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Abstract: Due to the complex terrain and intense tectonic activity, and harsh climate in the
Qinling-Daba Mountains, many landslides occur in the area. Most of these landslides are extremely
active, posing a serious threat to the safety and property of local residents. As a mature deformation-
monitoring technology, InSAR has been widely used in landslide detection, but the steep terrain
and dense vegetation in the Qinling-Daba Mountains make detection challenging. Hence, it is
important to choose suitable data sources and methods for landslide detection via InSAR in this
area. This study was the first to collect ALOS/PALSAR−2 and Sentinel−1A images to detect land-
slides in the Qinling-Daba Mountains, applying a method combining IPTA and SBAS. In total, 88
landslides were detected and validated. The results show that the deformation-detection error
rate of Sentinel−1A is 2% higher than that of ALOS/PALSAR−2 and that its landslide-recognition
rate is 47.7% lower than that of ALOS/PALSAR−2. Upon comparing and analyzing the visibil-
ity, coherence, closed-loop residuals, and typical time series of landslide deformation from the
a two kinds of data, it was found that the extremely low quality of available Sentinel−1 A summer
data is a major factor influencing that system’s performance. ALOS/PALSAR−2 is more likely to
detect landslides in areas with high vegetation coverage, meeting more than 90% of the monitor-
ing needs. It is thus highly suitable for landslide detection in the Qinling-Daba Mountains, where
seasonality is significant. In this paper, for the first time, multiple data sources are compared in
detail with regard to their utility in landslide detection in the Qinling-Daba Mountains. A large
number of accuracy metrics are applied, and the results are analyzed. The study provides important
scientific support for the selection of data sources for future landslide monitoring in the Qinling-
Daba Mountain area and similar areas and for the selection of methods to evaluate the accuracy of
InSAR monitoring.

Keywords: Qinling-Daba Mountains; Interferometric Synthetic Aperture Radar (InSAR); ALOS/
PALSAR−2; Sentinel−1A; IPTA−SBAS; landslides detection

1. Introduction

Mountainous areas can be complex and dangerous, characterized by high mountains
and deep valleys, complex and changeable stratigraphic lithologies, complex geological
structures, high vegetation coverage, and harsh and changeable climates. These areas bring
considerable difficulty to the identification of geological disasters. As is typical of complex
and dangerous mountainous areas, the Qinling-Daba Mountains have steep terrain, high
vegetation coverage, complex lithology, and mountains and hills [1,2]. The distinctive
terrain and local hydrological cycle make the rainfall in this area short-lived, strong and
frequent [3]. In recent years, human engineering activities such as building railways,
highways, and houses have gradually increased in frequency in the area. These activities
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have reduced vegetation and reduced slope stability. As a result, the rate of geological
disasters, especially landslides, is increasing in the region. Therefore, the selection of
appropriate and effective landslide-detection methods will be of great significance for the
detection of geohazards in the Qinling-Daba Mountains and other similar areas.

Due to the wide range of research areas, harsh environments, and complex terrains, it
is difficult to monitor mountainous regions using traditional artificial and ground-based
disasteridentification methods. Since Graham first proposed the use of synthetic aperture
radar interferometry technology (InSAR) to monitor small surface deformations in 1974 [4],
the advantages of this technology has been demonstrated. These advantages include being
independent of time and climate and having the ability to detect deformation with a high
level of precision. Today, this technology is widely used in the early detection of landslides,
debris flows, collapses, and other geological disasters over a large range [5–7]. InSAR
technology used for geohazard monitoring can achieve millimeter-level accuracy, and good
progress has been made [8–10].

In terms of data sources, there are several SAR satellites of different bands currently in
orbit, including Sentinel−1A and Radarsat−2 in C−band, COSMO−SkyMed, TerraSAR−X
in X−band, ALOS/PALSAR−2, SAOCOM, and L−SAR in L−band, etc. Each radar wave-
length has its own penetration performance and accuracy in deformation monitoring; for
example, long-wave radar has good penetration performance to ground objects at the cost
of slightly lower deformation accuracy, while short-wave radar has higher deformation
accuracy at the cost of weaker penetration performance. Each satellite has different charac-
teristics. Free C−band Sentinel−1A/B data and L−band ALOS−2 data are two kinds of
data with excellent performance and have become the leaders in radar data. Therefore, it is
particularly important to consider the geological history and landslide characteristics of
different regions in selecting the monitoring data most suitable to the region.

To date, a large number of scholars have used SBAS−InSAR, PS−InSAR, and D−InSAR
technology to detect potential geohazards in complex and dangerous mountainous areas
and have obtained good monitoring results [11–14], indicating that InSAR technology
has substantial advantages in monitoring potential geohazards. Most of the work carried
out in the Qinling-Daba Mountains is focused on geological mechanisms and characteris-
tics [15–19]. Some scholars have also detected and studied typical geological hazards in
the Qinling-Daba Mountains based on InSAR technology and analyzed the principles of
their movement and the factors that induce movement. Study areas have included the Bai-
long River Basin [20,21], the Jiangdingya landslide [22], and typical landslides in Lueyang
County [23], with studies reaching a shared, clear understanding of the typical landslides
in the region. Some scholars have also used a variety of data types to jointly identify areas
with high concentrations of potential geohazards or single geohazards in complex and
dangerous mountainous areas and analyzed the recognition effect [24–28], providing a
foundation for subsequent scholars to use in choosing appropriate data for monitoring and
research analysis. However, most of these studies examine alpine canyons and karst areas.
There is little research examining the type of landslides seen in the Qinling-Daba Mountains,
which are small in scale and mostly shallow. Therefore, it is necessary to use different data
to detect landslides in such areas and analyze their adaptability.Considering this issue, we
took as an example Ankang, which is a typical area in the Qinling-Daba Mountains. We
collected 19 Sentinel−1A and 10 ALOS/PALSAR−2 images and utilized time-series radar
technology to analyze the potential for landslides in the study area. Various spatial and
clustering statistical methods were adopted for the comparison and analysis of the two
data sources. The potential for adapting the two data types to monitoring in the region
was evaluated, and a method for landslide detection is given here. This method provides
effective support for the selection of data sources to detect geological disasters and the
implementation of monitoring in the Qinling-Daba Mountains.
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2. Study Area and Data
2.1. Study Area

The Qinling-Daba Mountains in southern Shaanxi are located between 105◦29′~111◦2′ E
and 31◦42′~34◦26′ N (Figure 1). The altitude is mostly in the range of 1000~3000 m [29]. In
addition to the high mountains, basins and valleys formed due to the subsidence of the
block [30]. These features include the Hanzhong Basin, Ankang Basin, Hanying Basin, and
Xixiang Basin [31]. The Qinling-Daba Mountains span the Qinling, Northern China, and
Yangzi plates and include widely distributed metamorphic rocks such as slate, phyllite, and
schist, with a weak lithology. The lithological joints and fissures are well developed and
strongly weathered, which is highly conducive to the occurrence of geohazards [32]. These
mountains constitute an important boundary between northern and southern China, and
there are significant differences in climate and rainfall between the northern and southern
parts of the Qinling-Daba Mountains. The southern part belongs to the subtropical monsoon
climate zone, while the northern part belongs to the temperate monsoon climate zone. The
airflow enters a strong sinking area after crossing the Qinling-Daba Mountains, and the
precipitation decreases sharply at that point. Due to the significant difference in terrain,
there are also obvious vertical zonal climate characteristics [33]. The northern part has
abundant rainfall at an altitude of 1000~1400 m. In the southern area, there is also high
rainfall, and rainstorms and continuous rainfall are common due to the influence of the
uplift and blocking of the airflow below 1000 m above sea level. These factors result in the
frequent occurrence of geological disasters in the rainy season. Restricted by geological
and geomorphological conditions, landslides are mainly shallow and small or medium-
sized, and they can be mainly divided into soil and rock types according to material
composition [33]. These landslides mainly occur from July to October and are strongly
related to rainfall factors [34]. Landslides in the region are often interrelated in terms of
causes and interdependent in time and space [35], showing regional aggregation. Such
trends have been observed in the Ziyang-Hongshan landslide group, the Heihe-Ganyuwan
landslide group, the Ziyang-Gaoping landslide group, etc. Ankang, as a typical disaster-
vulnerable area in the Qinling-Daba Mountains, is a representative example [35]. Therefore,
the authors of this paper chose Ankang as a site in which to explore the adaptability of
Sentinel−1A and ALOS/PALSAR−2 data.
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2.2. Data

As short-wave and long-wave SAR data sources, Sentinel−1A and ALOS/
PALSAR−2 have stable satellite flight and excellent performance in obtaining deformation
time-series data. They represent the most commonly used radar-satellite data. There-
fore, these two mainstream data types were chosen for comparison and analysis of their
adaptability to use in landslide monitoring.

In 2014, the ESA launched the environmental observation satellite Sentinel−1A and
implemented a policy of free and open use. This satellite is equipped with a C−band (5.6
cm) sensor and uses a new terrain-observation method with progression scans (TOPS)
imaging technology [36]. Its short revisit period (12 days), wide coverage, rich collection
of archived and open-access data, and sensitivity to surface deformation have made it an
important data source for monitoring of deformations such as landslides and earthquakes.
However, it still has some disadvantages, such as its low resolution and weak penetra-
tion [37,38]. ALOS−2 is a land-observing satellite equipped with SAR sensors that was
launched by Japan’s JAXA in 2014. It has three types of imaging: strip, spotlight, and wide-
mode. The radar sensor PALSAR (Phased Array type L−band Synthetic Aperture Radar)
has a wavelength in the L−band that has better penetrating ability than other short-band
sensors [36], and its performance is significantly better than that of ALOS−1. The radar
images have high spatial resolution, and richer information can be obtained in mountainous
areas [39,40], making this sensor suitable for resource investigation, geohazard monitoring
and mapping, etc.

In this paper, the coverage areas of Sentinel−1A and ALOS/PALSAR−2 are clipped
(Figure 1) to compare the potential of the two data sources to be adapted for use in landslide
detection. The main parameters of the two satellite sensors and the details of the images
used in this experiment are shown in Tables 1 and 2. For distributed backscattering points,
the longer the baseline, the lower the coherence. Therefore, it is particularly important to
set the appropriate baseline threshold. The Sentinel−1A data have poor penetration and a
short revisit period, while the ALOS/PALSAR−2 data are the opposite. To combine these
data characteristics and ensure that sufficient interference pairs can be obtained, we set the
temporal and spatial baselines of the Sentinel−1A to 48 days and ±150 and the temporal
and spatial baselines of ALOS/PALSAR−2 are set to 140 days and ±150. Finally, 55 and
33 interference pairs were generated, respectively (Figure 2).

Table 1. The parameters of Sentinel−1A and ALOS/PALSAR−2 sensors.

Satellite Wave Band
(Wavelength/cm)

Incidence
Angle Mode Resolution Period

Sentinel−1A C(5.6) 37.76 Interferometric
Wide(IW) 2.32 × 13.97 12

ALOS/PALSAR−2 L(25) 36.18 Spotlight 1.43 × 2.12 14

Table 2. Basic description of the SAR data used herein.

Satellite Orbit
Direction

Number of
Images

∆T 1

(days)
B⊥ 2

(meters)
Master Start-Stop

Time

Sentinel−1A Ascending 19 12–48 0.9–146 20220126 20210925−
20220604

ALOS/PALSAR−2 Ascending 10 14–140 4.2–146.1 20220129 20210928−
20220607

1 represents temporal baseline. 2 represents spatial baseline.
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3. Methods

SBAS−InSAR [41] and PS−InSAR [42] have become the most commonly used tech-
nologies for obtaining deformation time-series data and have achieved very good results
in the monitoring of many landslides. Therefore, this paper combines SBAS−InSAR and
IPTA [43] technology developed based on PS−InSAR and leverages the advantages of the
free combination of interference pairs in SBAS and the iterative characteristics of IPTA to
obtain continuous, high-precision deformation data. Then, the results are superimposed
on DEM and optical images for landslide detection. In this paper, SRTM DEM with a
resolution of 30 m is used as DEM data and Google Earth images with an approximate
resolution of 0.5 m are used for optical data. The DEM data are used to determine the slope
of the terrain; usually, areas with a slope of less than 10◦ are considered free of landslides.
During the InSAR monitoring period, only some areas of slopes will undergo obvious de-
formation. It is thus difficult to fully characterize the entire landslide only from the InSAR
deformation results. Hence, it is necessary to utilize the auxiliary optical images for better
detection [44,45]. Based on the high-precision landslide-identification/monitoring system,
this paper uses Sentinel−1A and ALOS/PALSAR−2 as data sources to detect landslides
and compares the differences between the two data types in terms of deformation rate and
recognition. Further, this investigation explores the reasons for the differences between
the two data sources by calculating the visibility, the coherence of the interference pairs,
the quality of unwrapped images, and the rate and time-series results for single landslide
points. Finally, the overall adaptability of the two data types and suggestions for future
landslide-detection methods are summarized. The specific technical process of landslide
detection and analysis is shown in Figure 3.
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3.1. SBAS−IPTA

SBAS is a differential interferometry method proposed by Berardino [46] that can
efficiently obtain continuous deformation data. It first divides all SAR images into short
baseline subsets according to temporal and spatial baselines and then performs interferom-
etry on a single subset. The minimum cost flow unwrapping method is used to perform
phase unwrapping, and the observation equation is established with high-coherence points.
Finally, the singular value decomposition (SVD) [47] method is used to obtain the minimum
norm solution of the velocity vector. The integral can obtain the deformation over each time
period. It uses multiple master images to reduce the amount of SAR data required and can
effectively weaken the influence of decoherence and topographic changes by controlling
the temporal and spatial baselines [48].

The IPTA processing module designed by Werner in Gamma software (https://www.
gamma-rs.ch/, accessed on 10 October 2023) can independently set up multiple master
images or a single master image and reduce the error interference via regression analysis
and multiple iterations to obtain surface deformation [43]. The basic idea is to select a
target point with stable backscattering characteristics and obtain the linear deformation,
DEM difference, and residual of the target point via one-dimensional or two-dimensional
regression analysis. After the DEM error is corrected, the atmospheric delay in the residual
is separated from the nonlinear deformation by time–space domain filtering, so that the
deformation time-series data of each target point can be obtained. This technique gradually
weakens the interference of decoherence noise, atmospheric delay, and DEM error in the
results through multiple iterations [43,49]. Unlike SBAS, IPTA only performs interference
processing and time-series analysis on permanent scatterer targets with high-coherence
points and cannot obtain the complete range and shape of landslides. Therefore, when
SBAS and IPTA technologies are combined, they can learn from each other and obtain more
accurate results for continuous deformation. Both of these methods are relatively mature at
present, and their specific theories will not be described in this paper.

The specific processing flow of SBAS−IPTA is as follows:

• Select the master image and resample the slave image into the master image space;
the master image will try to select the image with less vegetation coverage and the
date in the middle.

• According to the imaging quality and quantity of different images, set an appropriate
threshold temporal and spatial baselines for differential interference; combine external
DEM data to remove the terrain phase of the interferometric phase.

• Use the adaptive filtering method to filter the interference image; the filtering window
is usually 32 or 64.

• Use the minimum cost flow (MCF) method for phase unwrapping [50].
• Select high-quality interferometry pairs and perform baseline refinement, re-

interferometry, filtering, unwrapping, etc.
• Select permanent scatterer points (PS) with high coherence and obtain a set of differen-

tial interference points [51];
• Select a stable reference point (usually buildings) for iterative regression analysis;

decompose the deformation phase, elevation correction phase, and residual phase;
and iterate until there is no obvious phase jump in the residual phase.

• Separate the atmospheric error phase from the residual phase by using the spatial-
temporal domain filtering method.

• Establish an observation equation using the acquired high-coherence points and use
singular-value decomposition (SVD) to obtain the deformation rate and time-series
results [47].

3.2. Hot-Spot Analysis

Generally, the most reliable deformation-area data in the monitoring results obtained
by SBAS−IPTA do not appear as single deformation points. Instead, there are obvious
clusters of low or high values. In contrast, errors are usually distributed discretely and

https://www.gamma-rs.ch/
https://www.gamma-rs.ch/
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randomly across the results [52]. Hotspot analysis is usually used to judge whether spatial
values have clustering properties. Therefore, this paper uses hotspot analysis to identify the
effective deformation and error areas in the deformation rate. It is important to determine
the appropriate distance for spatial analysis. In this paper, the spatial incremental auto-
correlation analysis is used to determine the optimal analysis distance [53]. The whole
process is based on the Global Moran’s I statistic, which calculates the z-score of the feature
at different distances and finally uses the z-value peak as the distance threshold parameter
of the spatial analysis. The equation is as follows:

I =
n
S0

∑n
i=1 ∑n

j=1 ωij(xi − x)
(
xj − x

)
∑n

j=1
(
xj − x

)2 (1)

where n is the total number of elements when performing spatial clustering, x is the average
value of all elements, ωij is the spatial weight of the element, and S0 is the sum of all spatial
weights. The formula is as follows:

S0 =
n

∑
i=1

n

∑
j=1

ωij (2)

From the results of Global Moran’s I index, the z-value is used to determine the degree
of spatial auto-correlation, which is calculated as follows:

z =
I − E[I]√

Var[I]
(3)

where the calculation of E[I] and Var[I] is as follows:

E[I] = − 1
n− 1

(4)

Var[I] = −E
[

I2
]
− E[I]2 (5)

After the optimal distance threshold is obtained, the statistical model G*
i (d) can be

used to see whether the monitoring feature points within a certain distance have significant
spatial clustering:

G*
i (d) =

∑ xj + xi − nij × x*√
s∗
{[(

n× nij
)
− n2

ij

]
/n− 1

} (6)

where n is the total number of elements, nij is the total number of elements within the
distance threshold, xi is the deformation value, and x* is the average value of the elements.
The Getis-Ord G*

i statistics for each element are represented by their z-value and p-value.
The p-value is the significance level in the hypothesis test [54]. The z-value indicates the
statistical significance of the clustering at the 90% (p value 0.10), 95% (p value 0.05), and
99% (p value 0.01) confidence levels, and the corresponding values are ±1.65, ±1.96, and
±2.58, respectively. In this experiment, the element points (99% confidence level) are set to
be reliable deformation points with spatial-clustering properties.

3.3. Visibility Analysis

As the SAR satellite sensor produces side-view images, layover, foreshortening, and
shadows become more likely to occur when the ground surface has large fluctuations [55].
Layover refers to the echo signals of the top and the bottom of the mountain being reversed;
foreshortening refers to the phenomenon in which the backscattered signals from a slope
are recorded as one single point, resulting in the aliasing of observation values; and
shadows refer to the situation in which there are no observations due to the inability of
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the radar sensor to monitor the steep back slope [56,57]. Assuming that the incident angle
of the satellite sensor is θ and that α is the surface slope, the geometric distortion of the
deformation observations corresponding to different incident angles and slopes is shown
in Figure 4 and Table 3. It can be seen that when the local surface slope and the satellite
incident angle are in a certain geometric relationship, the satellite will not detect the surface
deformation. This error will result in missing detection of the landslide, so this situation is
an important indicator in data evaluation. In this paper, we classify the fully monitored and
foreshortened area as the visible area and layover and shadow area as the invisible area.
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Figure 4. Schematic diagram of the geometric relationship between satellite incidence angle and
observations of slope deformation.

Table 3. Categories of geometric relationship between satellite incidence angle and observations of
slope deformation.

Image Features Deformation Projected Down the Slope
to the Line of Sight

α > 0: slope facing the satellite
0 < α < θ: foreshortening close to the satellite
α = θ : foreshortening cannot be measured

α > θ : layover away from the satellite

α < 0: slope facing away from the
satellite

|α| > (90− θ) : shadow (no signal) cannot be measured
|α| = (90− θ) : ground range resolution

equals slope range resolution away from the satellite

3.4. Coherence of Differential Interferogram Analysis

For a series of radar echoes, if there is similarity between their phase and amplitude, in
the radar interference image, this similarity is manifested as interference fringes. Coherence
is an index by which to measure the similarity between radar echoes, and the coherence
coefficient is a measure of coherence. The coherence between two radar echo signals is γ
and can be defined as follows [58]:

γ =
E
{

YmY*
s

}
√

E
{
|Ym|2

}
E
{
|Ys|2

} (7)

Based on this definition, the coherence of each pixel in the interferogram can be
calculated. Coherence can usually be used as a measure of the effect of short-wavelength
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band errors on measurement accuracy; the higher the coherence, the smaller the standard
deviation of the interferometric phase and the lower the dispersion of the interferometric
phase for the same number of views. When the coherence is lower and the standard
deviation of the interferometric phase is larger, the uncertainty of the interferometric
phase is greater. Therefore, coherence is an important metric for InSAR data, and higher
coherence often means more reliable phase information. During repeated orbit observations,
interferometric phase decoherence can be caused by changes in the antenna phase center
during satellite flights and changes in the dielectric coefficient of surface objects [59].
Considering the coherence performance of the data, the multi-look factors of 10:2 and
4:3 are used to reduce the decoherence noise of Sentinel−1A and ALOS/PALSAR−2,
respectively. In this paper, the average coherence of all interference pairs of two kinds of
data is used to evaluate their accuracy.

3.5. Phase Closure Loop Residual

The interferometric phase will introduce new phase errors in the process of difference,
unwrapping, etc., resulting in a non-zero phase closure of interferogram triplets. These
phase un-closed areas usually appear in the jump of the unwrapping phase [60]. These
residuals constitute an important index by which to judge the quality of unwrapped
interferometric phases [61]. Assuming that the original phases of three SAR images are ∅1,
∅2, and ∅3, the differential phases of their mutual interference are ∅12, ∅23, and ∅13, and
the corresponding unwrapped phases are Φ1, Φ2, and Φ3. Then, the phase closure loop
residual can be expressed as [62]:

∆123 = ∅12 + ∅23 −∅13 (8)

Due to the influence of residuals such as DEM error, orbit error, and atmospheric
error in data processing, there will be phase triangle closed residuals [62]. Therefore, these
residuals are an important index by which to judge the quality of the unwrapped image.
The RMSE (root mean square error) of the residual error of the unwrapped phase closed
loop can reflect how much phase unwrapped error is included in the closed loop [51] so
that the quality of the relevant interferogram can be deduced.

4. Results
4.1. Comparison of Annual Deformation Rate

During data processing, it was found that the image quality of the Sentinel−1A data
from 28 September 2021, 10 October 2021, and 7 June 2022, was very unsatisfactory. In
order to ensure the quality of overall performance, these three images were removed,
and the remaining 34 interference pairs were used for subsequent processing. Thus, the
deformation data from 22 October 2021, to 2 May 2022 were obtained from Sentinel−1A.
After ALOS/PALSAR−2 was optimized, the remaining 25 interference pairs are subjected
to subsequent processing. One of these images, the image from 4 June 2022, has a large dif-
ference from the phase center of the others and was thus eliminated. The final deformation
data were obtained from 25 September 2021 to 7 May 2022. The monitoring accuracies of
ALOS/PALSAR−2 and Sentinel−1A are 26.8 m and 9.65 m, respectively.

When a region is deformed, most of the deformation-rate pixels should be unstable,
with obvious clustering properties [53,63]. These are considered to be real deformation
regions, and the error is usually expressed as discrete deformation points. Figure 5a,b show
the original deformation-rate results obtained by IPTA−SBAS. Although the atmospheric
error, DEM error, and orbital error were removed during data processing, there are still
residual and newly introduced error phases. The final result contains some discrete er-
ror points, which usually greatly affect the speed and accuracy of subsequent landslide
interpretation [63]. The number of discrete error points in the deformation-rate results is
also an important indicator of the monitoring quality of SAR data. This experiment uses
hotspot-analysis technology to identify obvious cold spots, hotspots, and discrete unstable
points in the annual average rate results. The discrete error of Sentinel−1A accounts for
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5% of the total error, and the error point is located in the high-vegetation-coverage area.
Reliable detection results from built-up areas were validated with almost no discrete error
points (Figure 5c). However, most of the slopes in this area are less than 10◦ and are
unlikely to experience landslides. The error ratio of ALOS/PALSAR−2 is 3%; its discrete
error points are relatively few and evenly distributed, and the error points are not strongly
correlated with terrain changes (Figure 5d). Therefore, the reliability of ALOS/PALSAR−2
is still higher than that of Sentinel−1A in terms of the overall deformation rate.
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Figure 5. Original annual line-of-sight (LOS) deformation-rate results. (a,b) represent the annual LOS
deformation rates obtained from Sentinel−1A and ALOS/PALSAR−2 data, respectively. A positive
value (blue) indicates that the deformation direction detected by the satellite is close to the satellite
flight direction, while a negative value (red) indicates that the detected direction of deformation is
away from the satellite; (c,d) are the discrete error points in the Sentinel−1A and ALOS/PALSAR−2
velocity diagrams, respectively.

After discrete error points are removed, the final average annual deformation rate is
obtained. As shown in Figure 6a,b, the effective monitoring areas of ALOS/PALSAR−2
and Sentinel−1A are 88.4% and 72.58%, respectively. The superior penetration of ALOS/
PALSAR−2 makes it theoretically better suited to monitoring potential geohazards. The
average annual deformation rates of both data types are close to a normal distribution,
and the mean values of Sentinel−1A and ALOS/PALSAR−2 are −5.63 mm/year and
−6.26 mm/year, respectively, which indicates that the study area is relatively stable. The
difference between the annual average deformation rates of the two is calculated. It is
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found that points with large differences are mostly distributed in areas with relatively lush
vegetation (Figure 7c), and the overall distribution still follows a normal distribution, with
an average value of −3.54 mm (Figure 7d). Most of the differences are within ±30 mm, and
the data consistency is relatively poor.
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Figure 6. Diagram of annual LOS deformation rate. (a,b) show results from Sentinel−1A and
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In order to analyze the difference in deformation rate between the Sentinel−1A and
ALOS/PALSAR−2 data in more detail, three areas where the deformation is concen-
trated (Zone 1, Zone 2, and Zone 3 in Figure 6) are investigated more closely. In Zone 1,
which has low vegetation coverage, although Sentinel−1A is able to recognize most of
the deformed areas detected by ALOS/PALSAR−2, it found deformation-rate values and
landslide-activity ranges that were generally smaller than those detected by the latter. In
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this case, the rate of missed judgments in subsequent interpretations would increase. In
Zone 2, which has medium vegetation coverage, Sentinel−1A missed six large deformation
areas that ALOS/PALSAR−2 did not. In Zone 3, which has extremely high vegetation
coverage, not only are the deformation rates of the two data sources quite different, but
the effective monitoring area of Sentinel−1A is also greatly reduced. Sentinel−1A and
ALOS/PALSAR−2 missed eleven and five concentrated deformations, respectively. In
general, ALOS/PALSAR−2 has vast advantages over Sentinel−1A in detection of the
deformation rate.
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Figure 7. Diagram of deformation-rate statistics. (a,b) represent the deformation-rate statistics
of Sentinel−1A and ALOS/PALSAR−2 data in the LOS direction, respectively; (c) represents the
deformation-rate difference between Sentinel−1A and ALOS/PALSAR−2, and (d) is the correspond-
ing statistical graph.

4.2. Comparison of Landslide Detection Results

In this paper, the deformation-rate results obtained by InSAR technology are superim-
posed on the three-dimensional Google images, and the three-dimensional optical image is
used to assess the disaster-producing conditions and deformation signs of the deformed
area. Usually, a landslide will result in local changes in optics, and there will be ground
fissures, small collapses, and bare areas. The vegetation index is significantly reduced.
If the optical signs conform to the characteristics of the landslide and there are certain
indicators of risk, the area is preliminarily judged as a potential landslide, more than 80%
of the which are verified in the field. Finally, a total of 88 landslides were identified in the
study area (Figure 8), and 66 of them were investigated in the field; others that have not



Appl. Sci. 2023, 13, 12080 14 of 28

been verified also show obvious deformation traces in the optical time-series images. It
is clear IPTA−SBAS is able to detect landslides in the Qinling-Daba Mountains. Through
analysis, we found that landslides in this area mostly occurred on both sides of the river.
First, the river is a densely populated area, which indicates the influence of engineering [64];
second, long-term erosion by the river will also reduce the stability of the slope [65,66].
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Landslides in the Qinling-Daba Mountains are mainly shallow, small and
medium-sized, with clear seasonality [33]. The superior penetration and high spatial
resolution of ALOS/PALSAR−2 enabled that system to identify 80 landslides in this area
(Figure 8). Accounting for 90.9% of the total number of detected landslides, it shows
excellent detection performance. However, Sentinel−1A detected only 38 landslides in this
area, accounting for 43.2% of the total number. Furthermore, 50 landslides were detected
only by ALOS/PALSAR−2; most of these are small, seasonal, and located near rivers.
Additionally, eight landslides were detected only by Sentinel−1A, most of which are dis-
tributed in the alpine and canyon areas with dense vegetation and steep slopes. Generally,
ALOS/PALSAR−2 has absolute detection advantages in areas of dense vegetation [67,68],
but it still missed eight landslides in our experiment.
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4.3. Comparison and Verification of Typical Landslides

In order to illustrate the accuracy of the recognition results and compare the results of
the two systems, three landslides were selected: one that was detected by both data sources
(Hujiayuan landslide), one that was detected only by ALOS/PALSAR−2 (Lianfengcun
landslide), and one that was detected only by Sentinel−1A (Sanxingwan landslide). The
locations of the landslides are marked in Figure 8. The deformation along the LOS direction
was changed to the vertical direction for better comparison of monitoring results.

4.3.1. Hujiayuan Landslide

The Hujiayuan landslide is located in Miaoxi Village, Huangu Town, Ziyang County;
the slope is 26◦, and the elevation is 112 m. The average annual precipitation is
1066.2 mm, mostly concentrated from mid- and late June to early October. This land-
slide is a thrust-type landslide, which can be detected by both data sources.

A field survey shows that the landslide is covered with a large number of scattered
gravel soil blocks. Point P1 is the back of the landslide (Figure 9d), where the soil is exposed,
and obvious traces of decline can be observed. Small collapses can be seen everywhere on
the slope body (Figure 9e), and there are many cracks in the side walls of the houses and the
cement road (Figure 9f), which is consistent with the results from deformation monitoring.
The deformation rates found from the two data types across the time coverage are different,
as shown in Figure 9a,b: the annual deformation-rate range found by ALOS/PALSAR−2 is
−124 mm~19 mm/year, while that found by Sentinel−1A is −94.5 mm~13 mm/year. The
deformation ranges detected by Sentinel−1A and ALOS/PALSAR−2 are nearly the same,
but the latter can clearly detect more deformation details due to its superior resolution.
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Figure 9. Hujiayuan landslide. (a,b) show annual deformation-rate results from ALOS/PALSAR−2
and Sentinel−1A, respectively. (c) is the optical image on Google Earth; (d–f) are the field-survey
pictures showing the areas in white boxes A, B and C in (c), respectively. The P1 and P2 points
marked on the figure are the points for time series deformation analysis in Chapter 5.4.1

4.3.2. Lianfeng Landslide

The Lianfeng landslide is located in Lianfeng Village, Donghe Town, Ziyang County;
the slope is about 42◦, and the elevation is 198 m. A field survey found that a 3~5 m-high
scarp was formed on the posterior border (Figure 10d), and staggered scarps and cracks
were seen on the flank (Figure 10e). There are many tension cracks on the slope, and the
collapse of the toe is obvious (Figure 10f).
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Figure 10. Lianfeng landslide. (a,b) show annual deformation-rate results from ALOS/PALSAR−2
and Sentinel−1A, respectively. (c) is the optical image on Google Earth; (d–f) are the field-survey
pictures showing the areas in white boxes A, B and C in (c), respectively. The P1 and P2 points
marked on the figure are the points for time series deformation analysis in Chapter 5.4.2

The field-survey results verified the validity of monitoring landslides using ALOS/
PALSAR−2. The deformation of this landslide is obvious on ALOS/PALSAR−2, with
an average annual deformation rate of 15 mm~79.8 mm/year; however, the results of
Sentinel−1A show that this area is relatively stable, with an annual deformation rate of
−13 mm~10 mm/year. The vegetation coverage here is thick, which is why even though
the deformation is obvious, the Sentinel−1A data still failed to detect it.

4.3.3. Sanxingwan Landslide

The Sanxingwan landslide is located in Sanxingwan Village, Minzhu Town, Langao
County, and the elevation is 296 m. It is a large landslide, and the vegetation coverage
is moderate, with small, sparse shrubs growing. This landslide was detected only by
Sentinel−1A. The landslide is difficult to reach and there are no field verification data;
however, validation can still be carried out via optical-image interpretation. Four large
tensive cracks can be clearly seen in the optical image. Additionally, the flank of the slope
body is relatively deep and the crown on the slope body is obviously observed (Figure 11c).
Although Sentinel−1A is mostly decoherent in this area, a concentrated deformation area
was detected on the left back of the slope (Figure 11a). The coherence of ALOS/PALSAR−2
is relatively good in this area, but the monitoring results show that there is no obvious
deformation (Figure 11b), which indicates a missing detection in this area.



Appl. Sci. 2023, 13, 12080 17 of 28

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 31 
 

there is no obvious deformation (Figure 11b), which indicates a missing detection in this 
area. 

 
Figure 11. Sanxingwan landslide. (a,b) show annual deformation rate results of ALOS/PALSAR−2 
and Sentinel−1A, respectively. (c) is the optical image on Google Earth. The P1 and P2 points marked 
on the figure are the points for time series deformation analysis in chapter 5.4.3. 

4.4. Overall Adaptability Analysis 
In order to more clearly compare the detection capabilities of the two data−gathering 

systems, we summarized their indicators and detection results, as shown in Table 4 and 
Figure 12. In general, although Sentinel−1A has a short revisit cycle and can obtain more 
data, the proportions of data and interference pairs available in data processing are 5.79% 
and 13.94% lower, respectively, than the proportions available from PALSAR−2, (Table 4). 
The discrete error point in the deformation rate is 2% higher than that of PALSAR−2, and 
the effective monitoring area of the deformation rate is 15.82% lower. In terms of accuracy 
in detecting the deformation rate, PALSAR−2 is 2.78 times more accurate than 
Sentinel−1A. In summary, Sentinel−1A is far less well−suited than PALSAR−2 to detecting 
landslides in complex and dangerous areas. Therefore, its total detection rate is 47.7% 
lower than that of PALSAR−2. Because of the low detection rate, we combined the 
characteristics of Qinling–Daba Mountains landslides and the characteristics of two data 
sources to analyze our results. 

Table 4. Indicators of Sentinel−1A and PALSAR−2 data. 

Indicators Sentinel−1A PALSAR−2 
Proportion of reliable data 84.21% 90% 

Proportion of available interference pairs 61.81% 75.75% 
Proportion of effective deformation area of deformation rate 72.58% 88.40% 

Proportion of discrete error of deformation rate 5% 3% 
Deformation accuracy of deformation rate 26.8 m 9.65 m 

Mean value of deformation rate −5.63 mm/year −6.26 mm/year 
Number of detected disaster points 38  80  

Figure 11. Sanxingwan landslide. (a,b) show annual deformation rate results of ALOS/PALSAR−2
and Sentinel−1A, respectively. (c) is the optical image on Google Earth. The P1 and P2 points marked
on the figure are the points for time series deformation analysis in Chapter 5.4.3

4.4. Overall Adaptability Analysis

In order to more clearly compare the detection capabilities of the two data-gathering
systems, we summarized their indicators and detection results, as shown in Table 4 and
Figure 12. In general, although Sentinel−1A has a short revisit cycle and can obtain more
data, the proportions of data and interference pairs available in data processing are 5.79%
and 13.94% lower, respectively, than the proportions available from PALSAR−2, (Table 4).
The discrete error point in the deformation rate is 2% higher than that of PALSAR−2, and
the effective monitoring area of the deformation rate is 15.82% lower. In terms of accuracy
in detecting the deformation rate, PALSAR−2 is 2.78 times more accurate than Sentinel−1A.
In summary, Sentinel−1A is far less well-suited than PALSAR−2 to detecting landslides
in complex and dangerous areas. Therefore, its total detection rate is 47.7% lower than
that of PALSAR−2. Because of the low detection rate, we combined the characteristics of
Qinling-Daba Mountains landslides and the characteristics of two data sources to analyze
our results.

Table 4. Indicators of Sentinel−1A and PALSAR−2 data.

Indicators Sentinel−1A PALSAR−2

Proportion of reliable data 84.21% 90%
Proportion of available interference pairs 61.81% 75.75%

Proportion of effective deformation area of deformation rate 72.58% 88.40%
Proportion of discrete error of deformation rate 5% 3%

Deformation accuracy of deformation rate 26.8 m 9.65 m
Mean value of deformation rate −5.63 mm/year −6.26 mm/year

Number of detected disaster points 38 80
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5. Discussion

In order to further explore the difference between the two data types in detecting
landslides, the following section presents a detailed analysis of the four aspects of visibility,
coherence, unwrapped phase closed-loop residuals, and deformation time-series data for
typical landslides.

5.1. Data Visibility Analysis

According to the geometric relationships and categories mentioned in Section 3.3, we
calculated the visual area of the image and combined it with radar incident angle and
DEM data. The incident angles of the ascending Sentinel−1A and the ALOS/PALSAR−2
ascending satellite used in this paper are 37.76◦ and 36.18◦, respectively, so the differ-
ence is small. The proportion of visible area of Sentinel−1A is 88.50%, and that of
ALOS/PALSAR−2 is 87.55% (Figure 13). The visibility of Sentinel−1A is slightly higher
than that of ALOS/PALSAR−2, but the proportions of visible and geometrically distorted
areas are almost the same. Therefore, the difference in the detection results is not likely to
have been caused by geometric distortion.
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Figure 13. Schematic diagram of visible and geometric distortion areas; (a,b) are schematic diagrams
of the visual and geometric distortion areas of Sentinel−1A and ALOS/PALSAR−2, respectively;
(c) shows the incident angle of Sentinel−1A and ALOS/PALSAR−2; (d) is a statistical diagram of
Sentinel−1A and ALOS/PALSAR−2 visibility, layover, shadow, and layover-shadow areas. Here,
the ribbon settings of (a,b) are consistent with (d).

5.2. Analysis and of Coherence of Differential Interferogram

As defined and described in Section 3.4, the average coherence coefficient of the high-
quality interferogram that yields the annual average deformation rate and time series is
calculated, and the results are shown in Figure 14. Due to Sentinel−1A’s advantage in
time sampling of, the proportion of values with coherence greater than 0.9 is 3.22% higher
than that of ALOS/PALSAR−2. However, the overall coherence is lower than that of
ALOS/PALSAR−2, and the proportion of regions with coherence greater than 0.6 is 6.98%
lower than that of ALOS/PALSAR−2. In some areas with more artificial construction and
less vegetation, Sentinel−1A shows extremely strong coherence, and ALOS/PALSAR−2
still has some sporadic low-coherence areas inside the high-coherence areas. The coherence
of Sentinel−1A is strongly correlated with the type of surface scatterers, while the variation
in the coherence of ALOS/PALSAR−2 across different surface scatterers is relatively small.
The decoherence of ALOS/PALSAR−2 is mainly caused by its long temporal baseline. In
conclusion, ALOS/PALSAR−2 has a coherence advantage over Sentinel−1A in areas with
dense vegetation. This difference in coherence leads to a lower effective detection area
in the Sentinel−1A deformation-rate results, so the final number of detected landslides
will be lower than the number detected by PALSAR−2 (especially in areas with high
vegetation coverage).
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to 1) are represented by shading from blue to yellow, respectively. (c) is the statistics of the coherence
coefficient of two data sources.

5.3. Analysis of Unwrapped Phase Closed-Loop Residuals

Based on research and experience [69], a closed loop is considered a problem loop
when the RMSE (as explained in Section 3.5) is greater than 1.5 rad. If all the closed loops
related to a certain interferogram have problems, it is considered that the interferogram
may contain more phase unwrapping errors [62]. As shown in Table 5, in this experiment,
55 interference pairs generated by Sentinel−1A data constituted a total of 64 closed loops,
of which one scene datum (20220607) could not form a closed loop with the other data due
to the large space–time baseline. Among the closed loops, there are 20 closed loops whose
RMSEs are less than 1.5 rad and 44 closed loops whose RMSEs are greater than 1.5 rad, and
the problematic loops account for 68.7% of the total. Thus, 21 problematic interference pairs
were identified and eliminated in subsequent processing. ALOS/PALSAR−2 formed 52
closed loops, 17 of which had an RMSE greater than 1.5 rad, accounting for 32.7% of the total,
and eight interference pairs were included in the problematic closed loop. Sentinel−1A has
a 36% higher rate of problematic loops compared with ALOS/PALSAR−2.

Table 5. Proportion of problem loops among all unwrapped phase closed loops.

Indicators Sentinel−1A ALOS/PALSAR−2

Total number of closed loops 64 52
Number of closed loops in the problem data (>1.5 rad) 44 17

Proportion 68.7% 32.7%

For further analysis, samples of unwrapped images and closed-loop residuals of the
two data sources were selected, as shown in Figure 15. Even if the temporal baseline is
short, the image quality of Sentinel−1A in mountainous areas will still be extremely poor
and the RMSE of all closed loops will exceed the limit (Figure 15b). It is clear that large
closed-loop residuals are mostly concentrated in areas with high vegetation. However,
when the vegetation coverage is low and the surface is more bare in winter, its overall
RMSE is small and the interference quality is better than that of ALOS/PALSAR−2 images
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taken at the same time (Figure 15a,c). In addition, the Sentinel−1A data also showed
better interference quality for areas containing more buildings. ALOS/PALSAR−2 data
are less affected by vegetation or seasonal changes and can still maintain relatively good
interference quality for a long time (Figure 15a).

From the RMSE of the phase closed loop of the interference pair, even if the same time
coverage is selected, Sentinel−1A is prone to obtaining continuous low-quality interference
pairs in summer and thus should be completely eliminated in the subsequent processing,
resulting in the direct loss of data in some continuous time series. This problem can lead
to the phenomenon in which the deformed regions detected by ALOS/PALSAR−2 are
stable in the Sentinel−1A results and the overall agreement between the two in terms of
the deformation rate is also poor. In addition, with the increase in vegetation coverage,
the periodic and seasonal characteristics of landslides in the Qinling-Daba Mountain Area
are becoming increasingly prominent [2,3]. The lack of summer data will directly lead to
failure to detect many sudden landslides. Un this experiment, the low-vegetation area with
excellent Sentinel−1A performance is in the city, where it is uncommon for landslides to
occur. In short, Sentinel−1A has poor performance because of its poor detection ability
in high-vegetation areas and because of the characteristics of seasonal landslides in the
Qinling-Daba Mountains.
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5.4. Analysis of Typical Landslides

In order to further discuss why the detection results of the first three typical landslide
points are inconsistent or why some landslides were not even detected, the deformation
time-series data results are extracted for each of them separately.

5.4.1. Hujiayuan Landslide

Two time series on the trailing edge and leading edge of the Hujiayuanzi slope are
extracted and shown as points P1 and P2 in Figure 16a. The cumulative deformation
of point P1 detected by ALOS/PALSAR−2 is −64.54 mm, and that of Sentinel−1A is
−44.01 mm, with a difference of 20.53 mm. Meanwhile, the deformation of point P2
detected by ALOS/PALSAR−2 is −36.25 mm, and that of Sentinel−1A is −23.35 mm, with
a difference of 12.9 mm. In order to make a more intuitive comparison, the consistency
analysis of the time series trend was performed after the time difference was removed from
the cumulative deformation of the two data. Figure 16d shows the cumulative time-series
results after the time difference was removed at point P1. High consistency can be observed
in the monitoring results, and the trend in the deformation of point P1 is close to linear.
Figure 16e shows the time-series results of point P2 after the time difference was removed.
High consistency is also observed here. The trend in the deformation of the landslide
is relatively steep before January 2021 but relatively slower after that. It is clear that in
areas with relatively low vegetation coverage, the deformation trends detected by the two
data sources are relatively consistent. The time-series results verified that the deformation
rate detected by Sentinel−1A is generally lower than that detected by ALOS/PALSAR−2
because of the unavailability of summer monitoring data.
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Figure 16. InSAR time-series results for the Hujiayuan landslide; (a) is the optical image of the
landslide, and the positions of PI and P2 points are marked on the image; (b,c) are the time-series
results from ALOS/PALSAR−2 and Sentinel−1A at P1 and P2, respectively; (d,e) are comparisons of
time series between P1 and P2 after the time difference was removed.

5.4.2. Lianfeng Landslide

After the time series of the upper part (P1 point) and lower part (P2 point) of the Lianfeng
landslide was extracted (Figure 17a), the ALOS/PALSAR−2 time-series results of P1 and
P2 showed severe deformation during the period 26 September~22 October 2021. During
this period, the cumulative deformation of P1 reached −71.39 mm, and the sequential
deformation has been fluctuating since then. The cumulative amount of deformation
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reached −80.93 mm on 2 May 2022 (Figure 17). P2 shows similar trends to P1. After the
time difference between the time-series results of the two data sources was removed, the two
were in good agreement, indicating that the deformation of the landslide was concentrated
before 22 October and Sentinel−1A missed monitoring due to the low coherence of summer
data. The summer rainfall in the Qinling-Daba Mountains is concentrated, and excessive
rainfall will directly lead to large displacement or failure of the slope, causing sudden
seasonal landslides [70]. The time-series results further confirm the landslide characteristics
of the Qinling-Daba Mountains. The reason for non-detection of landslides by Sentinel−1A
is also clarified.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 26 of 31 
 

 
Figure 17. InSAR time−series results of Lianfeng landslide, (a) is the optical image of the landslide, 
and the positions of PI and P2 points are marked on the image; (b,c) are the time−series results of 
ALOS/PALSAR−2 and Sentinel−1A at P1 and P2, respectively; (d,e) are comparison of time series 
between P1 and P2 after removing the time difference. 

5.4.3. Sanxingwan Landslide 
The time series of P1 on the back and P2 on the toe of the Sanxingwan landslide 

(Figure 18c) were extracted for further analysis. As shown in Figure 18a,b, P2 on the 
leading edge remained stable during monitoring. At P1 on the back of the slope, the 
Sentinel−1A data showed continuous deformation (Figure 18a), while the deformation 
time−series data of ALOS/PALSAR−2 oscillated back and forth without any obvious 
pa ern (Figure 18b). Figure 18d was obtained by removing the time difference between 
the two time series at P1. It can be seen that the cumulative deformation of the two has 
some consistency before December 18, 2021, but after that time, ALOS/PALSAR−2 shows 
irregular oscillations, indicating that the results are distorted by errors. The first reason is 
that radar satellites are more susceptible to atmospheric delay in mountainous areas with 
steep terrains [71,72] and that L−band sensors will be affected by the ionosphere six times 
more than X−band ones [70] (atmospheric error is divided into tropospheric error and 
ionospheric error). Secondly, the spatio−temporal filtering method adopted in this paper 
requires a large number of original SAR images (usually no fewer than 15 scenes) to be 
superimposed and calculated when the atmospheric delay phase is separated and 
removed. The effective data volume of ALOS/PALSAR−2 is only nine scenes, so the ability 
to remove atmospheric errors will be greatly reduced. Thirdly, ALOS/PALSAR−2 data are 
not as sensitive to small deformations as Sentinel−1A data are. With the combination of 
these sensors, a few potential landslides are missed, but the system can still carry out more 
than 90% of the required monitoring. 

Figure 17. InSAR time-series results of Lianfeng landslide, (a) is the optical image of the landslide,
and the positions of PI and P2 points are marked on the image; (b,c) are the time-series results of
ALOS/PALSAR−2 and Sentinel−1A at P1 and P2, respectively; (d,e) are comparison of time series
between P1 and P2 after removing the time difference.

5.4.3. Sanxingwan Landslide

The time series of P1 on the back and P2 on the toe of the Sanxingwan landslide
(Figure 18c) were extracted for further analysis. As shown in Figure 18a,b, P2 on the leading
edge remained stable during monitoring. At P1 on the back of the slope, the Sentinel−1A
data showed continuous deformation (Figure 18a), while the deformation time-series data
of ALOS/PALSAR−2 oscillated back and forth without any obvious pattern (Figure 18b).
Figure 18d was obtained by removing the time difference between the two time series at
P1. It can be seen that the cumulative deformation of the two has some consistency before
December 18, 2021, but after that time, ALOS/PALSAR−2 shows irregular oscillations,
indicating that the results are distorted by errors. The first reason is that radar satellites
are more susceptible to atmospheric delay in mountainous areas with steep terrains [71,72]
and that L−band sensors will be affected by the ionosphere six times more than X-band
ones [70] (atmospheric error is divided into tropospheric error and ionospheric error).
Secondly, the spatio-temporal filtering method adopted in this paper requires a large
number of original SAR images (usually no fewer than 15 scenes) to be superimposed and
calculated when the atmospheric delay phase is separated and removed. The effective data
volume of ALOS/PALSAR−2 is only nine scenes, so the ability to remove atmospheric
errors will be greatly reduced. Thirdly, ALOS/PALSAR−2 data are not as sensitive to
small deformations as Sentinel−1A data are. With the combination of these sensors, a few
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potential landslides are missed, but the system can still carry out more than 90% of the
required monitoring.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 27 of 31 
 

 
Figure 18. InSAR time−series results for the Sanxingwan landslide, (a,b) are the time−series results 
from ALOS/PALSAR−2 and Sentinel−1A at P1 and P2, respectively; (c) is the optical image of the 
landslide, and the positions of PI and P2 points are marked on the image; (d) is the time series of 
P1 after the time difference was removed. 

5.5. Limitations of the Experiment 
Although this experiment included extensive quantitative and qualitative analysis of 

Sentinel−1A and ALOS/PALSAR−2 data and analyzed their potential for adaptation to in 
landslide detection in detail, the following deficiencies remain: 
 Due to the different revisiting times of the two data sources (three days apart), it is 

impossible to maintain strict consistency in the date selection of the two data sources, 
which will lead to a degree of deviation in the final result. 

 Many errors will be introduced in data processing, such as registration errors, DEM 
errors, baseline errors, and unwrapping errors. These errors will ultimately affect the 
accuracy of the results. 

 When selecting the unwrapping reference point, although the selection has been 
restricted to a certain region as far as was possible, the inconsistent pixel size makes 
it impossible to maintain the complete unity of the unwrapping reference point. This 
constraint is also an important factor in the generation of image results. 

 This paper uses only IPTA−SBAS technology to compare the adaptability of the two 
data sources, and it is impossible to determine whether the results are consistent with 
those obtained using other methods, which will be a focus of future research. 

 The research area selected in this paper is very typical of the region, but the coverage 
is small, and it may not fully represent the complex geographic area. More data will 
be used for analysis and comparison in the future. 

Figure 18. InSAR time-series results for the Sanxingwan landslide, (a,b) are the time-series results
from ALOS/PALSAR−2 and Sentinel−1A at P1 and P2, respectively; (c) is the optical image of the
landslide, and the positions of PI and P2 points are marked on the image; (d) is the time series of P1
after the time difference was removed.

5.5. Limitations of the Experiment

Although this experiment included extensive quantitative and qualitative analysis of
Sentinel−1A and ALOS/PALSAR−2 data and analyzed their potential for adaptation to in
landslide detection in detail, the following deficiencies remain:

• Due to the different revisiting times of the two data sources (three days apart), it is
impossible to maintain strict consistency in the date selection of the two data sources,
which will lead to a degree of deviation in the final result.

• Many errors will be introduced in data processing, such as registration errors, DEM
errors, baseline errors, and unwrapping errors. These errors will ultimately affect the
accuracy of the results.

• When selecting the unwrapping reference point, although the selection has been
restricted to a certain region as far as was possible, the inconsistent pixel size makes it
impossible to maintain the complete unity of the unwrapping reference point. This
constraint is also an important factor in the generation of image results.

• This paper uses only IPTA−SBAS technology to compare the adaptability of the two
data sources, and it is impossible to determine whether the results are consistent with
those obtained using other methods, which will be a focus of future research.
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• The research area selected in this paper is very typical of the region, but the coverage
is small, and it may not fully represent the complex geographic area. More data will
be used for analysis and comparison in the future.

6. Conclusions

In this paper, deformation was extracted using two data sources, Sentinel−1A and
ALOS/PALSAR−2, based on the combination of IPTA and SBAS technology. Landslides
were further interpreted by identifying deformation and integrating optical and geological
factors, and 88 active landslides were observed in the region. Based on the hotspot analysis,
there are many discrete error points in the Sentinel−1A rate results (2% more than in the
results from ALOS/PALSAR−2), and there are also many missed detections in the concen-
trated deformation area. The deformation-rate consistency is poor, and the final landslide
recognition rate of Sentinel−1A is also 47.7% lower than that of ALOS/PALSAR−2. A
comparative analysis of the visibility, coherence, closed-loop residuals, and time series
of individual landslides from the two data types shows that the main reason for their
differences is that the quality of Sentinel−1A’s summer data is extremely low, resulting
in missed detection of many landslides. ALOS/PALSAR−2 is less affected by surface
scatterers and time decoherence and is more likely to detect landslides in summer. This
advantage makes it highly suitable for landslide detection in the Qinling-Daba Mountains,
where seasonality is a significant factor, and this system can meet more than 90% of the
monitoring needs.

The time consistency of the two data sources is guaranteed to the greatest extent
when the original data are selected, which leads to a smaller amount of Sentinel−1A data
being included in the experiment. However, if this factor is not considered in the detection
process, Sentinel−1A has the advantages of sufficient free data sources, which prolong
its monitoring time. It could thus obtain better results than those seen in this experiment.
However, for those areas with sudden deformation in summer and continuous oscillation
of deformation trends, serious loss of coherence in dense vegetation and excessive defor-
mation ranges mean that detecting landslides using Sentinel−1A data remains a difficult
task. Therefore, when large-scale landslide detection is carried out, the time coverage of
Sentinel−1A data should be extended as far as possible, including at least the data from
before and after summer (best if these data are available for more than one year). For
the key areas with high vegetation coverage and obvious seasonality, it is necessary to
use ALOS/PALSAR−2 data for monitoring, and the amount of ALOS/PALSAR−2 data
should be greater than 15 scenes to obtain the best effect (so as to better offset the impact of
atmospheric errors).

In this paper, a large number of accuracy indicators are used to evaluate the detection
capabilities of Sentinel−1A and ALOS/PALSAR−2 in the Qinling-Daba Mountains. These
systems are compared in detail for the first time, and the drivers of differences in these
systems’ data are also discussed. A more intuitive analysis verifies the feasibility of using
two data sources for landslide detection and the necessity of using multi-source data
detection in densely vegetation-covered areas. It is believed that this study can provide
good suggestions for the selection of data sources for landslide detection in the Qinling-
Daba Mountains and similar complex, dangerous mountainous areas with high vegetation
coverage and large numbers of shallow landslides. The study also provides important
scientific support for the selection of InSAR monitoring accuracy-evaluation methods.
Although the experiment was as rigorous as possible, there are still some shortcomings in
the data processing, such as inconsistent parameters, the use of a single data-processing
method, and the small coverage. For future research, more data-processing methods, such
as Stack−InSAR and PS−InSAR technology, should be used to fully verify the applicability
of the data. More data sources should also be mined and compared. Of particular interest
are the L−band L−SAR data just launched by China, as this system has completed testing
and obtained excellent results. Its time resolution is 4 days, and it is believed that it can
obtain better time-series monitoring results than ALOS/PALSAR−2.
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