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Featured Application: The proposed methods for predicting shovel force and power-matching
optimization can enhance the operational efficiency of large-tonnage electric wheel loader.

Abstract: Nowadays, rapid development has been achieved with respect to the electric wheel loader
(EWL). The operational efficiency of EWLs is affected by many factors; especially, shovel force is a
very important factor. For large-tonnage EWLs, when employing empirical, formula-based methods
to predict shovel force, the generated errors are significant, with errors frequently reaching levels of
up to 30%. To solve this problem, a method, based on the discrete element method (DEM), to predict
shovel force is put forward in this paper. The material parameters are calibrated by a backpropagation
(BP) neural network learning algorithm (NNLA). The material model is inputted into multi-body-
dynamics software. A simulation model to accurately predict the shovel force is created. The error
between the test results and the simulation results is 7.8%, demonstrating a high level of consistency.
To validate the reliability of this method, the 35-ton EWL is taken as an example for research, and the
straight-line driving test and the power-matching test are conducted. While ensuring the operational
efficiency of the EWLs, the power loss is also a crucial consideration. The drastic changes in shovel
force often result in front-tire slippage of the EWLs. To minimize wheel slippage during the shoveling
section, the matching of the electric motor was optimized. In summary, material parameters were
calibrated using a combined method of BP NNLA to predicate shovel force of a large-tonnage EWL.
Additionally, the power matching of the EWL has been optimized to accord with the shoveling
section of the device.

Keywords: electric wheel loader; shovel force; discrete element method; material calibration; back-
propagation neural network learning algorithm

1. Introduction

The large-tonnage EWL is a widely used piece of mining machinery. The large-tonnage
EWL is capable of shoveling, transporting, and unloading materials [1]. They are primarily
used for handling loose materials, including soil, sand, gravel, and limestone. In recent
years, due to operational demands, mining machinery has required higher efficiency levels
and loading capacities. Because of advantages in size, bucket capacity, and tonnage, the
large-tonnage EWLs have become increasingly popular. The shovel force is a crucial factor
influencing the shoveling section of the device [2]. When shoveling materials, the shove
force will experience a sharp increase and exhibit abrupt changes. When the shovel force
exceeds the ground traction of the EWL, the tires of the EWL will slip, resulting in an
additional power loss.

Currently, there are three main methods used to improve the accuracy of bucket-force
prediction: theoretical calculation, empirical formula, and discrete-element-based methods.
This paper adopts a discrete-element-based approach. Compared to theoretical calculation,
the discrete-element-based method makes it easier to obtain test data. In contrast to the
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empirical formula, which tends to have larger prediction errors for large-tonnage EWLs,
the discrete-element-based method exhibits smaller prediction errors in the estimation of
shovel force for large-tonnage EWLs.

During the new-product design period of large-tonnage EWLs, when some data are
lacking, it has been observed that using the empirical-formula-based methods to match
motor power based on shovel force could result in significant errors. This could have a
substantial impact on the EWL’s design. To avoid the risk of design failure due to excessively
high or low power-matching results, especially when the bucket of EWL configurations
is similar, a method based on discrete elements has been proposed. This method selects
the most typical operational and material conditions for EWLs, providing a method for
accurate prediction of shovel force.

The operational efficiency of EWLs is directly affected by shovel force. The forward
design of buckets and engine matching has been guided by the research on shovel force.
Therefore, many scholars have conducted extensive research on the loading section. Li
Ru [3] selected four factors, with a significant impact given to shovel force. She used
orthogonal simulation analysis and range analysis to study the effects of these factors on
the force at the peak of the shovel force. The factors were found to have the following
order of significance: particle size, bucket width, insertion speed, and particle shape. Chen
Yu [4], focusing on conditions associated with the loading of gravel, conducted comparative
studies by installing different numbers of bucket teeth. The research found that the number
of bucket teeth had an impact of no higher than 10% on shovel force, no higher than 7%
on the full bucket rate, and no higher than 3.5% on insertion depth. Ding Zhuang [5]
has proposed an improved conformal mapping (ICM) method for analyzing the air-gap
magnetic field in surface-mounted permanent magnet synchronous motors (SPMSMs).
In comparison to the traditional conformal mapping (TCM) method, ICM demonstrates
higher calculation speed and accuracy by reducing the amount of mapping time. The
article validates the accuracy and efficiency of the ICM method through an experimental
prototype of an eccentric-shaped-pole permanent magnet motor. Yang Ming [6] introduces
a multidisciplinary design optimization framework for underwater gliders. The article
establishes a universal disciplinary framework and enhances efficiency through approx-
imate models. The proposed approach combines concurrent subspace optimization, a
penalty function method, and a multipopulational genetic algorithm. Validated through
a sea trial of an improved Petrel-L glider, the method rapidly determines optimal design
parameters. Bai Xue [7] proposes a low-thrust reconfiguration strategy for formation flying
using Jordan normal form. The article evaluates performance in terms of control acceler-
ation and fuel cost, employing Jordan decomposition to simplify relative dynamics. The
trajectory optimization method, based on a functional integral and polynomial series, is
analytically proven to be valid. The numerical results demonstrate successful and efficient
formation reconfiguration. Shi Maolin [8] introduces ESVR-MFS, a multi-fidelity surrogate
model based on extreme support vector regression (ESVR) for engineering system opti-
mization. ESVR-MFS efficiently utilizes both higher-fidelity and lower-fidelity samples,
demonstrating competitive performance in terms of prediction accuracy and computational
cost. The proposed approach is valuable for practical multi-fidelity engineering design
problems. Liu Long [9] has proposed an ammonia–diesel stratified injection technology
for the application of low-carbon ammonia fuel in marine engines, aiming to meet future
low-carbon emission regulations. The results indicate that this strategy achieves a power
output comparable to those of traditional diesel engines, without the need for additional
matching pilot fuel injectors, and while significantly reducing CO2 and NOx emissions.
This innovative approach holds promising prospects for future applications in marine
engines. Bai Xiaotian [10] investigated the potential threat posed by subsurface mesoscale
cracks in the outer ring of full ceramic ball bearings (FCBBs) to the stable operation of
related devices. Using a dynamic model based on the strain energy theory, the study
analyzed the impact of different crack lengths on the operational state. Li Tao [11] presents
a digital-twin-driven model for predicting early degradation in ceramic bearings. Us-
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ing an LSTM neural network and vibration signals, it maps stiffness weakening factors
to degradation indices. The model, combining digital-twin technology with real-time
data, effectively predicts early degradation trends, offering insights for life-prediction and
maintenance strategies for ceramic components in key aviation and military equipment.
Liao Kai [12] proposes a low-pass virtual filter (VF) for wind energy conversion systems
(WECSs) to smooth power output without the need for a physical energy storage system.
The VF, integrated into the active power control loop, effectively reduces high-frequency
wind power fluctuations. A stability-constrained coefficient ensures wind turbine (WT)
stability. Simulations and experiments validate the VF’s efficacy in minimizing wind power
fluctuations and the stability-constrained coefficient’s role in maintaining WT stability. Li
Zhen [13] used objective function optimization theory with the maximum level bucket
capacity as the objective function. They optimized the parameters for a high-performance
bucket for a 3-ton EWL. Through comprehensive performance experiments, they verified
the advantages of the high-performance bucket in terms of operating efficiency, fuel econ-
omy, and other aspects. M Zauner [14] places greater emphasis on detecting the impact
caused by uneven terrain during vehicle travel, particularly concerning speed control, and
extracts roughness coefficients by monitoring actual vertical acceleration caused by uneven
terrain. This tactic utilizes a self-supervised learning approach to predict these coefficients
from laser data, aiming to facilitate the safe deceleration of vehicles. The key distinction of
the present work lies in the fact that this paper focuses on the prediction of shovel force
and power-matching optimization for large-tonnage EWLs, emphasizing the optimization
of vehicle power matching and control. This paper employs the discrete element method
(DEM) and a backpropagation neural network learning algorithm (BP NNLA), combining
theoretical analysis and simulation to predict shovel force and optimize power matching.

The design of the bucket and engine matching is guided by the research on shovel
force. Many scholars have conducted extensive research on the loading section of the
device [15,16]. For small-sized and medium-sized EWLs, shovel force is mainly predicted
and analyzed through empirical-formula-based methods. In comparison to small-sized and
medium-sized EWLs, large-tonnage EWLs have significant differences in power matching,
transmission, tire traction, and other technologies. Empirical-formula-based methods can-
not meet the precision requirements of the designs of large-tonnage EWLs. It is necessary
to research shovel force under typical conditions for large-tonnage EWLs to increase in op-
erational efficiency. This article contains the following innovative points and contributions.

1. Combining DEM and BP NNLA: A method for accurately predicting shovel force in
large-tonnage EWLs is proposed by combining DEM and BP NNLA. The innovation
of this method lies in the combination of DEM simulation and BP NNLA learning to
enhance the accuracy of the predictions of shovel force in EWLs.

2. Calibration of Material Parameters: Through BP NNLA, the material parameters are
calibrated to enhance the reliability of the model. This step involves the systematic
analysis and calibration of factors such as material density, Poisson’s ratio, shear
modulus, etc., making the model more closely aligned with real-world conditions.

3. Accurate Prediction of Shovel Force for Large-Tonnage EWLs: Through simulation
methods, an accurate prediction of shovel force for EWLs of various tonnages has
been successfully achieved. Compared to traditional empirical formulas, this method
improves prediction accuracy, particularly for large-tonnage EWLs, resulting in more
reliable forecasting results.

4. Power-Matching Optimization: With the accurate prediction of shovel force, the power
matching of EWLs has been optimized, thereby enhancing operational efficiency.

This paper will revolve around two experimental frameworks. Firstly, accurately
predicting the shovel force of large-tonnage EWLs, using the DEM and NNLA. Secondly,
optimizing the matching and control of EWLs through experiments under different opera-
tional conditions.
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2. Shovel Force of the Shovel Step in Typical Working Conditions

The actual operating conditions of EWLs include various types of work, including
I-type, V-type, and L-type operations. This paper focuses on the most typical V-type
operating conditions of EWLs. The steps that the EWL employs in shoveling materials are
analyzed in order to investigate the shovel force.

2.1. Analysis of EWL Operational Steps

When EWLs load and unload materials, a typical V-type operating cycle typically
consists of the following four steps:

(1) S1 Shoveling: The EWL’s boom is in the lower position. The EWL’s bucket is level
with the ground, and the distance between the bucket and the lower pivot-point of
the boom arm is a certain distance from the ground. With the assistance of the EWL’s
power, the bucket is horizontally inserted into the material. The shoveling step has
been completed. When the shoveling method of the EWL varies, the states of the
boom cylinder and bucket cylinder are also different.

(2) S2 Full-load Transporting: To save time, while transporting materials to the unloading
point, the working equipment of the EWL is raised to the desired position. During
this step, the boom cylinder of the EWL extends, and the bucket cylinder is in a
locked condition.

(3) S3 Unloading: By operating the bucket cylinder, the material is unloaded into the
self-dumping truck. The boom cylinder is in a locked position, and the bucket
cylinder retracts.

(4) S4 No-Load Returning: After unloading is complete, the cylinder is operated in order
to lower the boom, and the bucket is made level with the ground. Concurrently, the
boom cylinder retracts, and the bucket cylinder extends. The EWL automatically
enters the next working cycle. The work-step follows a V-type operating pattern, as
shown in Figure 1.
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2.2. Empirical Calculation of Shovel Force

The operational efficiency of an EWL is influenced by various factors. During the
process of material loading, the loading time of an EWL primarily depends on its power
performance. Shovel force is a parameter directly affecting the power performance of the
EWL. Previously, shovel force has mainly been predicted by empirical, formula-based
methods. The empirical formula for shovel force F is as follows [17]:

F = 9.8K1K2L1.25BK3K4 (1)
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K1—Impact coefficient of material block size and looseness.
K2—Impact coefficient of material type.
K3—Impact coefficient for the pile height of loose materials.
K4—Impact coefficient of shape (typically ranging from 1.1 to 1.8).
L—Depth of bucket insertion into the material stack.
B—Bucket width.
This formula includes multiple parameter-values. The bucket width (B) can be mea-

sured. The bucket’s insertion depth into the material pile (L) can be determined through
experiments [18]. Other parameters need to be established based on empirical values.
The method exhibits significant calculation errors. Due to the difficulty in obtaining the
parameters in the formula, further discussion is required.

L = kL1 (2)

K = k1k2k3k4 (3)

K—Coefficient of composite.
k—Coefficient of bucket depth.
L1—Depth of bucket.
Based on the test results, the measured shovel force of the 5-ton EWL is 160 kN. The

EWL’s width (B) is 2.88 m, the bucket depth (L1) is 1.1407 m, and the bucket’s insertion
depth into the material pile (L) is 1.156 m. By plugging these values into the above formula,
the bucket depth coefficient (k) is determined to be 1.013, and the comprehensive coefficient
(K) is 4.7318. The bucket depth coefficient (k) and the comprehensive coefficient (K) have
been adjusted based on the measured shovel force from 7-ton, nine-ton, 12-ton, and 15-ton
EWLs. Table 1 summarizes the calculated shovel force. From Table 1, the errors of shovel
force in the cases of medium-to-small tonnage EWLs (3~12 ton) can be controlled to within
10% or less. There is a larger error of the shovel force for large-tonnage EWLs (15-ton and
35-ton). Using empirical, formula-based methods to predict shovel force is imprecise. New
research methods are needed to predicate the shovel force.

Table 1. Comparisons of shovel force.

Type of EWL
/ton

Measured Shovel
Force/kN

Calculated Shovel
Force/kN

Error
/%

3 127 136 7.08
5 160 163 1.88
7 207 209 0.96
9 270 265 1.85
12 380 344 9.4
15 420 353 15.9
35 900 700 28.6

3. Review and Application of Dynamic Discrete-Element Method

To understand the reasons for the calculation errors in the shovel force of large-tonnage
EWLs, an analysis of shovel force was conducted during the loading and shoveling tasks
of the EWL.

3.1. Shovel-Force Analysis

During the shoveling section, EWLs are subjected to shovel force. If this force is not
managed properly, there is a risk of tire slippage [19]. Accurately analyzing the shovel
force is important. Shovel force can be broadly categorized into three types, including
horizontal insertion force, vertical shovel force, and the bucket rotation torque. Due to the
complexity of the actual shoveling section, analyzing these forces according to different
shoveling scenarios is necessary.
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During the entire shoveling section, loaders experience five different forces. F1 rep-
resents the insertion force. F2 is the shovel force at the bucket bottom. F3 is the gravity
of the materials being loaded. F4 accounts for the frictional forces between the loaded
material and the inner wall of the bucket (including friction resulting from relative sliding
and rolling). F5 corresponds to the sliding force on the slip surface [20], as illustrated
in Figure 2a.
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In Figure 2b, the α represents the angle between the movement direction of the EWL
and the horizontal plane, the β is the angle between the horizontal direction and the cutting
edge of the bucket, and the H is the height of the filled material. Based on geometric
and kinematic relationships, the relationship between bucket shoveling volume and the
trajectory of EWL can be derived [21]. Expressions for other forces can also be derived.
The derivation section requires the use of numerical computations, which can introduce
significant errors. The DEM can effectively solve these issues.

3.2. Application of Discrete Element Method

The model of dynamics with DEM involves four steps, including utilizing the BP
NNLA to adjust the material parameters, creating the material model with the DEM
software, importing the material model into the multi-body-dynamics software to construct
the joint simulation model, and analyzing the process of bucket-shoveling materials. To
validate the feasibility of model, the simulation results are compared with the results of a
5-ton EWL test. Based on this, other simulation scenarios are conducted.

3.3. Review of BP NNLA

Neural networks are a novel control technology. Neural networks simulate the struc-
ture and function of the human brain. Neural network control does not require precise
mathematical models. This technology possesses strong autonomous learning, parallel pro-
cessing, and fault tolerance capabilities. Neural network technology is capable of handling
complex and nonlinear problems.

The establishment of the BP neural network structure involves multiple sections,
including data collection and preparation, selection of the network structure, model compi-
lation, model training, and adjustment and optimization. Ultimately, the neural network
structure is constructed, as described in Reference [22]. In the structure of BP NNLA, i
represents the input layer nodes, j represents the hidden layer nodes, and k represents
the output layer nodes. The input layer nodes include the recovery coefficient, the static
friction coefficient, and the dynamic friction coefficient. The output layer nodes represent
the force of the hydraulic cylinder force. The input layer consists of three parameters that
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undergo the influence of nodes in hidden layer nodes. A non-linear mapping relationship
is established between the input layer nodes and the output layer nodes to predict the
value of the hydraulic cylinder force. The model’s structure is illustrated in Figure 3.
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The output of the j-th neuron in the hidden layer nodes is expressed as [22]

xl
j = f

(
∑k wl

jkxl−1
k + bl

j

)
(4)

The output of the k-th neuron in the output layer nodes is expressed as

xk = f
(
∑j wL−1

jk xL−1
k + bL−1

j

)
(5)

In the formula, wl
jk represents the weight between the k-th neuron in the (l−1)-th layer

and the j-th neuron in the l-th layer. The term bl
j represents the threshold of the j-th neuron in

the l-th layer. L represents the number of layers in the neural network, f represents the transfer
function of the hidden layers, and F represents the transfer function of the output layer.

4. Simulation of Shovel Force

The simulation is performed by the DEM. The difficulty lies in defining the key
parameters for the simulation. Accurate simulation of key parameters can be obtained
through material calibration. To ensure the effectiveness of the simulation, it is necessary to
control the error between the simulation’s results and the experimental results, keeping it
within an acceptable range.

4.1. Material Calibration
4.1.1. Experimental Process

The experiments mainly consist of two parts: static and dynamic calibration exper-
iments [23]. The static calibration experiment involves the measurement of the physical
parameters of the loading material. The necessary measurement tools include an inclinome-
ter and a tape measure. These tools are used to measure the on-site ore pile density, particle
size, repose angle, and other parameters. The static calibration experiment is depicted
in Figure 4.
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The dynamic calibration experiment involves data collection for the mechanical pa-
rameters of the loading section, as shown in Figure 5. The required measurement tools
include pressure sensors and GPS devices. Parameters such as cylinder displacement, oil
pressure, and EWL speed are measured during the data collection process. To enhance
measurement precision, the measurement experiments are repeated five times. The average
is taken as the result.
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4.1.2. Parameter Calibration Based on BP NNLA

(1) Factor analysis

During the material stacking section, several factors influence the state of the material
stacking. These factors mainly include Poisson’s ratio (A), material density (B), shear
modulus (C), restitution coefficient (D), static friction coefficient (E), and dynamic friction
coefficient (F). Before calibration, it is necessary to analyze the sensitivities and interactions
of these factors [24]. The factors’ range of fluctuation is between 0.5 and 1.5 times the
baseline. Factors that have a significant impact on the stacking angle are referred to
as major influencing factors. The main influencing factors are selected for analysis. In
Figure 6, the factor chart shows that factors E and F have significant impacts on the stacking
angle. Although factor D has a smaller impact, it has a wide practical range of fluctuation.
Therefore, the factors D, E, and F are chosen as the calibration factors.
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(2) Calibration of physical parameters

Calibration is primarily divided into physical parameter calibration, density calibra-
tion, and repose-angle calibration. Physical parameter calibration requires the use of EDEM
software. By means of EDEM software, density and repose angle are calibrated. For density
calibration, the particle density is adjusted to the measured density [25]. Repose-angle cali-
bration, restitution coefficient, static friction coefficient, and dynamic friction coefficient are
selected as the calibration factors. The three-factor and four-level full factorial experimental
design table is established, comprising a total of 64 experiments. The parameters with the
smallest difference from the actual repose angle are chosen as the calibration parameters,
as shown in Figure 7.
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(c) definition of material particles.

The calibration of physical parameters includes density calibration and repose-angle
calibration. The density calibration process is illustrated in Figure 7a, which indicates
that the actual repose density is first obtained through experiments. Subsequently, the
particle density in EDEM is adjusted to match the measured density after settling [26].
The simulation process for repose-angle calibration is depicted in Figure 7b. Using the
recovery coefficient, static friction coefficient, and dynamic friction coefficient as calibration
factors, the three-factor, four-level, full factorial experimental design table is established,
comprising 64 sets of experiments. The parameter set with the smallest deviation from the
actual repose angle is chosen for the calibrated parameters. The final particle parameters
are presented in Figure 8. In the EDEM simulation process, the particle shape used is
depicted in Figure 7c. When using the triple sphere, the particle more closely resembles a
real ore. The annotations in Figure 7c indicate the maximum values and midpoint values in
each direction within the space occupied by the particle.
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(3) Mechanical Parameter Calibration

By adjusting the parameters of the bucket and the material interaction pile, the me-
chanical parameters are calibrated. The parameters that conform to the rules of hydraulic
cylinder force are selected as the input layer nodes of the BP NNLA model [27]. Material
parameters obtained from the calibration are imported to establish the material pile model.
The three-factor and three-level full factorial calibration experimental design table is estab-
lished. A combined simulation model is created. Measured cylinder-displacement curves
and vehicle-speed variation curves are imported into the model. Hydraulic cylinder force
curves are extracted. Using the BP NNLA, the curve that best matches the test hydraulic
cylinder force curve is identified. The parameters corresponding to that curve are selected
as the output layer. The final calibration results are obtained, as shown in Figure 9. The
maximum point of hydraulic cylinder force occurs when the bucket is inserted into the
material, and the hydraulic cylinder force reaches its peak when the shovel force of the
bucket is at its maximum.
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Through the BP NNLA, the required calibration parameters are obtained. These
calibrated parameters are then imported into the EDEM software. A mechanical parameter
calibration model is established, as shown in Figure 10.
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4.2. Simulation Analysis of Bucket

Based on calibrated parameters, a loading model has been established, as shown in
Figure 11. This paper conducted a simulation analysis of buckets on EWLs, ranging from
3-ton to 35-ton. The predicted shovel-force determinations for EWLs all had errors below
8%. The stability of the simulation analysis was relatively high. This loading model can
be used for predicting shovel force in large-tonnage EWLs. The calculated shovel force is
summarized in Table 2.
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Table 2. Comparison and analysis of shovel forces derived from simulations.

Type of EWL
/ton

Measured Shovel
Force/kN

Calculated Shovel
Force/kN

Error
/%

3 127 129 1.57
5 160 162 1.25
7 207 211 1.4
9 270 276 2.2
12 380 395 3.95
15 420 442 5.24
35 900 968 7.56
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4.3. Dynamics Matching of the Experimental EWL

The five-motor system includes four wheel-driving motors and one independent
hydraulic drive motor. Different control strategies are required for various operating
conditions. In November 2020, the experimental EWL model was published at the Shanghai
BMW Exhibition. The experimental EWL described in this paper is the only 35-ton EWL
currently available. A distributed drive configuration consisting of an engine, generator,
inverter, four electric motors, and reducers was adopted. The control types depicted include
mechanical control, bus control, and electrical control; the power transmission path of the
experimental EWL is illustrated in Figure 12.
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The power of EWLs directly impacts the efficiency of bucket loading. The functions of
EWL movement and operation are separate. To achieve the highest operational efficiency
and minimize energy consumption, it is necessary to optimize the allocation of power to
the EWL. The power allocation of the EWL can be optimized through the prediction of
shovel force. Power allocation is determined based on the loading requirements.

4.4. Power Matching

While the shovel force of the 35-ton EWL is predicted by the loading model, the power
is matched according to the power requirements for the shovel force. The typical operation
of the EWL is broken down into two working conditions for power matching, with speed
and torque curves as shown in Figures 13 and 14.

The condition of the EWL performing linear acceleration in first gear without a load is
represented in Figure 13. Figure 13a displays the simulation curve of the speed variation
during the no-load acceleration. According to empirical data, when the EWL is in first gear
and accelerates in a straight line without a load, the torque is the same for all four wheels.
Figure 13b shows the simulation curve of the torque variation for all four wheels during
no-load acceleration.

The simulation curves of the motor torque for the front and rear wheels of the full- load
EWL during first-gear linear acceleration are depicted in Figure 14. The loaded condition
involves simulating materials with a 35-ton block. According to the empirical data, when
the EWL is no-load and accelerates in first gear, the torque for the front two wheels is the
same, and the torque for the rear two wheels is also the same. Additionally, the torque
for the front two wheels is greater than that for the rear two wheels. The torque for the
front wheels constitutes approximately 70–75% of the total torque for all four wheels, while
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the torque for the rear wheels constitutes approximately 25–30%. Figure 14a shows the
simulation curve of the torque variation for the front axle motor. When the EWL is no-load
and accelerates in first gear, all four wheel torques are the same, as illustrated in Figure 14b,
which presents the simulation curve of the torque variation for all four wheels during
no-load acceleration.
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In typical scenarios, when the EWL is no-load, the power distribution between the front
and rear axles is usually 50% for each. When the EWL is full-load, the power distribution
is approximately 70–75% for the front axle and 25–30% for the rear axle. Table 3 presents
the power-matching table for the EWLs. For no-load driving, the total power is 456 kW,
with the sum of the power from the two front axle motors being 228 kW and the sum of the
power from the two rear axle motors also being 228 kW. This results in an equal distribution
of power between the front and rear axles, meeting the power-matching requirements. For
full-load driving, the total power is 576 kW. The sum of the power from the two front axle
motors is 426 kW, and the sum of the power from the two rear axle motors is 142 kW. In
this scenario, the torque for the front wheels constitutes approximately 74% of the total
torque for all four wheels, and the torque for the rear wheels constitutes approximately
26%, meeting the power-matching requirements.
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Table 3. Power Matching after optimization.

Driving Conditions Total Power/kW Power of Front Axle
Motor/kW

Power of Rear Axle
Motor/kW

No-load
four-wheel-drive

acceleration
456 114 114

Full-load
four-wheel-drive

acceleration
576 213 71

Accurate prediction of the shovel force of large-tonnage loaders has enabled precise
matching of the electric motors. Ultimately, by combining the dimensions of the bucket,
the design of the bucket capacity, and the implementation of reduction control of shovel
force, a rational torque distribution has been achieved.

5. Test of Driving Condition and Power Matching

Using a 35-ton EWL as an example, Figure 15 depicts the shovel loading test in the
prototype mining area. The investigation described in this paper involved conducting
comprehensive vehicle functional testing and validation, primarily focusing on the dynamic
and operational performance of the EWL. The testing is performed under the condition
of the straight-line movement of the EWL. During this movement, the power distribution
among the four wheels of the EWL is observed. By analyzing the power curve of EWL, the
adequacy of the overall power distribution for the loading requirements can be verified.
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(1) Straight-line Driving Conditions

The speed variation curve for unloaded first-gear linear acceleration is shown in
Figure 16a. From 10 to 42 s, the driver initially presses the throttle pedal to the maxi-
mum, accelerating the entire vehicle. At 42 s, electric braking is applied, and the vehicle
decelerates to a speed of 0 within 58 s.

The torque curves for all four wheels during no-load first-gear linear acceleration
are depicted in Figure 16b. From Figure 16b, it can be observed that the variation trend
of the motor torque for all four wheels is essentially consistent during no-load driving.
The maximum motor torque is around 3500 Nm, with the sum of the torque from the
front two motors being roughly equal to the sum of the torque from the rear two motors.
Each set constitutes approximately 50% of the total motor torque, demonstrating the
rationality of the motor-power-matching method. This validates the applicability of the
proposed method.
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Figure 16. (a) Speed curve during linear driving process; (b) motor torque curve during linear
driving process.

(2) Power-Matching Test

After calculating the torque and speed, the power of the driving motor is obtained.
The power curves of the two motors are shown in Figure 17. Under no-load conditions,
the maximum power for front- and rear-wheel acceleration is 112.7 kW. Under full-load
conditions, the maximum power for front-wheel acceleration is 211.4 kW, and for the rear
wheel, the maximum power for front-wheel acceleration is 72.1 kW. The results indicate
that the power data for the front and rear motors are close, with an overall deviation of less
than 2%. Power matching and control meet the practical loading requirements.
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6. Discussion

In this section, the main findings of the study are discussed, in addition to its signifi-
cance in both the industry and academia, and some limitations of the research are covered.
This paper aims to improve the accuracy of shovel-force prediction for large-tonnage EWLs
to enhance their operational efficiency. Through this study, a new method for predicting
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shovel force was developed, one especially designed for large-tonnage EWLs. The com-
bination of DEM and BP NNLA demonstrated high accuracy in predicting shovel force,
which can provide strong support for the design and operation of EWL. The reliability
and effectiveness of this paper’s findings are demonstrated in three main aspects: model
verification, consideration of various factors, and comprehensive data collection. The
paper validated the simulation model through experiments and considered multiple factors
influencing shovel force, including material parameters, loading steps, and the physical
properties of loading materials. Through static and dynamic calibration experiments, the
paper extensively collected and analyzed key parameters of the shovel-force prediction
model. By improving the accuracy of shovel-force prediction, it is possible to better opti-
mize the design and operation of EWL, thereby increasing production efficiency, reducing
operating costs, and enhancing competitiveness. Additionally, the optimization methods
mentioned in the study for motor selection and matching can also be applied in other
applications within the EWL field. This holds significant importance for other construction
machinery manufacturers and industries that require efficient material handling.

Despite achieving some breakthroughs in the accurate prediction of shovel force
for large-tonnage EWL in this paper, there are still some limitations. Firstly, the power
matching in this paper was based on V-type operating conditions, and there is further
room for optimization in real-world applications. Secondly, the discrete element simulation
mainly focused on loose materials, and there might be some errors when extending the
simulation to different material types. The accuracy of the simulation model can be affected
by changes in actual operating conditions.

7. Conclusions

This paper focuses on the shovel force of large-tonnage EWLs, achieving precise
prediction of shovel force through a combined simulation method. Additionally, the study
enhances the reliability of the predicted results by validating them through experiments.

The prediction of shovel force through empirical, formula-based methods revealed
significant discrepancies when compared to the actual test results, especially for large-
tonnage EWL, where the error levels reached up to 30%. The empirical, formula-based
methods prove to be insufficient for accurate shovel-force prediction. The combination
of discrete DEM and BP NNLA offers a precise prediction of the shovel force of an EWL.
Comparative analysis between the optimized shovel force obtained through this method
and the actual test shovel force indicates only a small error, particularly for large-tonnage
EWL, which had an error rate of 7.8%. This method proves effective in accurately predicting
the shovel force for large-tonnage EWLs. Based on the predicted shovel force, this paper
optimized the power matching of the large-tonnage EWLs. To validate the reliability of
the optimization, the optimized large-tonnage EWL underwent straight-line movement
and power-matching tests. The results demonstrate a minimal difference, one of only 2%,
between the power levels of the front and rear motors of the large-tonnage EWL, meeting
the operational requirements in practical scenarios.

In future work, there will be a focus on systematically studying and predicting shovel
forces for various materials.
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