according
to a categorical ordinal scaling, the remaining parameters were continuous numerical
variables. In a similar fashion, there were common and exclusive process characteristics
for both filtration options, which were also analyzed in a differentiated manner. The six
process characteristics common to both filtration processes were: (1) the permeate flux
(j), (2) the electrical conductivity (EC), (3) the turbidity (Tu), (4) the total nitrogen content
(TN), (5) the total phosphorus content (TP) and (6) the NO3

− concentration. The permeate
flux was recorded as a random continuous dependent variable for both processes. The
rest of the five characteristics were also recorded in a differentiated manner, i.e., in terms
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of (1) concentrations for the UF-membrane process and (2) the removal efficiencies for
the NF-membrane process. The turbidity was recorded in nephelometric turbidity units
for the UF-membrane process experiments. Instead, a turbidity efficiency was estimated
from the permeate and feed solutions to indicate the final pollutant rejection rate of the
NF-membrane process as an additional measure to document the recycling efficiency
performance. An extra, seventh, quality characteristic for testing the UF-membrane process
performance was included, i.e., the sodium adsorption ratio (SAR), which was in ratio
units. Therefore, seven UF- and six NF-membrane process characteristics were monitored
in total.

From a data preparation viewpoint, there were several interesting aspects. For ob-
vious practical reasons, the planned L9(34) OA datasets were limited to single trial runs
(unreplicated dataset form). This is a reasonable decision which is taken to expedite the
scheduling and execution of industrial trials. It is also a lean-and-green aspect in mass
customization operations because of its potential to reduce (1) the consumption of the trial
resources and (2) the creation of waste. Proceeding to the data analysis, both datasets were
converted to signal-to-noise ratios, wherever continuous numerical measurements were
collected, and to omega transformation values, wherever efficiencies were recorded. The
former tactic was mostly related to the UF-membrane process measurements, while the
latter tactic was more predominant to the NF-membrane process dataset. Normally, to use
signal-to-noise ratios in a Taguchi-type factorial analysis, the condition of trial duplication
is required because it provides the minimum number of data points to complete the typical
mean and variance estimations. Moreover, attempting to compare the behaviors between
the two UF-/NF-membrane processes complicated matters, since different data reduction
measures were implicated. Hence, a great motivation for this work was to conduct the data
analysis procedure in absence of any data reduction scheme at all and, instead, to directly
manipulate the whole raw dataset at the same time. It is also a lean--and-agile element that
was introduced to the proposed approach because it eliminates focused pre-processing.

A likewise motivating aspect for proposing this new approach arose from the limitation
inherent to the Taguchi method to concurrently handle the adjustment of multiple process
characteristics. The UF-/NF-process performance screening/optimization problem was
treated in the published research as a by-design univariate screening/optimization problem.
Therefore, the experimenter needed to compromise a practical solution that quite possibly
compromised several conflicting control adjustments to satisfy the various outcomes that
were predicted from solving separately for each individual characteristic.

2.4. The Methodological Outline

The proposed methodology may be recapitulated as follows:

(1) Determine the relevant UF-/NF-membrane process characteristics that represent the
water recovery performance—adaptable to the specific application.

(2) Select a group of UF-/NF-membrane process controlling factors.
(3) Determine the minimum group of factor settings, which span the operational require-

ments, avoiding information loss due to ignored curvature effects.
(4) Program fast-track trials by deploying a suitable one-shot OA sampler that potentially

detects non-linear tendencies.
(5) Conduct the prescribed Taguchi-type OA recipes (step 4) and construct the multi-

characteristic mini-dataset.
(6) Pre-screen each characteristic response using visual information from the boxplot [87],

the QQ plot [88] and the bean plot [89].
(7) Inspect the characteristic data vectors for correlations and reduce accordingly the

number of responses by eliminating correlated characteristics.
(8) Pre-screen the number of candidate clusters by evaluating available distance measures,

employing visual and numerical tools: (1) the Shepard plot and (2) the Kruskal
stress estimations.
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(9) Obtain the cluster dendrogram and the Databionic-swarm-solver-labelled clusters for
the reduced-response OA dataset.

(10) Evaluate the cluster similarity (partitioning effectiveness) between the bionic cluster-
identification memberships and the pre-labelled OA factorial setting vectors by apply-
ing the Davies–Bouldin Index.

(11) Determine the hierarchy of the potent controlling effects between the processes.

2.5. The Computational Aids

Specialized computational work was executed on the statistical freeware platform
R (v. 4.3.1) [90]. The non-linear L9(34) OA array was constructed using the module
‘param.design()’ from the R-package ‘DoE.base’ (v. 1.2-2). The module ‘boxplot ()’ was
used from the R-package ‘graphics’ (v. 4.3.1) to obtain robust depictions for the seven
UF-membrane and the six NF-membrane process characteristics, respectively. To obtain
distribution motifs, the UF/NF process characteristics were pre-screened using bean plots
(R-package ‘beanplot()’ (v. 1.3.1)). The basic visual pre-screening was completed using the
R-package module qqplot(). An assortment of Shepard graphs and their computed Kruskal
stresses were vital in conducting the non-metric multi-dimensional scaling in order to
diagnose the suitability of the five considered distance measures (‘Euclidean’, ‘maximum’,
‘Manhattan’, ‘Canberra’ or ‘Minkowski’). Thus, the respective modules ‘isoMDS()’ and
‘Shepard()’ were utilized from the R-package ‘MASS’ (v. 7.3-60). The self-organized clus-
tering of the three UF process and the three NF process (reduced-response) mini-datasets
were achieved in each case by the implementation of the Databionic swarm intelligence
algorithm (R-package ‘DatabionicSwarm’ (v. 1.2.0)). The dendrogram visualization and the
cluster-membership-labelled vector was created by the module ‘DBSclustering()’. To effec-
tuate the polar stigmergic databot maneuvering, the module ‘Pswarm()’ was introduced
to complete the parameter-free stochastic 2D projection mapping. The parallel distance
matrix computation, using multiple threads, was facilitated by the R-package ‘parallelDist’
(v. 0.2.6). The Databionic ‘Projected-Points’ option required an intermediate distance matrix
processing, which was provided by the ‘GeneratePswarmVisualization()’ module. The
validation status of the cluster partitioning similarity of the two separate reduced-response
mini-datasets, against the same L9(34) OA individual factorial vectors, was attained by
figuring out the factorial dependencies that minimized the magnitude of Davies–Bouldin
index. The module ‘index.DB()’ from the R-package ‘clusterSim’ (v. 0.51-3) was used to
compute the Davies–Bouldin index.

3. Results
3.1. Visual Data Screening of The Multi-Characteristic Permeate Quality and Water
Recovery Efficiency
3.1.1. The Ultrafiltration Process

In Figure 2, boxplot depictions of the ultrafiltration process characteristics are shown
for immediate comparison. It became obvious that out of the seven responses, at least three
(permeate flux, electrical conductivity and SAR) strongly deviated from a typical symmetri-
cal distribution. It was only the turbidity data that apparently conformed to a symmetrical
shape. Empirically, this implies that computing location and dispersion estimates for screen-
ing and prediction purposes might require the involvement of more sophisticated data
manipulation treatments. Definitely, a second round of visual data screening using the bean
plot option offered more detailed data structure properties (Figure 3). The symmetrical
portrayal of the turbidity data was then more transparent. Due to the small data size, it
was also noted that the total nitrogen data spread could be described by an approximate
normal distribution. However, the remaining five responses exhibited diverse types of
non-normal behaviors that might not even exclude bimodality; the marked data location
was often situated between two discerned modes. Of course, a data screening phase may
not be complete without a QQ plot presentation of the tendencies for the seven output
characteristics. As shown in Figure 4, the QQ plots for the permeate flux, the SAR and
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the NO3
− concentration responses displayed the presence of outlier points with respect to

the drawn 95% confidence bands. It was noticed that the band width at the two response
extremes—for all seven graphs—was marginally separated. For instance, it can be seen that
for the case of the QQ plot for the permeate flux data, the two band ends could overlap,
which might suggest a mild or no effect. The QQ plots for the electrical conductivity and
the SAR data revealed a highly unbalanced dispersal of their respective data points around
their fitted line; this was in agreement with the conclusions reached from the two previous
graphical screenings.

Figure 2. Boxplot screening of the seven ultrafiltration process characteristics.

Figure 3. Bean plot screening of the seven ultrafiltration process characteristics.

3.1.2. The Nanofiltration Process

As shown in Figure 5, the boxplot portrayals demonstrated great differences between
the behaviors of the six nanofiltration process characteristics. The permeate flux, total
phosphorus and NO3

− concentration measurements exhibited strong unsymmetrical data
scattering, favoring either lower or higher values per case. Tendencies toward a lower
permeate flux values were common with ultra- and nanofiltration trials. The datapoint
groupings for the total phosphorus and the NO3

− concentration measurements did not
complement their behaviors in the two investigated processes. Moreover, the boxplots



Appl. Sci. 2023, 13, 11926 11 of 30

of the permeate flux, turbidity and total nitrogen content data were all characterized
by one extreme/outlier point, which could not be overlooked given that it influenced
the overall data reduction process by 11%. As shown in Figure 6, the corresponding
bean plot data screening conveyed a very vivid picture of the multifaceted behavior
that underscored each of the six process characteristics. Only the total nitrogen content
dataset could be assumed to behave normally. The permeate flux data were definitely
skewed, while the turbidity, the total phosphorus content and NO3

− concentration variables
appeared polarized, possibly implying a two-mode trend. A weak separation was observed
among the ultrafiltration turbidity experiments (Figure 3). The two-peak disposition for
the total phosphorus content was milder, as were the NO3

− concentration variables in
the ultrafiltration dataset. Useful information was gleaned from the QQ plot screening
(Figure 7). It became transparent that the permeate flux, the total phosphorus content and
the NO3

− concentration variables could be affected by the occurrence of outlier/extraneous
data points—contributions that collectively ranged from 33% to 56% of the total runs.
In spite of the turbidity exhibiting a tight confidence band, there was an extreme data
point that likely perturbed the data location and dispersion estimations. On the other
hand, the electrical conductivity data possessed substantial variability, as evidenced by its
consistently broader QQ plot confidence band.

Figure 4. QQ plot screening of the seven ultrafiltration process characteristics.

Figure 5. Boxplot screening of the six nanofiltration process characteristics.
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Figure 6. Bean plot screening of the six nanofiltration process characteristics.

Figure 7. QQ plot screening of the six nanofiltration process characteristics.

3.2. Nonparametric Characteristic Correlation Estimation and Characteristic Selection
on Efficiency
3.2.1. The Ultrafiltration Process

The possibility of correlation among the seven process characteristics was examined
by estimating the coefficient of correlation. During the model development phase, it was
instructive to identify and remove any correlated responses. According to the outcomes
of the previous subsection, data normality was not guaranteed for all the investigated
characteristics. In Table 2, the confidence intervals for Spearman’s ρ correlation coeffi-
cient [91], along with its estimated significance value, are evaluated. It appeared that there
was only a mediocre correlation (0.69), with a statistical significance at an error rate value of
0.05, and it was between the electrical conductivity and the total phosphorus content. The
relative relationships among the seven characteristic efficiencies were quantified based on
the robust estimations of the coefficient of variation—the recommended quartile coefficient
of dispersion (QCD) [92]. In Table 3, it is listed as follows: (1) the QCD estimation for all the
ultrafiltration process characteristics, (2) their squared values (robust version of the statisti-
cal efficiency) and (3) their cumulative relative efficiencies. It is clear that the turbidity, total
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nitrogen and NO3 content led to higher inefficiencies and, hence, they contributed to the
higher variabilities. The correlation of the electrical conductivity and the total phosphorous
content was not further assessed since their efficiency values were small, and they were
excluded from further consideration.

Table 2. Confidence intervals for Spearman’s ρ correlation coefficients of the seven ultrafiltration
process characteristics.

Spearman′s
Rho

Significance
(Two-Tailed)

95% Confidence Intervals
(Two-Tailed) a,b

Lower Upper

j—EC −0.017 0.966 −0.686 0.668
j—SAR −0.621 0.074 −0.914 0.096
j—Turb −0.134 0.731 −0.744 0.597
j—TN 0.343 0.366 −0.435 0.828
j—TP 0.294 0.442 −0.478 0.810
j—NO3 −0.322 0.398 −0.820 0.454
EC—SAR −0.179 0.645 −0.763 0.567
EC—Turb 0.201 0.604 −0.551 0.773
EC—TN −0.561 0.116 −0.897 0.188
EC—TP 0.689 0.040 0.022 0.932
EC—NO3 0.252 0.512 −0.512 0.794
SAR—Turb −0.180 0.644 −0.764 0.566
SAR—TN −0.419 0.262 −0.854 0.361
SAR—TP −0.262 0.496 −0.798 0.505
SAR—NO3 −0.022 0.955 −0.689 0.665
Turb—TN −0.055 0.889 −0.706 0.646
Turb—TP 0.308 0.420 −0.466 0.815
Turb—NO3 −0.127 0.745 −0.740 0.602
TN—TP −0.371 0.325 −0.838 0.409
TN—NO3 −0.131 0.737 −0.742 0.599
TP—NO3 0.202 0.602 −0.551 0.773

a Estimation is based on Fisher′s r-to-z transformation. b Estimation of standard error is based on the formula
proposed by Fieller, Hartley and Pearson.

Table 3. Relative importance of the seven ultrafiltration process characteristics based on the efficiency
(QCD2).

Characteristics
(Ultrafiltration Process) QCD Efficiency Relative

Efficiency
Cumulative

Relative Efficiency

Turbidity 0.35 0.123 0.664 0.664

TN 0.16 0.0256 0.139 0.803

NO3 0.14 0.0196 0.106 0.909

J 0.097 0.00941 0.051 0.960

TP 0.082 0.00672 0.036 0.997

SAR 0.019 0.000361 0.002 0.999

EC 0.016 0.000256 0.001 1

Total 0.18445 1

3.2.2. The Nanofiltration Process

As shown in Table 4, the Spearman’s ρ correlation coefficient values for the pairs
(1) j-EC, (2) EC-TN, (3) EC-TP, (4) EC-NO3 and (5) TN-NO3 suggested that there might be
a noticeable relationship between some pairs of characteristics. However, the two pairs
EC-TN and EC-TP appeared to include a correlation coefficient of zero. Thus, they were
removed from the five-pair group. Moreover, the pairs TN-NO3 and j-EC included very
weak (lower-bound) correlation coefficient values of −0.139 and −0.049, respectively. This
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made their selection doubtful, and they were removed from the initial pair screening list. It
was only the Spearman’s ρ correlation coefficient value of the EC-NO3 pair that appeared
to be convincingly significant (p < 0.01). Even though the upper bound of its correlation
coefficient estimate indicates a very strong negative correlation (−0.976), the lower bound
of the confidence interval did not uphold the strong pairing, but it allowed the possibility
for a moderate relationship (correlation coefficient value of−0.507). Thus, the next round of
screening moved to the efficiency performances of the nanofiltration process characteristics
(Table 5). Indeed, the electrical conductivity and the NO3 content were comparable in
generating substantial variability with respect to the other four process characteristics.
The total nitrogen content joined the group of the other two characteristics to form the
characteristic triplet that contributed more than 90% to the cumulative relative efficiency.

Table 4. Confidence intervals for Spearman’s ρ correlation coefficients of the six nanofiltration process
characteristics.

Spearman′s
Rho

Significance
(Two-Tailed)

95% Confidence Intervals
(Two-Tailed) a,b

Lower Upper

j—EC −0.703 0.035 −0.935 −0.049
j—Turb −0.151 0.699 −0.751 0.586
j—TN −0.377 0.318 −0.840 0.403
j—TP −0.469 0.203 −0.870 0.305
j—NO3 0.468 0.204 −0.306 0.870
EC—Turb 0.500 0.170 −0.268 0.879
EC—TN 0.667 0.050 −0.019 0.926
EC—TP 0.667 0.050 −0.019 0.926
EC—NO3 −0.881 0.002 −0.976 −0.507
Turb—TN 0.217 0.576 −0.540 0.779
Turb—TP 0.333 0.381 −0.444 0.824
Turb—NO3 −0.390 0.300 −0.844 0.390
TN—TP 0.133 0.732 −0.598 0.743
TN—NO3 −0.746 0.021 −0.945 −0.139
TP—NO3 −0.339 0.372 −0.826 0.439

a Estimation is based on Fisher′s r-to-z transformation. b Estimation of standard error is based on the formula
proposed by Fieller, Hartley and Pearson.

Table 5. Relative importance of the six nanofiltration process characteristics based on the efficiency
(QCD2).

Characteristics
(Nanofiltration Process) QCD Efficiency Relative

Efficiency
Cumulative Relative

Efficiency

NO3 0.614 0.377 0.389 0.389

EC 0.613 0.376 0.387 0.776

TN 0.36 0.130 0.134 0.910

J 0.24 0.0576 0.0594 0.969

TP 0.17 0.0289 0.0298 0.999

Turbidity 0.032 0.00102 0.00106 1

Total 0.970 1

3.3. Graphical Pre-Screening of the Candidate Distance Measures
3.3.1. The Ultrafiltration Process Multi-Characteristic Distance Measure Selection

The candidate distance measures that were indicatively selected to be tested were
(1) the Euclidean distance, (2) the maximum/Chebyshev distance, (3) the Manhattan
distance, (4) the Canberra distance and (5) the Minkowski distance. For the Minkowski
distance, the model parameter p was fitted at a value of 4. Two-cluster and three-cluster
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configurations were evaluated to examine the linear and non-linear dependencies on
the four controlling factors. From Section 3.2.1, the participating ultrafiltration process
characteristics in the clustering assignment were (1) the turbidity, (2) the total nitrogen
content and (3) the NO3 content. Shepard graphs were prepared and are contrasted in
Figure 8 to provide quick visual evidence. It appeared that for both preset cluster sizes, the
Euclidean distance measure provided the most satisfying representation of the relationship
between the configuration distances and the dissimilarities. However, it was not easily
discerned whether the two- or three-cluster setting was more accurate in delineating this
behavior. Therefore, the Kruskal stress estimations for all five distance measures and the
two cluster sizes are tabulated in Table 6. Ostensibly, the three-cluster setting was favored
by the fitting performances of all five distance measures. However, the best performance
was witnessed for the Euclidean distance measure, since the Kruskal stress estimate was
minimized at a value of 4.66 × 10−14. Thus, the decision was to apply the Databionic
unsupervised classifier by adjusting it to utilize the Euclidean distance measure and to
deliver clustering hierarchies, which were set up for a three-tier solution.

Table 6. Kruskal stresses pre-screening for the distance measures at two cluster number settings
(ultrafiltration process characteristics).

Distance Measure Cluster Number Kruskal Stress Value

Euclidean 2 6.89 × 10−14

Euclidean 3 4.66 × 10−14

Maximum 2 3.13
Maximum 3 8.51 × 10−3

Manhattan 2 2.63
Manhattan 3 5.12 × 10−3

Canberra 2 9.36
Canberra 3 2.14
Minkowski (p = 4) 2 4.19 × 10−3

Minkowski (p = 4) 3 2.22 × 10−3

3.3.2. The Nanofiltration Process Characteristics Multi-Characteristic Distance
Measure Selection

The same procedure was repeated for the nanofiltration process as in the preceding
sub-section. The same five distance measures and the two cluster sizes were assessed
for the nanofiltration process characteristics that were nominated from Section 3.2.2, i.e.,
the electrical conductivity, the NO3 content and the total nitrogen content. The two- and
three-cluster configurations of the dataset in terms of the Shepard graphs are depicted in
Figure 9. While the Euclidean distance measure still provided a tighter fit between the
configuration distances and the dissimilarities for the two-cluster case, the Manhattan,
Canberra and Minkowski (p = 4) distance measures competed fairly well with each other.
To make this distinction more accurate, the Kruskal stress estimates for all five distance
measures and the two cluster sizes are tabulated in Table 7. Again, it was observed that the
three-cluster setting option led to lower Kruskal stress values for the Manhattan, Canberra
and Minkowski (p = 4) distance measures. However, the minimum estimated Kruskal
stress value was 5.42 × 10−14. It was obtained in the case of a two-cluster setting when a
Euclidean distance measure was considered; it was not distinguishably different from the
three-cluster size setting.
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Figure 8. Shepard graphs of the five tested distance measures for two-cluster (A) and three-cluster
configurations (B) (ultrafiltration process characteristics).

Table 7. Kruskal stresses pre-screening for the distance measures at two-cluster number settings
(nanofiltration process characteristics).

Distance Measure Cluster Number Kruskal Stress Value

Euclidean 2 5.42 × 10−14

Euclidean 3 6.01 × 10−14

Maximum 2 2.32 × 10−3

Maximum 3 5.15 × 10−3

Manhattan 2 9.03 ×10−3

Manhattan 3 5.58 × 10−14

Canberra 2 5.98 × 10−3

Canberra 3 6.58 × 10−14

Minkowski (p = 4) 2 7.91 × 10−3

Minkowski (p = 4) 3 5.78 × 10−14
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Figure 9. Shepard graphs of the five tested distance measures for two-cluster (A) and three-cluster
configurations (B) (nanofiltration process characteristics).

The two-cluster Euclidean-distance-measured Kruskal stress estimate was comparable
to the Kruskal stress values that were obtained for the three-cluster Manhattan, Canberra
and Minkowski (p = 4) distance measure models. For practical purposes, the Euclidean
distance measure was retained in the tuning of the Databionic unsupervised classifier, but
it was tested on both cluster sizes.

3.4. Ultrametric Self-Organizing Clustering and Validating Metric Comparison to Fractional
Factorial Setting Vectors
3.4.1. The Ultrafiltration Process Parameter-Free-Projection Self-Organized Clustering

The dendrogram for the three nominated ultrafiltration process characteristics (tur-
bidity, total nitrogen content and NO3

− content) is drawn in Figure 9. The Databionic
auto-classifier was propped to take advantage of the Euclidean distance metric, adjusting
the position type for the projection points to complement the compact structure type, while
a three-cluster model was assigned. The length of the branches was scaled on the ultramet-
ric portion of the distance. It was observed that the first branch (runs # 1, 2) was bifolious
and well separated from the rest of the runs in the L9(34) OA formulation. The second
branch retained information from runs # 2–6, and the last branch was more balanced as the
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information was retrieved by the last three OA runs (# 7–9). To further examine the relation-
ship of the tri-characteristic micro-dataset, the “fitting” performance was internalized. By
using a popular algorithmic internal validator (the Davies–Bouldin index), the similarity
evaluation process was not only restricted to quantifying a clustering effectiveness between
the predicted cluster memberships and the inherent dataset. In fact, the Davies–Bouldin
index could assume an extended role, i.e., that of an internal standard by which the four
fractional factorial “membership” vectors were also assessed against the dataset. In Table 8,
list the Davies–Bouldin index scores are listed for the two commonly implemented types
of centrotypes: the cluster centroids and the medoids. The Davies–Bouldin Index was
adjusted to the ordinary metric parameters (p, q) = (2, 1). From Table 8, it can be seen that
the centroid- and medoid-based index estimations were in agreement. Additionally, the
index parameter settings set at (p, q) = (2, 2) were attempted and estimated to verify that the
initial (2, 1) setting offered a finer resolution of the clustering self-validation performance.
There was as much as a 40% reduction in the internal validation prediction when selecting
the Davies–Bouldin medoid metric, which was set at the parameter pair (2, 1) over the (2, 2)
option. A corresponding difference also existed but was smaller for the centroid centrotype
option. The Davies–Bouldin index estimations for the fractional factorial vectors revealed
that there was a consensus in pointing at a factor that minimized the index estimate the
most, and it was rather independent of the centrotype choice.

In both cases, it was the factor A (membrane type) that stood out, and its fractional
factorial setting vector emulated the cluster membership vector closer to that which was
derived from the Databionic classifier solution (Figure 10). Actually, the medoid metric
version substantially reduced the Davies–Bouldin index estimate to a value of 1.27 with
respect to the centroid-based prediction value of 1.89 (Table 8). However, there was a spilt
decision on the activeness of factor C (temperature), which returned a comparable similarity
prediction to factor A when the solution was based on the centroid metric, but it was not
verifiable by the alternative medoid estimate. Of course, validating the micro-dataset using
the medoid-mediated fractional factorial vector sequences caused the similarity index
estimations to be more evenly moderated in compiling the profiled hierarchy landscape.
The rest of the factors could be contemplated to be inactive. Factor A was more likely to be
approximated with a linear model.

Figure 10. Dendrogram for emergent self-organized classification of the ultrafiltration process
characteristics (Euclidean distance measure, cluster size =3, structure type = compact, position type =
projected points).
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Table 8. Davies–Bouldin index estimation of ultrafiltration process tri-characteristic dataset for
self-validation and fractional factorial clustering performance (p = 2, q = 1).

Davies–Bouldin Index Estimation For Fractional Factorial Vectors

Centrotypes Self-validation A B C D

Centroids 0.74 (0.80) * 1.89 6.79 1.88 4.7

Medoids 0.76 (1.07) * 1.27 2.08 3.55 4.44
* In parenthesis the estimation was obtained using the parameters (p = 2, q = 2).

3.4.2. The Nanofiltration Process Parameter-Free Projection Self-Organized Clustering

The dendrogram for the three nominated nanofiltration process characteristics (elec-
trical conductivity, total nitrogen content and NO3

− content) is drawn in Figure 11. The
Databionic classifier was adjusted to the Euclidean distance metric. The tracking of position
points was carried out by projection in a compact structure. Nevertheless, two cluster sizes
were examined this time, at k = 2 and 3. The length of the branches was evaluated on the
ultrametric portion of the distance. The tree configuration was surprisingly identical for
both of the tested cluster sizes. It was determined that there were at least two clusters that
exhibited substantial differences between them. It might be said that the behavior of the
data entries that were associated with runs # 1, 2 and 3 were separable from the rest of the
dataset. The implementation of the Davies–Bouldin self-validator index, set at (p = 2, q = 1),
greatly simplified the comparison process in four aspects in this case (Table 9):

(1) The self-validation of the tri-characteristic clustering was in agreement regardless of
the cluster size; the Davies–Bouldin index was confined to values between 0.34 and
0.41 for all four estimations.

(2) The Davies–Bouldin index estimations, within a preset cluster size, was in agreement
regardless of the selection of the two centrotypes. This might imply a more reliable
“internal standard” with respect to the ultrafiltration process outcomes.

(3) It was factor A that mimicked the behavior of the self-validator estimations, thus
delivering the maximum information by ensuring that the similarity between the
factor-A vectoring and the inherent internal clustering pattern were almost indistin-
guishable; the membership identification entries from the Databionic classifier and
the fractional factorial setting vector for factor A matched. Particularly, for the case
in which the cluster size was set at k = 3, the centroid- and medoid-based Davies–
Bouldin index estimates were also identical; their computed values were 0.41 and
0.40, respectively. From this behavior, it was inferred that factor A should be assigned
a simpler linear model.

(4) The remaining three factors may be deemed weak since their Davies–Bouldin index
magnitudes were substantially larger.

Table 9. Davies–Bouldin index estimation of nanofiltration process tri-characteristic dataset for
self-validation and fractional factorial clustering performance (p = 2, q = 1).

Davies–Bouldin Index Estimation for
Fractional Factorial Vectors

Cluster Size Centrotypes Self-validation A B C D

k = 2 Centroids 0.39 0.41 12.1 19.97 22.87

Medoids 0.34 0.4 5.63 5.61 5.6

k = 3 Centrotypes Self-validation A B C D

Centroids 0.41 0.41 12.1 19.97 22.87

Medoids 0.4 0.4 5.63 5.61 5.6
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Figure 11. Dendrogram for the Databionic swarm classification of the nanofiltration process charac-
teristics: (1) the electrical conductivity, (2) total nitrogen content and (3) the NO3 content (Euclidean
distance measure, structure type = compact, position type = projected points): (A) cluster size = 2,
(B) cluster size = 3.

4. Discussion
4.1. Datacentric Evaluation by Re-Profiling Comparisons for the Ultrafiltration
Process Characteristics

In discussing the outcomes of this work, it is imperative to consolidate information
from grass-roots principles in data-centric engineering. A rudimentary inspection of the
ultrafiltration process characteristic dataset, by standard normality tests, becomes indispens-
able. As long as the individual characteristic dataset is small (less than 10 measurements),
the selected normality tests that are deemed appropriate for such screenings are the Shapiro–
Wilk test [93] and the Kolmogorov–Smirnov test [94,95], adjusted by the Lilliefors signifi-
cance (small-data) correction [96]. In Table 10, the normality statistic along with the p-values
are contrasted for the two tests (IBM SPSS v.29). There was a strong agreement between the
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two methods, suggesting that the permeate flux, the electrical conductivity, the turbidity
and the total nitrogen content may obey normality. Nevertheless, there was a disagreement
for the NO3

− content. Under operating conditions, it might be recommended that more
data would be beneficial to confidently answer any normality concerns for the remaining
variates, the SAR and the total phosphorus content.

Table 10. Tests of normality for the small dataset of the seven ultrafiltration process characteristics
(IBM SPSS v.29).

Kolmogorov–Smirnov a Shapiro–Wilk

Statistic Df p-Value Statistic df p-Value

J 0.208 9 0.200 * 0.927 9 0.452

EC 0.241 9 0.141 0.886 9 0.180

SAR 0.261 9 0.079 0.865 9 0.110

Turb 0.167 9 0.200 * 0.948 9 0.672

TN 0.156 9 0.200 * 0.945 9 0.633

TP 0.222 9 0.200 * 0.864 9 0.106

NO3
− 0.240 9 0.142 0.800 9 0.020

* This is a lower bound of the true significance. a Lilliefors’s significance correction.

An important step in delving into the inner tendencies of a small-structured dataset
is the evaluation of the measures of shape. This is because distributional shape of the
data dictates the central tendency estimations, which, in turn, are paramount to ensuring
accuracy in predictions in a regular DOE additive model. In Table 11, the skewness and
the kurtosis estimates are tabulated for all seven ultrafiltration process characteristics
(IBM SPSS v.29). The skewness statistic values were within the ±1 range for all of the
seven examined characteristics. This implies that all characteristic location estimations
may be representative owing to underlying symmetric distributions. However, the high
standard error estimations quickly dismiss such assurances. It is hard to reliably preclude
asymmetry in the data spread for any of the investigated characteristic. On the other
hand, the permeate flux, total nitrogen content and total NO3

− content were identified
to a mesokurtic distribution type, but again, the standard error does not assure such
assessment outcomes. Furthermore, the electrical conductivity, the SAR, the turbidity and
the total phosphorus content were described by a platykurtic distribution due to high data
dispersion. Unfortunately, their standard error estimates do not ascertain their level of
tailedness, since a mesokurtic distribution cannot be excluded. In conclusion, the attempt to
undergo an unsupervised robust clustering exercise in the Results section without imposing
datacentric conditions may be justified.

By employing ordinary clustering methods like the k-means approach, the finalized
cluster centers were computed; the clusters were chosen to maximize the differences among
the cases in the different clusters. (Table 12). Consequently, the ANOVA treatment of
the k-means cluster centers gave another (descriptive) angle about how good the within-
cluster groupings and their cluster center separations might fare. However, the observed
significance levels were not corrected for achieving difference maximization among the
cases (Table 13). The k-means clustering result promoted the electrical conductivity and the
total phosphorus content with the best partitioned properties, which was in disagreement
with the outcomes of the previous section. However, the IBM SPSS (v.29) Statistics two-step
cluster analysis rated the overall quality of the clustering effort at least as fair (k = 3) by
using the silhouette measure to size the dissimilarities among the clusters (Figure 12).
Evidently, this seven-characteristic dataset has an innate clusterability before attempting to
refine it by eliminating a portion of the process characteristics as mere “noise” responses.
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Table 11. Skewness and kurtosis with their associated standard error estimates for the seven ultra-
filtration process characteristics (IBM SPSS v.29).

PROCESS

Ultrafiltration Nanofiltration
Characteristic Estimator Statistic Std. Error Statistic Std. Error

J Skewness 0.249 0.717 1.879 0.717
Kurtosis −0.418 1.400 3.847 1.400

EC Skewness 0.251 0.717 −0.171 0.717
Kurtosis −1.623 1.400 −1.705 1.400

SAR Skewness 0.518 0.717
Kurtosis −1.496 1.400

TURBIDITY Skewness −0.148 0.717 −2.746 0.717
Kurtosis −1.163 1.400 7.885 1.400

TN Skewness −0.430 0.717 0.990 0.717
Kurtosis 0.345 1.400 −0.204 1.400

TP Skewness 0.589 0.717 −1.023 0.717
Kurtosis −1.357 1.400 −0.848 1.400

NO3 Skewness −0.913 0.717 −0.761 0.717
Kurtosis −0.711 1.400 −1.720 1.400

Table 12. The k-means final cluster centers (k = 3) for the seven ultrafiltration process characteristics
(IBM SPSS v.29).

Characteristic
Cluster #

1 2 3

J 62.4 68.9 83.2

EC 634.7 600.4 623.0

SAR 3.08 3.09 3.00

Turbidity 0.31 0.22 0.21

TN 3.60 5.83 6.15

TP 2.65 2.07 2.38

NO3 8.36 6.90 8.72

Figure 12. Two-step cluster analysis performance using the silhouette measure (k = 3) for the seven
ultrafiltration process characteristics (IBM SPSS v.29).
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Table 13. The ANOVA table for k-means cluster centers (k = 3) of the seven ultrafiltration process
characteristics. (IBM SPSS v.29).

Characteristic
Cluster Error

F-Ratio p-Value
Mean Square Df Mean Square Df

J 232.789 2 47.418 6 4.909 0.055

EC 963.093 2 23.303 6 41.329 <0.001

SAR 0.006 2 0.007 6 0.890 0.459

Turbidity 0.006 2 0.010 6 0.587 0.585

TN 4.250 2 1.371 6 3.099 0.119

TP 0.258 2 0.005 6 55.501 <0.001

NO3 3.021 2 3.805 6 .794 0.494

To test the clusterability of the Databionic swarm classifier in a practical manner,
the mean silhouette was estimated and plotted by cluster (Figure 13). Each cluster was
compared against the next best cluster for dissimilarity using the Euclidean measure (IBM
SPSS v.29). The Databionic swarm solution involves only the three nominated process
characteristics, as explained in the previous section. It is obvious that cluster #3 achieved
greater separability first with respect to cluster #2 and then with cluster #1. It may be
concluded that the Databionic micro-clustering effort can be regarded as satisfactory. In
Figure 14, the four factors are individually self-contrasted. It was observed that only for
factor A (membrane type), a mean silhouette measure estimate was worth considering, and
it declared the membrane type as an active influence; a mean silhouette value close to 0.5
was obtained (Figure 14A). A greater separation was identified between factorial levels #1
and #2, which denotes that the emergent stigmergic search tended to match the clustering
solution to the factorial run order for factor A, as dictated by the L9(34) OA scheme.

Figure 13. Databionic swarm clustering solution to evaluate cluster separability using mean silhouette
estimates for the reduced-schedule ultrafiltration process characteristics (IBM SPSS v.29).



Appl. Sci. 2023, 13, 11926 24 of 30

Figure 14. Databionic swarm clustering solution for individual factorial vectors to evaluate cluster
separability (within a factor) using mean silhouette measure estimates for the reduced-schedule
ultrafiltration process characteristics (IBM SPSS v.29): (A) membrane type, (B) cross-flow velocity,
(C) temperature and (D) transmembrane pressure.

4.2. Datacentric Evaluation by Re-Profiling Comparisons for the Nanofiltration
Process Characteristics

Repeating the same procedure for the basic normality screening of the nanofiltration
process characteristics, the Shapiro–Wilk test and the Kolmogorov–Smirnov test results
(adjusted by the Lilliefors significance correction) for the six characteristics are listed in
Table 14. There was strong agreement between the two methods; however, the Shapiro–
Wilk test gave finer statistical significance values at an error rate of 0.05. Normality was not
assured for four of the characteristics: (1) the permeate flux, (2) the turbidity, (3) the total
phosphorus content and (4) the NO3

− concentration. Under operating conditions, the total
nitrogen content could be also monitored more closely.

Table 14. Tests of normality for the small dataset of the six nanofiltration process characteristics (IBM
SPSS v.29).

Characteristic
Kolmogorov–Smirnov a Shapiro–Wilk

Statistic Df p-Value Statistic Df p-Value

J 0.283 9 0.036 0.735 9 0.004
EC 0.198 9 0.200* 0.888 9 0.192
Turbidity 0.376 9 <0.001 0.597 9 <0.001
TN 0.247 9 0.121 0.872 9 0.131
TP 0.345 9 0.003 0.761 9 0.007
NO3

− 0.291 9 0.027 0.731 9 0.003
* This is a lower bound of the true significance. a Lilliefors’s significance correction.
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Next, the respective measures of shape were computed for the six nanofiltration
process characteristics, which are listed in Table 11. The skewness estimations for the
permeate flux, the turbidity and the total phosphorus content exceeded the ±1 range,
trending on either direction; the permeate flux sample distribution was right-tailed, while
the turbidity and total phosphorus content were left-tailed. This may imply that skewness
was a suspected contributor to the diagnosed non-normality for the three characteristics.
The rest of the characteristics were not protected from manifesting deviant non-normal
behaviors, as was suggested by their computed high standard error values. Additionally,
platykurtic sample distributions were identified with the electrical conductance and the
NO3

− concentration data. The permeate flux and turbidity sample distributions appeared
leptokurtic. The remaining two characteristic sample distributions may appear mesokurtic;
nevertheless, the high values of the standard error estimations do not permit a terminal
tailedness classification rating. Finally, excessive kurtosis may also be a justification for the
observed deviations from normality due to the data outliers.

To test the clusterability of the Databionic swarm classifier in a practical manner,
the mean-silhouette-by-cluster bar chart is drawn in Figure 15 for a cluster size set at k
= 3. Each cluster was compared against the next best cluster for dissimilarity using the
Euclidean measure (IBM SPSS v.29). The Databionic swarm solution involved only the three
nominated nanofiltration process characteristics: (1) the electrical conductivity, (2) the total
nitrogen content and (3) the NO3 content (Section 3.2.2). It is obvious that clusters #1 and #2
rendered cluster #3 as the next best cluster. It may be concluded that the Databionic micro-
clustering effort can be regarded as satisfactory, regardless of the preference of initiating the
clustering process through either cluster #1 or #2. The direct relationship between fractional
factorial vectoring and emergent stigmergic clustering is shown in Figure 16, where all four
controlling factors are individually self-contrasted. As in the screening of the nominated
ultrafiltration process characteristics, it was discovered that only factor A (membrane type)
posted a high mean silhouette measure estimation (Figure 16A). OA factorial data # 1 and
#2 generated a substantial separation with factorial cluster #3, which was supported by a
mean silhouette value larger than 0.8 for both clustered groups. In other words, the bionic
clustering solution closely matched the factorial run order for factor A, as dictated by the
L9(34) OA scheme. In Figure 17, it is confirmed that there was a detectable separation
between clusters #2 and #1, which was viable even when a clustering size of k = 2 was
selected. It seems a linear relationship may associate the membrane type influence with the
triplet nanofiltration process characteristics.

Figure 15. Databionic swarm clustering solution (k = 3) to evaluate cluster separability using mean
silhouette estimates for the reduced-schedule nanofiltration process characteristics (IBM SPSS v.29).
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Figure 16. Databionic swarm clustering solution (k = 3) for individual factorial vectors to evaluate
cluster separability (within a factor) using mean silhouette measure estimates for the reduced-
schedule nanofiltration process characteristics (IBM SPSS v.29): (A) membrane type, (B) cross-flow
velocity, (C) temperature and (D) transmembrane pressure.

Figure 17. Databionic swarm clustering solution (k = 2) to evaluate cluster separability using mean
silhouette estimates for the reduced-schedule nanofiltration process characteristics (IBM SPSS v.29).

5. Conclusions

As water resources are rendered scarce, ultrafiltration (UF) and nanofiltration (NF)
membranes facilitate the development of sustainable separation solutions. Moreover,
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there are lean-and-green incentives for single-stage filtration processes in treating urban
wastewater. The screening and optimization of single-stage UF-/NF-membrane wastew-
ater processes require the tailored design of the operations by taking in account several
aspects that range from customization of the treatment unit to the condition of the incom-
ing wastewater volumes as well as the functionality of the selected membranes in specific
operating conditions, namely the mass transfer properties and solute rejection. In realistic
circumstances, process customization success is subject to a holistic comprehension of
the separation dynamics that involve selected structural membrane properties and their
physicochemical interactions with the wastewater medium. Taguchi-type methods may
be employed for quick and economical studies that intend to improve the filtration perfor-
mance for a single process characteristic. However, to screen and optimize physicochemical
separation processes, Taguchi-type orthogonal array sampling recipes are still useful in
generating small multi-characteristic non-linear datasets, even when the collected responses
are described by different measurement scales and data types. In spite of the availability
of various statistical multivariate techniques to handle the multifactorial multi-response
problem, there is a great interest for unsupervised algorithmic solvers.

The approach that was tested in this work attempted to firstly cluster the gathered
multi-response dataset and then try to directly match the stochastic signature of the clus-
tered members to the factorial vector sequences in the orthogonal array in a naïve back-
tracking exercise. The technique was applied on recently published multi-characteristic
multifactorial data for a single-stage urban wastewater operation that involved as many
as seven UF-membrane process characteristics and six NF-membrane process character-
istics. The investigated controlling factors were the (1) membrane type, (2) cross-flow
velocity, (3) temperature and (4) transmembrane pressure. The data analysis part was inher-
ently demanding because the generated dataset was constructed based on the restrictive
Taguchi-type L9(34) OA; the factorial screening, effect curvatures and parameter optimiza-
tion were expected to be explained by only nine observations per process characteristic.
The Databionic swarm intelligence classifier was implemented to complete the cluster
identification task. Minimization of the Davies–Bouldin similarity measure revealed the
more influential controlling factors by contrasting the appropriateness of the configuration
of the cluster identification vector to the factorial-setting vector pattern. It was found that
the membrane type in both filtration setups was the controlling factor that predominantly
influenced their respective groups of the UF-/NF-membrane process characteristics. Future
work could reconcile the bionic solver predictions of the two processes by making use of
unsupervised stochastic comparison treatments.
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