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Abstract: At present, there are problems such as low fault data, insufficient labeling information,
and poor fault diagnosis in the field of ship engine diagnosis. To address the above problems, this
paper proposes a fault diagnosis method based on probabilistic similarity and rank-order similarity
of multi-head graph attention neural networks (MPGANN) models. Firstly, the ship engine dataset
is used to explore the similarity between the data using the probabilistic similarity of T_SNE and
the rank order similarity of Spearman’s correlation coefficient to define the neighbor relationship
between the samples, and then the appropriate weights are selected for the early fusion of the two
graph structures to fuse the feature information of the two scales. Finally, the graph attention neural
networks (GANN) incorporating the multi-head attention mechanism are utilized to complete the
fault diagnosis. In this paper, comparative experiments such as graph construction and algorithm
performance are carried out based on the simulated ship engine dataset, and the experimental results
show that the MPGANN outperforms the comparative methods in terms of accuracy, F1 score, and
total elapsed time, with an accuracy rate of 97.58%. The experimental results show that the model
proposed in this paper can still fulfill the ship engine fault diagnosis task well under unfavorable
conditions such as small samples and insufficient label information, which is of practical significance
in the field of intelligent ship cabins and fault diagnosis.

Keywords: fault diagnosis; graph attention network; feature fusion; marine engines; machine learning

1. Introduction

As the main power source for ship navigation and power generation, ship engines
occupy an important position in the field of ships. Due to its importance, if the engine
operation failure cannot be found in time, it will cause huge economic losses or even
casualties. Therefore, timely monitoring and diagnosis of the engine’s working condition
can effectively improve the reliability, economy, and safety of normal ship operation.

With the wave of the era of ship intelligence and the continuous development and
improvement of artificial intelligence and algorithmic arithmetic power, more and more
scholars apply artificial intelligence to the field of condition detection and fault diagnosis,
and the fault diagnosis methods of ship engines also progress and develop. Fault diagnosis
of ship engines faces challenges such as data scarcity, multiple fault types, data noise
interference, and insufficient labeling information. In order to provide safety for normal
ship navigation, Zhong et al. [1] introduced deep learning into ship diesel engine fault
diagnosis and proposed a fault diagnosis method based on correlation distribution and
deep confidence networks, which achieved good results. However, this type of method
does not take into account the problem of imbalance in the ship fault data categories,
resulting in some defects in the training and application of the model. Aiming at the
above problems Hou et al. [2] first used principal component analysis (PCA) to reduce the

Appl. Sci. 2023, 13, 12421. https://doi.org/10.3390/app132212421 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132212421
https://doi.org/10.3390/app132212421
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0008-7418-198X
https://doi.org/10.3390/app132212421
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132212421?type=check_update&version=2


Appl. Sci. 2023, 13, 12421 2 of 20

dimensionality of the data. Then, the sample size optimization algorithm (SSO) was used
to solve the problem of data imbalance, and the three-dimensional Arnold mapping to
the particle swarm optimization algorithm was introduced to improve the holding vector
machine (SVM), which effectively improves the generalization ability of the classification
model. Finally, the model is validated by example using the fault data of the fuel supply
system, and the experimental results show that the method is able to alleviate the impact
of unbalanced data. Zhong et al. [3] proposed a semi-supervised principal component
analysis (SSPCA) to improve the diagnostic accuracy of the model by fusing labeled and
unlabeled samples as an alternative to unsupervised learning, with better robustness to
false alarms.

The above model has achieved good results in fault monitoring, but it can only
determine whether the fault occurs or not and cannot diagnose the specific cause of
the fault, which makes it difficult to play a guiding role for the subsequent operation
and maintenance decision-making work. In this regard, Ren et al. [4] established a fault
tree, transformed the fault tree into a Bayesian network, constructed a Bayesian network
diagnostic model of the lubrication system, and, in the example validation, the model was
able to accurately diagnose the cause of the failure. Han et al. [5] introduced a convolutional
neural network to solve the problem of propulsion fault detection and classification of time
series. Xu et al. [6] fused an artificial neural network (ANN) model, a belief rule-based
reasoning (BRB) model, and an ER rule model and used a genetic algorithm to optimize
the importance weights of each model to improve the overall performance of the fusion
system, and finally, through the three models, joint decision-making to realize the fault
diagnosis of the ship system. In recent years, algorithmic improvements have achieved
significant results in the field of industrial fault diagnosis [7–11]. Samet [12] proposed a new
kNN-based classifier (PFS-kNN) to find the k-nearest neighbors using Minkowski’s metric
of the image fuzzy soft matrix, which was validated on the UCI medical dataset, and the
PFS-kNN outperformed the most state-of-the-art kNN-based algorithms. Yang et al. [13]
proposed a diagnostic method based on fault sign simulation to solve the problem of a too-
small sample size of faults in the fault diagnosis of a particular engine. Agrawal et al. [14]
proposed a data-driven model for predictive health maintenance to monitor the health
status of the equipment and take action before a fault occurs. The model will alert for
any major defects in the system and can be effective in avoiding work interruptions in the
production process.

A graph neural network (GNN) is a neural model that captures graph dependencies
through message passing between graph nodes. Zhou et al. [15] divided GNN applications
into six directions: natural language processing, computational technology, natural science
research, knowledge graph, combinatorial optimization, and graph generation, and made
a more comprehensive and detailed summary of GNN applications.

In recent years, variants of GNNs such as Graph Convolutional Networks (GCNs) [16]
and GANN [17] have achieved breakthroughs in many deep learning tasks. Kipf et al. [18]
applied GCNs to fast and scalable semi-supervised classification of nodes in graphs, which
demonstrated significant superiority over a large number of datasets. Wang et al. [19]
proposed a multi-graph-based GCN fault diagnosis method that fuses two feature embed-
dings into one combined embedding by introducing a self-attention mechanism to improve
classification accuracy and stability in unbalanced datasets. Li et al. [20] proposed a domain
adversarial graph convolutional network (DAGCN), which incorporates three types of
information—class label, domain label, and data structure—into a deep network for model-
ing, thus realizing unsupervised domain adaptive (UDA) fault diagnosis. Zheng et al. [21]
proposed a new quantum graph convolutional neural network (QGCN) model by drawing
on quantum neural networks and graph convolutional neural networks, which utilize
quantum parametric circuits and the high computational power of quantum systems to ac-
complish the traditional task of graph classification in machine learning. In all of the above
studies, GCN has achieved good results in the field of graph structure classification due to
its advantage of being able to handle non-Euclidean distance data well. However, GCN’s



Appl. Sci. 2023, 13, 12421 3 of 20

mean-aggregation operation in the metric matrix makes it insufficiently attentive to impor-
tant nodes. Therefore, Veličković et al. [22] constructed GANN by adding a self-attention
layer to traditional GCNs, which are able to set different weights for different nodes in the
neighborhood, thus solving the drawback that GCNs cannot consider the importance of
neighbors. On this basis, Yang et al. [23] proposed a full graph attention neural network
(FGANN), which also considers the influence of nodes other than neighboring nodes and
can handle the graph classification task well. Zhang et al. [24] noticed that in sentiment
classification tasks, traditional models are not sensitive to syntactic structural information
due to the complexity of syntactic analysis relationships, and the models lack the utilization
of external sentiment knowledge. In this regard, a new graph attention neural network is
proposed that realizes attention to multiple levels of syntax, semantics, and knowledge
by introducing the mechanism of multi-head attention and acquires knowledge about
sentiment by considering information such as syntax.

The relationship between numerous thermal parameters of ship engines is not just a
simple linear relationship but is often very complex and agnostic. In this paper, to address
this problem, graph learning theory is introduced to explore the relationship of geometric
structure among data, and a MPGANN ship engine fault diagnosis model is proposed.
Based on the ship engine failure dataset, the model uses both T_SNE and Spearman to
construct the probabilistic graph structure and ordinal graph structure, selects appropriate
weights for early fusion of the two graph structures, and finally adopts GANN to transfer
and extract the combined features. The core of the model is that it can mine the similarity
between the data from two scales and more comprehensively describe the relationship
between the data and the graph structure to provide more useful information for the model.
The main contributions of this paper can be summarized as follows:

(1) Transform the ship engine dataset into two graph structures from different scales
and make the two graph structures contain similarity relationships from multiple
perspectives by extracting the neighbor relationships between samples so as to achieve
complementation and extension of the model input information.

(2) Introducing fusion weights, the two graph structures are structurally fused accord-
ing to appropriate weights to obtain a fused graph structure that contains deeper
information.

(3) Input the obtained fusion graph structure into the GANN of fused multi-head atten-
tion for multi-channel feature extraction, and finally connect the Softmax layer to
realize fault diagnosis.

(4) The ship engine thermal parameter dataset is used to verify that the MPGANN
proposed in this paper outperforms other classical algorithms and achieves higher
accuracy.

The remaining sections of this paper are organized as follows: In Section 2, the theory
related to the MPGANN model is introduced in detail. Section 3 presents experiments
and comparisons of the construction of the model proposed in this paper, the setting of
hyperparameters, and the performance of the algorithm through case studies. Section 4
then summarizes and outlooks the paper.

2. Related Work and Theory
2.1. Data Topology Construction

Due to the complexity of the work of the ship engine, there is a more complex connec-
tion between the various data. In order to fully explore the deep connection between the
data, this paper will use the conditional probability and the correlation coefficient between
the features of the different nodes to calculate the adjacency relationship between two
different scales, as a way to construct the probability graph structure and the similarity
graph structure, and the fusion of the two graph structures to get the new fusion graph
structure as the input of the network for fault diagnosis.
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2.1.1. Probabilistic Graph Structure

Inspired by the T-SNE method [25], in this paper, we use the conditional probability
calculated by transforming the distance between the data to represent the correlation
between the data, and the correlation Cor

(
xi, xj

)
serves as the degree of correlation between

the data samples xi and xj, and the larger Cor
(

xi, xj
)

is, the higher the likelihood that xi
will be a neighbor of xj.

For a dataset X = {x1, x2, x3 . . . xn}, the conditional probability (denoted as pj|i)
between any pair of sample points, xj and xj, is expressed by Equation (1):

pj|i =
exp

(
−‖xi − xj‖2/2σ2

i
)

∑k 6=i
(
−‖xi − xk‖2/2σ2

i
) , (1)

In this context, when both pj|i and qj|i are set to 0, σi represents the Gaussian variance
centered on point xi. It is worth noting that because data density can vary, there is no
universally optimal value for σi across all datasets. The entropy of this distribution increases
as σi grows larger, so a binary search approach is employed to determine the appropriate
value of σi. Perplexity (denoted as Per(Pi)) is defined as the metric for computing σi and
typically falls within the range of [5, 50]. Its definition is as follows:

Per(Pi) = 2H(Pi), (2)

By specifying a perplexity range as described earlier, the information entropy H(Pi) in
the equation above is calculated using the following definition:

H(Pi) = −∑
j

pj|i log2 pj|i, (3)

In the low-dimensional space, the symbol qj|i is employed to denote the conditional
probability between samples and to symbolize the data correlation Cor

(
xi, xj

)
, as shown in

Equation (4):

Cor
(
xi , xj

)
= qj|i =

exp
(
−‖yi − yj‖2)

∑k 6=i(−‖yi − yk‖2)
, (4)

We utilize the KL divergence to quantify the level of concurrence between qj|i and
pj|i. When the KL divergence is 0, it signifies that qj|i = pj|i, signifying that yi and yj
in the low-dimensional space precisely mirror the correct degree of correlation between
data points xi and xj in the high-dimensional space. The KL divergence is defined as
Equation (5):

C = KL(Pi‖Qi) = ∑
i

∑
j

pj|i log
pj|i
qj|i

, (5)

The KL divergence is minimized through the process of gradient descent:

δC
δyi

= 2 ∑
j

(
pj|i − qj|i + pi|j − qi|j

)(
yi − yj

)
, (6)

After the above formula, the degree of correlation between the two samples Cor
(

xi, xj
)

is calculated, and the larger Cor
(
xi, xj

)
is, the stronger the correlation between xi and xj. The

probabilistic correlation Cor
(

xi, xj
)

value between each node constitutes the probabilistic
feature matrix App:

Ap =


p11 p12 · · · p1N
p21 p22 · · · p2N

...
...

. . .
...

pN1 pN2 · · · pNN

, (7)
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2.1.2. Rank-Order Graph Structure

In this paper, the Spearman correlation coefficient [26] is utilized to derive the similarity
graph structure among nodes. The samples in the original data are sorted in ascending
order. Let x′ i and x′ j represent the positions of xi and xj after this sorting; these positions
are referred to as the rank order of samples xi and xj. The Spearman correlation coefficient
between two samples is calculated as Equation (8):

Spe
(

xi, xj
)
= rs = 1−

6
n
∑

i=1
d2

i

n(n2 − 1)
, (8)

where d is the difference between x′ i and x′ j and n represents the number of samples. The
Spearman correlation coefficient values Spe

(
xi, xj

)
between the nodes form the correlation

characterization matrix Ao:

AO =


o11 o12 · · · o1N
o21 o22 · · · o2N

...
...

. . .
...

oN1 oN2 · · · oNN

, (9)

2.1.3. Feature Graph Fusion

Multi-scale feature fusion is mainly used to fuse the probabilistic graph structure
and rank-order graph structure constructed earlier and fully excavate the intrinsic feature
connection between each graph structure. The more widely used feature fusion methods
are early fusion [27], late fusion, and attention feature fusion. Attention feature fusion is
able to effectively deal with multimodal data, and it has strong adaptability [28,29]. Late
fusion can capture the temporal correlation and interaction effects between data sources
well and has better performance in time series tasks [30]. However, the above two methods
have the shortcomings of a complex model structure, a high demand for computational
resources, and a high cost of training time when the number of samples is small [31].
Therefore, for the discrete small-sample ship engine failure sample set, this paper chooses
early fusion [32] as the method of fusion of the multi-graph structure, sets the feature
weight Wi and neighbor threshold T of each graph to construct the fusion graph structure,
and its formula is as follows:

AF =
K

∑
i=1

Wi Nol(Ai), (10)

Nol(x) =
x−min(x)

max(x)−min(x)
, (11)

AT =


a11 a12 · · · a1N
a21 a22 · · · a2N
...

...
. . .

...
aN1 aN2 · · · aNN

, (12)

aij =

[
1, Aij

F > T
0, Aij

F < T
, (13)

where AF is the fusion feature matrix; Nol(Ai) represents the feature matrix of each graph
after normalization; Ai is the original feature matrix; AT signifies the adjacency matrix after
multi-graph fusion; and aij denotes the elements of the adjacency matrix in the ith row and
jth column of AF after applying the adjacency threshold T.

The larger the value of the element Aij
F in AF, the stronger the similarity between node

i and node j. How to set the threshold T to define the adjacency matrix AT is the key. In this
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paper, we use quartiles to determine the threshold. The calculated Aij
F values are arranged

from small to large and divided into four equal parts. The three values in the numerical
split point position are defined as Q1, Q2, and Q3, and Q3 is set to be the critical value with
T. Compare Aij

F with T. When Aij
F is greater than T, it means that node i and node j are

connected, and aij = 1. When Aij
F is smaller than T, it means that i-node and j-node are not

connected, then aij = 0.

2.2. Graphical Attention Neural Network

Both GANN and GCN studied in this paper are variants of GNN. Different from the
Laplacian smoothing of all directly adjacent nodes at each node of GCN [33], GANN uses
the attention mechanism to calculate the edge weight coefficient. The attention mechanism
should be to the operation of aggregating neighbors of GCN. According to the three
elements of the attention mechanism: query, source, and attention value [34], we will
determine to set query, which is the feature vector of the current central node, source to the
feature vector of all neighbors, and attention value to the new feature vector of the center
node after the aggregation operation.

Consider the feature vector corresponding to node xi in layer 1 of the graph as
hi

(
hi ∈ Rd(l)

)
, where d(l) denotes the feature length of the node. After applying an aggre-

gation operation with an added attention mechanism, the output is a new feature vector
h
′
i

(
h
′
i ∈ Rd(l+1)

)
for each node, with d(l+1) denoting the length of the output feature vector.

We refer to this aggregation operation as the Graph Attention Layer (GAL).
Define the central node as xi, then the correlation from neighboring nodes xj to xi is

as follows:
eij = a

(
Whi, Whj

)
, (14)

The weight parameter of the feature transformation of the nodes in the layer is denoted
as W ∈ Rd(l+1)×d(l) . The function a(·) calculates the correlation between two nodes, and in
this paper, a single fully connected layer is chosen:

eij = LeakyReLU
(
→
a

T
[

W
→
h i ‖W

→
h j

])
, (15)

The weight vector a ∈ R2d(l+1)
is used along with the activation function LeakyReLU

with a negative slope α = 0.2. Here, “‖” denotes a vector splicing operation. To better
assign the weights, the computed correlation is normalized using Softmax:

αij =
exp

(
eij
)

∑
k∈Ni

exp
(
eij
) , (16)

α is the weight coefficient, which is calculated in the equation above to ensure that
the aggregated weight coefficients of all neighboring nodes of the central node sum to one.
Figure 1 illustrates the computation process. Whi and Whj are first parameterized by a,
then activated by LeakyReLU, and finally normalized by Softmax to obtain the weight
parameters. Here’s the complete formula for calculating the weight coefficients:

αij =

exp
(

LeakyReLU
(
→
a

T
[

W
→
h i ‖W

→
h j

]))
∑

k∈Ni

exp
(

LeakyReLU
(
→
a

T
[

W
→
h i ‖W

→
h k

])) , (17)
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The update formula for the feature vector of the node xi is calculated as follows based
on the weight coefficients obtained from the above formula:

h(l+1)
i = σ

(
∑

k∈Ni

αijWh(l) j

)
, (18)

where h(l+1)
i is the updated feature vector of node xi in layer l + 1; α represents the activation

function (commonly used is LeakyReLU); Ni denotes the neighbors of node xi; αij is the
weight coefficient calculated using the previously mentioned weight coefficient formula;
and W is the weight matrix parameter. This formula calculates the updated feature vector
for each node by aggregating information from its neighbors, with the aggregation weights
determined by the attention mechanism.

To enhance the expressive capacity of the attention layer, this paper employs the multi-
head attention mechanism, similar to the approach utilized by Vaswani et al. [35], to enhance
the model’s expressive ability. The typical method for combining the outputs involves
concatenating the outputs from k sets of mutually independent attention mechanisms in
the equation provided above:

h(l+1)
i = ‖K

k=1σ

(
∑

k∈Ni

α
(k)
ij W(k)h(l) j

)
, (19)

This equation represents the concatenation operation. Each α
(k)
ij is the weight coef-

ficient computed by the kth set of attention mechanisms, and W(k) corresponds to the
associated learnable parameter. This approach combines the outputs from different atten-
tion heads, each with its own set of weights and parameters, allowing the model to capture
diverse patterns and relationships in the data.

2.3. Algorithmic Process

Figure 2 shows a schematic diagram of the structure of the MPGANN model proposed
in this paper. Figure 3 is a schematic diagram of the algorithm flow of the MPGANN
model in this paper. Firstly, the values of the detection indexes of the engine in different
states are collected by sensors, and the data are normalized. Furthermore, each sample
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is regarded as a node, and by constructing a probabilistic graph structure and an ordinal
graph structure, the two structural graphs are fused as inputs to the multi-head GANN
model by the multi-graph accumulation method, so that the model can learn the sample
features at multiple scales. The features of neighboring nodes are aggregated in the model
and computed iteratively to maximize the classification accuracy between the extracted
feature values and the labeled values.
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3. Case Study
3.1. Data Description

The subject of this experiment is a Wärtsilä 9L34DF marine engine. The real ship failure
simulation is costly, dangerous, and destructive; therefore, the engine failure simulation
performed by AVL-BOOST (R2019.2) software is used in this paper. The simulation model
of the marine engine is shown in Figure 4, where SB is the system boundary; CL is the air
filter; TC is the supercharger; CO is the air cooler; PL is the intake and exhaust manifold;
C is the cylinder; MP is the arrangement of the detection points; and the black line is the
corresponding connecting pipe.
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Before the fault, simulation needs to verify the effectiveness of the model. The text for
the parameters under different working loads is verified for the comparison of measured
values and simulation values. Error analysis and comparison results are shown in Table 1.

As can be seen from Table 1, the error between the measured and real values of each
main performance parameter under different loads is less than 4%. Especially under 100%
load, the error of each main performance parameter is within 2%, and the error is within
the acceptable range of requirements, so this paper chooses the model under 100% working
conditions for fault simulation and fault sample collection and simulates five states, namely,
injection timing advance (F1), injection timing delay (F2), supercharger efficiency decline
(F3), air cooler efficiency decline (F4), and normal operation (F5). Five states are simulated,
and the fault simulation scheme is shown in Table 2.

Table 1. Comparison results between model simulation data and measured data.

Working
Condition Form Power/kW Booster Outlet

Pressure/Bar
Air Cooler Outlet
Temperature/◦C

Fuel
Consumption/

g/Cycle

100% load
simulation value 4104.99 4.6732 46.6 4.14
measured value 4078 4.528 46 4.12
inaccuracies/% 0.6618 1.1815 1.3043 0.4854

75% load
simulation value 3393.19 3.2067 42.9 3.17
measured value 3375 3.74 42 3.18
inaccuracies/% 0.5390 −2.1471 2.143 −0.3145

50% load
simulation value 2295.03 2.3018 36.7 2.23
measured value 2250 2.57 38 2.24
inaccuracies/% 2.001 −3.4319 −3.4211 −0.4464

25% load
simulation value 1164.88 1.277 28.4 1.21
measured value 1125 1.42 29 1.26
inaccuracies/% 3.5449 −3.0282 −2.0689 −3.9683
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Table 1. Cont.

Working
Condition Form Inlet Flow/g/s Average Effective Pressure/bar Exhaust

Temperature/◦C

100% load
simulation value 8370.9823 20.0947 455.3
measured value 8300 19.96 460
inaccuracies/% 0.8552 0.6748 −0.1022

75% load
simulation value 6477.0966 17.4753 438.75
measured value 6800 16.52 445
inaccuracies/% −3.2780 3.9667 −1.4045

50% load
simulation value 4249.7621 11.4935 437.8
measured value 4600 11.01 430
inaccuracies/% −3.266 3.4518 1.8140

25% load
simulation value 2371.3959 5.7910 427.7
measured value 2600 5.51 410
inaccuracies/% −3.9848 3.5957 3.5593

Table 2. Engine failure simulation scheme.

Malfunction Code

Parameterization

Failure Characteristics Regular Value
Degree of Failure

LV1 LV2 LV3 LV4

F1 Injection timing advance −13.1 deg −14.1 −15.1 −16.1 −17.1

F2 Delayed injection timing −13.1 deg −12.1 −11.1 −10.1 −9.1

F3 Decline in supercharger efficiency 100% 95% 90% 85% 80%

F4 Reduced air cooler efficiency 100% 95% 90% 85% 80%

After the above fault simulation scheme, in order to fully explore and analyze the relation-
ship between internal engine parameters and faults and realize the diagnosis of engine faults,
a total of 400 sets of samples of 23-dimensional detection index parameters were selected, of
which 80 sets of samples for each state were used to carry out the fault diagnosis study. The
dataset is as specific as Table 3, and the collected detection indexes are shown in Table 4.

Table 3. Engine failure dataset.

Working Condition Dimension Sample Size

Injection timing advance (F1) 23 80
Delayed injection timing (F2) 23 80

Decline in supercharger efficiency (F3) 23 80
Reduced air cooler efficiency (F4) 23 80

Normal operation (F5) 23 80

Table 4. Detection indicator indexes.

Notation Monitoring Indicators Unit Notation Monitoring Indicators Unit

Pmp3 Booster outlet pressure bar Tmp23 Exhaust manifold temperature ◦C
Vmp3 Supercharger outlet flow m/s Pmp24 Turbine outlet pressure bar
Tmp3 Supercharger inlet temperature ◦C Vmp24 Turbine Outlet Flow m/s
Pmp4 Air cooler inlet pressure bar Tmp24 Turbine outlet temperature ◦C
Vmp4 Air cooler outlet flow m/s F Air intake kg/s
Tmp4 Air cooler outlet temperature ◦C g Fuel consumption rate g/kW·h
Pmp5 Cylinder inlet pressure bar Pz Maximum burst pressure bar
Vmp5 Cylinder inlet flow m/s λ Maximum voltage rise bar/deg
Tmp5 Cylinder inlet temperature ◦C Ne Power (output) kW
Tmp14 Cylinder exhaust temperature ◦C PI IMEP bar
Pmp23 Exhaust manifold pressure bar PB BMEP bar
Vmp23 Exhaust manifold flow m/s / / /
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3.2. Comparison of Graph Structures

In this section, by comparing and analyzing the commonly used correlation coefficients,
including Pearson correlation coefficient, Kendall correlation coefficient, and Spearman
correlation coefficient, as well as their constructed correlation graph structure and probabil-
ity graph structure, respectively, we compare the model accuracy and loss and select the
graph structure construction method that is suitable for the proposed model in this paper.
The activation function selected for the model is ReLU, the learning rate is 0.01, the number
of iterations is 1000, and the number of multi-attention heads is 16. The ratio of the model
training set, validation set, and test set is 7:1:2, which is selected randomly. Each graph
structure construction method was subjected to 20 experiments, and the average accuracy
of the 20 ornaments was used as the basis for judgment.

As can be seen in Figure 5, the average accuracy of the Spearman correlation coefficient
in the correlation graph structure is better than that of the Pearson correlation coefficient and
Kendall correlation coefficient, and the average accuracy of the fusion graph obtained after
the fusion of the graph structures is improved as a model input. This is due to the fact that
different graph construction methods extract information from different aspects of the data,
and the fused graph structure contains information from both aspects of the data, which
can be input into the neural network with more information than a single graph structure.
Especially when the probabilistic graph structure and the correlation graph structure
constructed by the Spearman correlation coefficient are fused, the average accuracy of the
model is greatly improved, reaching 96.36%. It can be seen that the model performance is
optimal when the correlation graph structure is constructed with the Spearman correlation
coefficient, which is chosen to construct the graphs in all subsequent experiments.
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Figure 6 shows the fused graph structure after fusion using the T_SNE probabilistic
graph structure and the Spearman rank order graph structure. The edges between the
nodes indicate that the nodes are neighbors to each other, as can be seen from the figure
that the node relationships are only roughly delineated in a single graph structure, and
after fusion of the graph structures, the neighbor relationships between the nodes have
been clearly described.
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After constructing the neighbor relationship, the labels of some nodes are removed;
nodes with color in Figure 7 indicate that the node has label information, while nodes
without color indicate that the node has no label information. During the graph learning
process, these unlabeled nodes do not provide labeling information, but they can aggregate
the neighbor’s node information to be used as auxiliary data in order to provide the
information used to explore the similarity structure between the nodes. The information of
the nodes is used to aggregate the neighboring information through multi-head attention,
and after the graph learning, the updated new nodes are classified, and all the samples are
tagged with labels. The above figure shows the classification results, and it can be seen that
although the model is not given all the labeling information, it can still correctly label the
unlabeled nodes.
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3.3. Network Parameter Setting

In this subsection, we will delve into the critical hyperparameters of the neural network
model for fault diagnosis. These include the activation function, the number of attention
heads, and the model learning rate. We maintain the ratio of the training set, validation
set, and test set at 7:1:2, conducting a total of 20 experiments. The results from these
experiments will be averaged to determine the average accuracy rate, serving as the basis
for the final assessment and guiding the selection of the most suitable network structure.

3.3.1. Activation Function

The activation function is a very important part of the neural network structure, which
can nonlinearly transform the input data. In this paper, five typical activation functions, Sig-
moid, ReLU, ELU, ReLU6, and Tanh, as well as three novel activation functions, SupEx [36],
αSechSig, and αTanhSig [37], are selected for comparison, and the number of iterations is
set to be 1000 and the learning rate is set to be 0.01. Figure 8 shows the total time consumed
and the average accuracy in the test set for the models with different activation functions
selected. of the total elapsed time and the average accuracy of the test set.

Appl. Sci. 2023, 13, 12421 14 of 21 
 

3.3. Network Parameter Setting 
In this subsection, we will delve into the critical hyperparameters of the neural net-

work model for fault diagnosis. These include the activation function, the number of at-
tention heads, and the model learning rate. We maintain the ratio of the training set, vali-
dation set, and test set at 7:1:2, conducting a total of 20 experiments. The results from these 
experiments will be averaged to determine the average accuracy rate, serving as the basis 
for the final assessment and guiding the selection of the most suitable network structure. 

3.3.1. Activation Function 
The activation function is a very important part of the neural network structure, 

which can nonlinearly transform the input data. In this paper, five typical activation func-
tions, Sigmoid, ReLU, ELU, ReLU6, and Tanh, as well as three novel activation functions, 
SupEx [36], αSechSig, and αTanhSig [37], are selected for comparison, and the number of 
iterations is set to be 1000 and the learning rate is set to be 0.01. Figure 8 shows the total 
time consumed and the average accuracy in the test set for the models with different acti-
vation functions selected. of the total elapsed time and the average accuracy of the test set. 

 
Figure 8. Average accuracy and total elapsed time for different activation functions. 

In Figure 8, it can be seen that Sigmoid has the lowest accuracy when it is used as an 
activation function, and the total time consumed by αSechSig and ELU is significantly 
higher than the other activation functions, and the total time consumed by the rest of the 
activation functions, even though the total time consumed by SupEx and αTanhSig is less, 
the total time consumed is not long in the data of the small samples in the first place, so 
the accuracy is used as the main criterion and the total time consumed is used as the aux-
iliary criterion, and the model’s classification accuracy for the test set is over 0.97 when 
Tanh and ReLU6 are used as activation functions, the classification accuracy of the model 
on the test set exceeds 0.97, reaching 0.9758 and 0.9727, of which Tanh not only has high 
accuracy but also the total time consumed is less than ReLU6. 

In Figure 9, we can intuitively see that Tanh, as the activation function, has the high-
est average accuracy; the fluctuation range of the experimental results is also the smallest; 

Figure 8. Average accuracy and total elapsed time for different activation functions.

In Figure 8, it can be seen that Sigmoid has the lowest accuracy when it is used as
an activation function, and the total time consumed by αSechSig and ELU is significantly
higher than the other activation functions, and the total time consumed by the rest of the
activation functions, even though the total time consumed by SupEx and αTanhSig is less,
the total time consumed is not long in the data of the small samples in the first place, so the
accuracy is used as the main criterion and the total time consumed is used as the auxiliary
criterion, and the model’s classification accuracy for the test set is over 0.97 when Tanh and
ReLU6 are used as activation functions, the classification accuracy of the model on the test
set exceeds 0.97, reaching 0.9758 and 0.9727, of which Tanh not only has high accuracy but
also the total time consumed is less than ReLU6.

In Figure 9, we can intuitively see that Tanh, as the activation function, has the highest
average accuracy; the fluctuation range of the experimental results is also the smallest;
and most of the experimental results are in the 0.975 or so range. The synthesis of the
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above two results can be seen in this paper’s model Tanh, as the activation function is the
optimal effect.
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3.3.2. Number of Attention Heads

Multi-head attention allows the model to focus on different channels of the input at
the same time, thus improving the expressiveness and performance of the model. It should
be noted that while multi-head attention increases the complexity of the model, it also
increases the computational overhead of training and inference, so the optimal number
of heads needs to be determined experimentally to achieve the best performance of the
model. The activation function selected in the experiment is Tanh, the value range of H
is set to [1, 50], and other settings are the same as in the previous experiment. The final
comparison of the average accuracy of the test set under different numbers of heads and
the experimental results is shown in the following figure.

Based on Figure 10, it is evident that the model achieves higher accuracy within the
range of head counts H = 16, H = 22, and H = 30. The highest accuracy is attained at a
learning rate of Lr = 0.01 with H = 16. However, it is worth noting that excessively high
head counts lead to longer running times and increased computational costs. Therefore,
the optimal configuration of the model is Lr = 0.01 and H = 16.
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3.3.3. Algorithm Performance Comparison

In order to verify the validity of the proposed model in this paper, GCN, CNN, SVM,
and BPNN algorithms are selected in the experiments in this subsection to compare the
algorithm performance with the MPGANN model proposed in this paper. The parameters
of GCN, such as the neighbor graph construction method, the number of hidden layers,
the number of neurons in the hidden layer, and the dropout rate, are all the same as those
of MPGANN. CNN has a total of four convolutional layers. The size of the convolution
kernel is 5-3-2-2, the stride is 1-1-1-1, and each convolution layer is connected to an average
pooling layer after each convolution layer. The window size is 2-2-2-2, padding is 0, and
stride is 1. The kernel function of SVM is the Gaussian kernel function; set the penalty
factor c = 1.0 and set the gamma to auto. In the BPNN hidden layer, the number of neurons
is set to 16, the number of iterations for all algorithms is set to 1000, and the learning rate is
set to 0.01.

Accuracy is an overall performance indicator; if it is used as a performance evaluation
index for diagnostic algorithms, it will likely mask the specific classification of diagnostic
algorithms, so in order to solve this type of problem, this paper introduces precision, recall,
and the F1 score, calculated as:

R =
TP

TP + FN
, (20)

P =
TP

TP + FP
, (21)

F =
2

1
P + 1

R
=

2RP
R + P

, (22)

where R is the recall rate; P is the precision rate; F is the F1 score; TP is the number of
samples that classify positive samples as positive samples; FN is the number of positive
samples classified as negative samples, and FP is the number of negative samples classified
as positive samples.

The precision and recall of each algorithm used in this paper are shown in Table 5.
From the table, it can be seen that each algorithm can basically correctly classify the
normal working conditions, but the complexity of the engine fault data leads to a relatively
poor classification effect for the traditional diagnostic algorithms. In this experiment, the
precision rate and recall rate of BPNN are lower than other diagnostic algorithms, and
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although the precision rate and recall rate of GCN and CNN diagnosis for each condition
are better than those of SVM and BPNN, the diagnostic effect is still unsatisfactory in F1 and
F2 conditions. The MPGANN proposed in this paper achieves 100% accuracy and recall
in all working conditions except for 0.89 accuracy and 0.88 recall in F2 and F1 working
conditions, which is an obvious advantage over other diagnostic algorithms and is more in
line with practical industrial needs.

Table 5. Precision and recall for each algorithm.

Algorithms
Precision Recall

F1 F2 F3 F4 F5 F1 F2 F3 F4 F5

MPGANN 1 0.89 1 1 1 0.88 1 1 1 1

GCN 0.88 0.884 0.94 1 1 0.88 0.94 1 0.94 0.94

CNN 0.8 0.78 1 1 1 0.75 0.88 1 1 0.94

SVM 0.71 0.76 1 1 1 0.75 0.81 0.94 1 0.94

BPNN 0.65 0.72 0.88 0.88 1 0.69 0.81 0.88 0.88 0.81

From Figure 11, it can be seen that fault F1 is misclassified in all diagnostic algorithms,
while after the feature mining of probabilistic graph relationships and rank order graph
structure, MPGANN and GCN only have two F1 fault samples misclassified, and the
MPGANN proposed in this paper only has two samples misclassified, which shows that the
MPGANN model can mine more information between the data to improve the diagnostic
algorithm’s classification accuracy and stability and is better than other models.

Figure 12 shows the average accuracy, average precision, average recall, and F1 score
of each diagnostic algorithm. The performance of each diagnostic algorithm can be seen
more clearly by comparing the figures. CNN, as a network model for deep learning, is
widely used in the field of mechanical fault diagnosis and has achieved excellent results.
However, due to the fact that there is no large amount of data for model training in this
experiment, the training effect of CNN is not good, and it cannot make correct classification
judgments. GCN is limited by its own information propagation rules, and even though it
adopts the same topology structure for fault diagnosis, the diagnostic effect is still not good.
However, the MPGANN proposed in this paper uses the multi-head attention mechanism
in the aggregation operation, which makes the feature aggregation more reasonable and
increases the learning efficiency of the model, and the average precision, average accuracy,
average recall, and F1 score reach 0.978, 0.976, 0.975, and 0.976.
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graph structure, MPGANN and GCN only have two F1 fault samples misclassified, and 
the MPGANN proposed in this paper only has two samples misclassified, which shows 
that the MPGANN model can mine more information between the data to improve the 
diagnostic algorithm’s classification accuracy and stability and is better than other mod-
els. 
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4. Conclusions

In this paper, a new MPGANN model is proposed, and in the experiments on the ship
engine dataset, firstly, different graph structure construction methods are compared, and the
fused graph structure enhances the expressive ability, especially the fusion of probabilistic
and ordinal graph structures, which dramatically improves the diagnostic accuracy of
the model. Secondly, the accuracy of the model under different activation functions,
head counts, and learning rates is greatly different, which shows that the influence of
hyperparameters on the model is also not negligible. Finally, when MPGANN is compared
with other algorithms, it outperforms the various methods compared in diagnosis in terms
of accuracy, precision, recall, and F1 score. Therefore, the MPGANN proposed in this
paper has a certain practical significance in the field of intelligent ship fault diagnosis. In
summary, the research for this paper is summarized as follows:

(1) The two graph structure construction methods in the MPGANN model can effec-
tively obtain probabilistic similarity and ordinal similarity between data samples and
transform the data into probabilistic graph structure and ordinal graph structure.

(2) Early fusion is employed to combine the probability map structure and rank-order
map structure with the incorporation of feature weights. This integration process
effectively amalgamates information from samples at various scales.

(3) The multi-head attention mechanism is applied to conduct multi-channel feature
screening on the fusion graph structure, extracting feature information with higher
relevance to enhance the diagnostic performance of the model.

(4) The model effect was validated using the ship engine fault dataset, and compared
with other models in terms of accuracy, precision, recall, and F1 score, MPGANN
was the most effective, with a diagnostic accuracy as high as 97.58% and an F1 score
of 97.6%.

The proposed diagnostic model in this paper fuses features from different aspects
of the data, mining the information of the dataset at a deeper level, but it also has some
limitations, such as: the fused features contain only probabilistic similarity and rank-order
similarity; the fusion weights need to be set in advance; and so on.

There are three goals for future work: (1) Physical connections in real space will also
imply information, and the actual structural connections of the engine will be transformed
into graph structures to mine the correlation information between the samples. (2) Choose
more graph fusion methods or assign meanings to edge features so that the model has more
information for training to improve its diagnostic accuracy. (3) Introduce the attention
mechanism into the fusion process to achieve adaptive allocation of fusion weights.
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