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Abstract: Enhancing information representation in electromyography (EMG) signals is pivotal for
interpreting human movement intentions. Traditional methods often concentrate on specific aspects
of EMG signals, such as the time or frequency domains, while overlooking spatial features and
hidden human motion information that exist across EMG channels. In response, we introduce an
innovative approach that integrates multiple feature domains, including time, frequency, and spatial
characteristics. By considering the spatial distribution of surface electromyographic electrodes, our
method deciphers human movement intentions from a multidimensional perspective, resulting in
significantly enhanced gesture recognition accuracy. Our approach employs a divide-and-conquer
strategy to reveal connections between different muscle regions and specific gestures. Initially,
we establish a microscopic viewpoint by extracting time-domain and frequency-domain features
from individual EMG signal channels. We subsequently introduce a macroscopic perspective and
incorporate spatial feature information by constructing an inter-channel electromyographic signal
covariance matrix to uncover potential spatial features and human motion information. This dynamic
fusion of features from multiple dimensions enables our approach to provide comprehensive insights
into movement intentions. Furthermore, we introduce the space-to-space (SPS) framework to extend
the myoelectric signal channel space, unleashing potential spatial information within and between
channels. To validate our method, we conduct extensive experiments using the Ninapro DB4, Ninapro
DB5, BioPatRec DB1, BioPatRec DB2, BioPatRec DB3, and Mendeley Data datasets. We systematically
explore different combinations of feature extraction techniques. After combining multi-feature fusion
with spatial features, the recognition performance of the ANN classifier on the six datasets improved
by 2.53%, 2.15%, 1.15%, 1.77%, 1.24%, and 4.73%, respectively, compared to a single fusion approach in
the time and frequency domains. Our results confirm the substantial benefits of our fusion approach,
emphasizing the pivotal role of spatial feature information in the feature extraction process. This
study provides a new way for surface electromyography-based gesture recognition through the
fusion of multi-view features.

Keywords: EMG; multi-feature fusion; spatial feature information

1. Introduction

Electromyographic (EMG) signals are the physiological signals which are generated
through muscular contractions during human movements. The signals consist of motor
action potentials (MUAPs) generated by muscle fibers. Actually, EMG signals can be
detected via surface or invasive method, rather than the two categories of EMG signals.
The former is collected through electrodes above the skin, whilst the latter is collected
through needle electrodes inserted in muscles [1,2]. Although the EMG signal obtained
from the latter can accurately represent the current state of the muscles, it needs to invade
and harm the human body, so surface EMG (sEMG) is generally used to further determine
the current motion of muscles. Other sensors for human movement analysis, like inertial
measurement units (IMUs) [3,4], cameras [5,6], near-infrared spectroscopy (NIRS) [7,8], force
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myography (FMG) [9,10], etc., are also capable of responding to human motion intent at
the physical level. However, the above sensors only reflect the muscular state of human
motion, but not the real movement intention of the subjects with limb abnormalities or
neurological disorders.

The rich physiological information contained in sEMG signals enables the extraction of
human motion intention data, thereby holding considerable practical value across various
domains such as clinical medicine, human engineering, and rehabilitation medicine. Surface
electromyography-based human–machine interaction plays a pivotal role in applications
such as prosthetics [11], sign language recognition systems [12], and intelligent driving [1].

Precisely decoding extensive feature information from EMG signals has emerged as a
pivotal aspect of human–machine interaction [13]. Two primary categories of sEMG-based
human–machine interaction methods exist: one relies on constructing muscle models [14]
and the other utilizes non-muscle model techniques [11]. The use of muscle–skeletal models
for recognizing movement intent possesses inherent limitations and primarily applies
to tasks with fewer degrees of freedom, often struggling to distinguish finer tasks like
gesture recognition. On the other hand, non-muscle model methods leverage traditional
machine learning and deep learning approaches for pattern recognition. The recognition
process encompasses three fundamental stages: (1) data pre-processing, which entails noise
removal from raw signals and segmentation of extended signals; (2) feature extraction,
involving the derivation of temporal, spectral, time–frequency, spatial, or high-dimensional
semantic features utilizing deep learning networks; (3) pattern recognition, encompassing
the identification and classification of signals through deep learning networks or machine
learning methodologies. It is imperative to emphasize the pivotal role played by feature
extraction in this overall process.

Time-domain feature analysis [15], frequency-domain feature analysis [16], and time–
frequency-domain feature analysis [17] stand out as the most commonly employed methods
for feature extraction. Time-domain features are characteristics derived directly from the
signal’s amplitude with time as the independent variable. Due to their convenience and
intuitive computation, time-domain features have gained widespread popularity in sEMG
feature extraction [18]. In the time domain, sEMG signals are typically regarded as zero-
mean stochastic signals with variance altering according to signal intensity [19]. Prominent
time-domain features for surface electromyography signals include root mean square
(RMS), zero crossing (ZC), waveform length (WL), variance (VAR), and mean absolute
value (MAV). Frequency-domain features, on the other hand, involve spectral or power
spectral (PS) features obtained through the application of fast Fourier transform (FFT) to
the original sEMG signals, allowing for direct observation of the signal’s frequency band
distribution. Frequently employed surface electromyography frequency-domain features
include PS, mean frequency (MNF), median frequency (MF), frequency ratio (FR), and au-
toregressive coefficients (AR). The fusion of time-domain and frequency-domain features
enables the simultaneous assessment of the temporal and spectral aspects of sEMG signals,
providing comprehensive insights into muscle physiological variations. Presently, primary
methods for conducting time–frequency analysis of surface electromyography signals en-
compass short-time Fourier transform (STFT), Wigner–Ville transform (WVT), and wavelet
transform. Traditional time-domain and frequency-domain surface electromyography
analysis methods only describe time-domain features or only frequency-domain features,
which may not fully reflect the characteristic information of sEMG signals. Neverthe-
less, time–frequency-domain feature analysis methods offer a means to overcome these
constraints [20].

Electromyographic (EMG) signals, often characterized by temporal instability, present
a unique challenge and opportunity in the domain of human movement analysis, while
these signals exhibit temporal variations, they also retain essential spatial information
across different sensor channels. Recent advancements in the field, such as the pioneering
work by Xiong et al. [21], have harnessed this spatial consistency by introducing geometric
methodologies that leverage the topological characteristics inherent to EMG signals. Their
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approach emphasizes the fusion of spatial topological structural attributes with traditional
time–frequency features. This fusion not only counters temporal feature instability but
also significantly enriches the feature information crucial for precise and efficient EMG
signal decoding.

In the quest for enhancing the decoding of EMG signals, the concept of feature-level
fusion has gained prominence, especially in models reliant on multimodal data sources [22].
Traditional methods for analyzing surface EMG (sEMG) signals, often constrained to either
temporal or spectral features alone, face limitations. To address this, researchers, such as
Li et al., in their comprehensive review in 2020 [20], proposed an innovative approach
incorporating time–frequency-domain feature analysis. This method has proven effective
in mitigating temporal feature instability, thereby enhancing the overall feature information
available for EMG signal decoding [20,21]. EMG signals’ capability to classify human
actions hinges on information gathered from various anatomical locations and the intrinsic
features embedded within the signals. However, when information acquisition is restricted
to a single channel, as noted in Parker’s seminal work on motor control in 2004 [23],
limitations arise. Each sEMG channel corresponds to the collective activity of numerous
muscles, making it imperative to augment the number of channels. This augmentation
allows for a finer dissection of the information contained within an individual channel,
resulting in a more abundant resource of spatial and temporal information for subsequent
feature extraction. This, in turn, contributes to the effectiveness and precision of EMG
signal decoding.

While current methods have yielded promising results, they often overlook the spatial
characteristics inherent in EMG channels. In this paper, we introduce a novel Space-to-
space (SPS) framework for sEMG feature extraction. By adopting a spatial perspective, we
integrate inter-channel correlations and employ a multi-view feature fusion approach to
decode electromyographic signals for pattern recognition. Our model exhibits a significant
performance improvement when compared to conventional methods.

Our contribution to this work can be summarized as follows:

• This paper designs a new method for processing sEMG signals, which is based on
expanding the original EMG signal segments in the space domain, thus releasing
more feature information within a single channel to improve the accuracy of gesture
action classification.

• A novel framework for sEMG-based gesture classification is established using inter-channel
correlation (ICC) matrix representation extracted by the spatial sEMG information.

• Multi-information fusion involving time-domain and frequency-domain feature in-
formation with ICC matrix is implemented to build a pattern-recognition framework
composed of multiple information.

• The effectiveness of the proposed approach is verified on hand gestures of six public
datasets with various sEMG sensors and data formats, and a comprehensive analysis
of the performance of multiple feature extraction combinations is completed.

2. SEMG Space Extend

This study proposes a space-to-space (SPS) framework for extracting features from
sEMG signals, with the aim of describing specific signals by extracting structural character-
istics from each sEMG channel. This framework is capable of extracting information from
channel combinations, providing cross-channel patterns and background information on
potential muscle synergy. The general procedure of the proposed method and the structure
of SPS is shown in Figure 1.

In traditional methods, after signal down-sampling, a lot of information is lost along
with the reduction in signal data. Among the lost information, there is a lot of potentially
valuable information.
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Figure 1. The general procedure of the proposed method. The bottom is the structure of space-to-
space (SPS).

The extending operation mentioned in this paper is derived from the common down-
sampling operation in images. For details, refer to SPD-Conv [22]. In ref. [22], the feature
map of the original image is down-sampled to reduce the image resolution and avoid
the loss of fine-grained information in the image. This paper refers to the idea of spatial
conversion to depth and down-samples the original EMG segment according to time. Then,
the down-sampled data are concatenated, releasing the time and space information in the
EMG signal by transforming the EMG signal segment in space, and enriching the spatial
domain information. The specific execution Equation (1) is as follows:

f1 = X[1 : c, 1 : scale : n],

f2 = X[1 : c, 2 : scale : n],

. . . ,

fscale = X[1 : c, scale : scale : n]

(1)

In Equation (1), the function f (. . . ) signifies the specific down-sampling operation,
extending the original signal segment into scale parts and ultimately merging them into
the newly expanded sEMG signal segment. By transforming the original signal feature
segment X(c × n), where n represents the length of the signal feature segments and c
represents the number of signal channels, through signal folding, the original signal feature
segment is transformed into X′((c × scale)× n

scale ), where scale represents the extension
factor (the extension factor can only be selected as a number that can be divided by n, and it
is necessary to ensure that the folded signal feature segment n

scale > c × scale.
Taking scale = 2 as an example shown in Figure 1, for a signal segment X(c × n) with

current time length n and channel count c, within f1(. . . ), starting at time point 0 for each
of the c channels, a sampling operation occurs at intervals of scale units until reaching
the boundary of the time segment. Subsequent operations f2(. . . ), · · · , fscale(. . . ) mirror
f1(. . . ). By iteratively applying these steps and concatenating the down-scaled f (. . . ),
the final result is the spatially expanded sEMG signal segment X′((c × scale) × n

scale ),
forming the basis for subsequent feature extraction.

For the extended EMG signal segment, extract the temporal and frequency domain and
the spatial information between channels. It can more effectively extract the hidden feature
information within a single channel, and then provide multi-perspective information for
subsequent feature extraction.
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3. Feature Extraction

One of the crucial factors determining classification and regression accuracy is the selec-
tion of appropriate feature representations. To maximize the representation of feature infor-
mation within electromyographic signals, we propose a spatial domain feature-extraction
method based on the covariance matrix. This method is combined with commonly used
time-domain and frequency-domain approaches to extract more comprehensive feature
information from electromyographic signals.

3.1. Spatial Domain Feature Extraction

In mathematical statistics, covariance is commonly used as a parameter to investi-
gate the relationship between two random variables, reflecting the second-order statistical
properties between variables. Currently, there are limited studies utilizing covariance
features to study EMG signal recognition issues [24,25]. The main reason is that EMG
signals are one-dimensional time series, requiring the identification of an appropriate co-
variance matrix to explore the signal dynamics in high-dimensional space. Describing EMG
information characteristics through the covariance matrix offers several advantages: it can
integrate nonlinear feature information represented in the spatial domain; furthermore,
the covariance matrix provides a method to filter out noise. By using spatial reconstruction
to construct the covariance matrix from EMG signal sequences, potential signal dynamics
information can be unearthed. An attempt is made to measure the similarity between co-
variance matrices using Euclidean distance, primarily achieved by vectorizing the matrices.
Subsequently, through the use of classifiers, an effort is made to decode the underlying
feature information and human kinematic information from higher dimensions, while
restoring the spatial feature information between different channels of the EMG signals.

In this study, by constructing the inter-channel covariance matrix of the EMG signals,
referred to as the inter-channel correlation (ICC) matrix, we aim to delve deeper into the
hidden spatial feature information and human movement information between channels of
the EMG signals. As shown in Figure 2, the spatial correlation of EMG signals is embedded
within adjacent or correlated channels.
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Figure 2. Example characteristics of EMG data. Cross correlation between channels of EMG data—
note how many groups of channels have correlation.
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The ICC matrix is utilized to learn spatial representation from EMG signals. We
constructed the ICC matrix in the following, let xt ∈ Rc denote the sEMG signal vector
at a specific time point t, with c denoting the number of recording channels. The ICC
matrix is formally defined by Σ = E(xt − E{xt})(xt − E{xt})T , where E{·} denotes the
expected value. In ICC matrix we consider short-time sEMG signal, in the form of a
matrix Xi = [x(t+Ti)

. . . x(t+Ti+Tn−1)] ∈ Rc×Tn , which corresponds to the i-th segments of
movement started at time t = Ti. Here, Ti denotes the number of sampled time points in
each segment.

Ci =
1

Tn − 1
Xi ∗ XT

i (2)

where X is EMG signal pre-processed using the procedure is Section 4.2. It is with shape
(c × n) , where n, c are the signal’s fragment length and the number of channels. The ICC
matrix is known to be an unbiased estimator of the covariance matrix Σ provided that the
number of observations Tn is much than the number of variables c [23].

The ICC matrix is based on the covariance matrix using Equation (2), revealing spatial
correlations among different channels and partially presenting the distribution characteris-
tics of EMG signal data within each channel. Given that covariance reflects the distribution
and variability of data, the ICC matrix not only captures spatial correlations among differ-
ent channels but also characterizes the distribution of EMG signal vectors within the same
channel. The variable Xi represents the i-th signal segment containing a signal vector of
length n and c channels, the covariance matrix between different channels of this signal
segment is computed using Equation (2). Here, Tn denotes the time length n of the signal
vector for the respective signal segment. Ultimately, the covariance matrix for signal seg-
ment i is a symmetric matrix with dimensions (c × c). This matrix reflects the degree of
correlation among different channels and also illustrates the data distribution within the
same channel.

As shown in Figure 2, this study has chosen to employ the Pearson correlation co-
efficient matrix for analyzing the correlation among various channels of EMG signals.
The Pearson correlation coefficient gauges the strength and direction of the linear rela-
tionship between two variables, calculated through the product of covariance and the
standard deviations of the two variables. By leveraging the elements of the covariance
matrix, we can determine the covariance between any two variables, subsequently deriving
their Pearson correlation coefficient. This correlation assists in quantifying the linear rela-
tionships between variables, providing a comprehensive understanding of the associations
between data structures and features. In sEMG analysis, it can be employed to investigate
the synergy among different muscles, contributing to the understanding of physiological
features related to movement and posture control.

3.2. Time Domain Feature Extraction

Common procedures are used to detect muscle activation. These are described by
the observable lobes appearing in the sEMG time series. We choose the time-domain (TD)
features set involving root mean square (RMS), mean absolute value (MAV), slope–sign
change (SSC), waveform length (WL), and zero crossing (ZC) [26–28].

3.2.1. Root Mean Square (RMS)

Root mean square is a commonly used time-domain feature of sEMG signals, which
reflects the effective value of a sEMG signal segment. Furthermore, it indicates the contri-
bution of various muscle tissues during the completion of gesture movement. It is defined
by Equation (3):

RMS =

√√√√ 1
N

N

∑
i=1

x2
i

(3)

where x is amplitude in ith sample and N is total number of samples.
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3.2.2. Mean Absolute Value (MAV)

The mean absolute value (MAV) feature represents one of the most direct measures of
signal amplitude and is a commonly used time-domain feature. When the signal manifests
in the form of a Laplacian random process, MAV serves as the maximum likelihood estimate
of its signal amplitude. Its computational formula is as follows:

MAV =
1
N

N

∑
i=1

|xi| (4)

Here, N represents the number of sample points in a given channel of the electromyo-
graphic signal, and xi denotes the energy value (amplitude) of a signal sample point, where
i = 1, 2, . . . , N.

3.2.3. slope–Sign Change (SSC)

Another feature that can offer insight into frequency content is the count of instances
where the slope of the waveform changes its sign. Once more, an appropriate threshold
must be selected to mitigate noise-induced fluctuations in slope.

SSC =
1
N

N−1

∑
i=2

f ((xi+1 − xi)(xi − xi−1))

f (x) =

{
1, i f x > Th
0, otherwise

(5)

Considering three consecutive samples, xi−1, xi, and xi+1, the slope sign change count,
denoted as SC, is incremented if x > Th, f (x) = 1. This process is applied to three
sequential segments using the threshold function Th to mitigate background noise in the
EMG signal. This method captures frequency information from the time domain.

3.2.4. Waveform Length (WL)

Waveform length refers the signal feature obtained by accumulating the length of the
signal energy (amplitude) within the number of data points and normalizing it. It reflects
multiple physical quantities of signal such as action time, signal frequency, and amplitude.

RMS =

√√√√ 1
N

N

∑
i=1

x2
i

(6)

3.2.5. Zero Crossing (ZC)

Zero crossing (ZC) is a metric of frequency information in the time domain of EMG
signals. This feature can to some extent reflect the jitter and oscillation of the signal during
a specific action segment. It also indicates the number of times the amplitude of the EMG
signal crosses the zero level. To avoid capturing low-voltage fluctuations or background
noise, a threshold condition is added. The specific calculation process is as follows:

ZC =
1
N

N−1

∑
i=1

f1(xi+1 ∗ xi)
⋂

f2(xi+1 − xi)

f1(x) =

{
1, i f x < Th
0, otherwise

f2(x) =

{
1, i f |x| > Th
0, otherwise

(7)
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where f1(. . . ) indicates whether xi+1 and xi have opposite signs. Only when they are
opposite and below the threshold can it be counted as 1. f2(. . . ) indicates that xi+1 and xi
are not the same point, and there is a distance between them that surpasses the threshold,
only then can it be counted as 1. In the end, the two functions are intersected to count the
number of zero crossings.

3.3. Time–Frequency-Domain Feature Extraction

Commonly employed techniques for extracting time–frequency features include the
Fourier transform (FT) and wavelet transform (WT). FT, owing to its inherent characteristics,
exhibits inefficiency when processing non-stationary EMG signal data and offers only a
single resolution, alongside other limitations [27]. Consequently, we opt for an analytical
approach with increased resolution and adaptability to data length. In the spectral analysis
of biological signals, WT proves more suited than FT. WT’s proficiency in feature extraction
can be attributed to the scale and translation properties of its mother wavelet, which
enhances its ability to effectively process and analyze the amplitude, frequency, and time
characteristics of the signal [29]. As an exemplar of the WT family, we select the marginal
discrete wavelet transform (mDWT), which does not necessitate wavelet time instants.
Instead, it relies on the energy accumulated within a signal segment, rendering it a superior
discriminant criterion [29].

Marginal Discrete Wavelet Transform (mDWT)

Discrete Wavelet Transform (DWT) discretizes the scale and translation of the basic
wavelet. The basis functions of any wavelet transform fundamentally involve scaling and
translating the mother wavelet and father wavelet (also known as the scaling function).
Here, xt represents the muscle EMG signal segment at time t, which undergoes trans-
formation and decomposition using the wavelet basis ψl,τ(t). This process separates the
high-frequency and low-frequency components of the signal. After undergoing multilevel
decomposition, both the frequency-domain and time-domain features of the signal are
adequately represented.

x̂l =
T/2l−1

∑
τ=0

T

∑
t=1

xtψl,τ(t) (8)

ψl,τ(t) = 2−
1
2 ψ

(
2−lt − τ

)
(9)

where ψl,τ(t) represents the wavelet basis. For this study, the Daubechies Wavelet basis
is chosen for decomposing the EMG signal. Here, x signifies the variable, where τ takes
values from 0 to 2l − 1 inclusive. The parameter l denotes the scale factor, altering which
scales the function values. τ is the translation parameter, which when modified, shifts the
function along the t-direction.

4. Experimental Setup
4.1. Dataset Description

This section provides a introduction to the six public datasets used in this paper,
Ninapro DB4 [30], Ninapro DB5 [30], BioPatRec DB1 [31], BioPatRec DB2 [31], BioPatRec
DB3 [31], and Mendeley Data [32]. The above dataset captures the hand and wrist move-
ment gestures. As indicated in [33], the hand gestures is distinguished between static
and dynamic. The primary distinction lies in the fact that static movements do not alter
the finger angles, whereas dynamic movements involve changes in finger angles as the
hand moves. Based on this description, the motions within the selected datasets exclu-
sively fall under the category of static hand gestures. Here, is a brief overview of each
analyzed dataset:

1. Ninapro DB4: In the dataset, the sEMG signals are collected from 10 subjects. Each
subject is recorded 53 motions and divided into three groups: exercises A, exercises B
and exercises C. The exercises A consists of basic fingers movements. The exercises B
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includes the multiple finger flexion and extensor with wrist gestures. The exercises C
set consists of grasping the common daily objects. The duration of each movement is
5 s, followed by a 3 s rest, with six repetitions of each motion. Ninapro DB4 contains
12 channels. Columns 1–8 are the electrodes equally spaced around the forearm at
the height of the radio humeral joint. Columns 9 and 10 contain signals from the
main activity spot of the muscle flexor and extensor digitorum superficialis, while
columns 11 and 12 contain signals from the main activity spot of the muscle biceps
brachii and triceps brachii.

2. Ninapro DB5: In this dataset, sEMG signals are acquired from 10 subjects. The hand ges-
tures are identical to those in NinaPro DB4, with the primary distinctions being the number
of channels and sampling frequency. Ninapro DB5 contains 16 channels, columns 1–8 are
the electrodes equally spaced around the forearm at the height of the radio humeral joint.
Columns 9–16 represent the second Myo, tilted by 22.5 degrees clockwise.

3. BioPatRec DB1: This dataset contains 10 hand and wrist movements collected from
20 subjects. It is including of hand open/close, wrist flex/extend, pro/supination,
fine/side grip, pointer (index extension), and agree or thumb up. Each movement has
three repetitions and rests for 3 s after a duration of 3 s.

4. BioPatRec DB2: This dataset is collected from 17 subjects including 26 hand activities.
It is similar to BioPatRec DB1, except for fine/side grip, pointer (index extension),
and agree or thumb up. The duration of each motion is 3 s, followed by 3 s rest, with
three repetitions.

5. BioPatRec DB3: This dataset is collected from eight subjects including ten movements
with three different devices. The hand gestures are same as BioPatRec DB1. The du-
ration of each hand gesture is 3 s long with 3 s resting in between two motions and
three repetitions. BioPatRec DB1, DB2, and DB3 have four, eight, and four electrodes,
respectively. The diameter of the electrodes is 1 cm, and the distance between the
electrodes of the dipole is 2 cm. The electrodes are equidistantly distributed around
the most proximal third of the forearm.

6. Mendeley Data: The dataset records 10 different hand gestures from 40 subjects.
The hand gestures performed by the subjects are rest, extension/flexion of the wrist,
radial deviation of the wrist, grip, abduction/adduction of all fingers, supination,
and pronation. The duration of each gesture is 4 s long with 4 s resting in between
two hand gestures and five repetitions. The four electrode positions of Mendelay are
Extensor Carpi Ulnaris, Flexor Carpi Ulnaris, Extensor Carpi Radialis, and Flexor
Carpi Radialis.

4.2. Dataset Pre-Processing

The sEMG can be disturbed by various types of noise, such as noise from electronic
devices (from 0 Hz to thousands of Hz) and noise from motion artifacts [34]. Therefore,
filtering operations are needed to remove the noise information in order to preserve the
original signal’s characteristic information as much as possible. The same filtering method
is used for the six public datasets to filter the original EMG signals. Wavelet denoising is
used to filter the original EMG signals, and the third-level mother wavelet “db7” is selected
for wavelet filtering. The filtered data are then normalized using min–max normalization to
ensure that all data are distributed between [0,1]. The filtered and normalized EMG signal
segments are shown in Figure 3. The formula for min–max normalization is as follows:

x =
x − xmin

xmax − xmin
(10)

where xmin represents the minimum value of the signal vector x, and xmax represents the
maximum value of the signal vector x. Finally, the sEMG signal is split into a collection of
signal segments with a window size of 150 ms and a sliding step of 25 ms [35].
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Figure 3. A visual juxtaposition of selected signal segments from NinaPro DB5 before and after
pre-processing is presented. On the left are the raw signal segments without filtering or normalization,
while on the right are the corresponding EMG signal segments post-processing, involving wavelet
denoising and min–max normalization.

4.3. Pattern Classification and Setting

Following feature extraction from the EMG data, various machine learning algorithms
and artificial neural networks (ANNs) are deployed for pattern recognition. The model
is trained using the training set’s data, and its performance is assessed using the testing
dataset. We employ four supervised pattern-recognition algorithms typically used in related
hand gesture recognition tasks involving EMG signals [36,37]. These methods encompass
linear discriminant analysis (LDA), K-nearest neighbors (KNNs), support vector machine
(SVM), and ANN for hand gesture classification.

Linear discriminant analysis (LDA), k-nearest neighbors (KNNs), and support vector
machine (SVM) are widely used machine learning algorithms. LDA, a supervised learning
method, aims to identify the optimal linear projection that separates different classes in the
data. KNN is an instance-based algorithm that classifies new data points by measuring
distances to the nearest K neighbors and making decisions based on their labels. SVM,
a powerful binary classifier, seeks to find the best hyperplane that maximizes the margin
between classes while minimizing classification errors. In those classifications predication
of the test data are evaluated by measuring distance from the training samples. In this work,
to determine the class of the testing data Euclidean distance is calculate and the number of
neighbors K = 10 has been considered. SVM classification consists of a hyper surface in the
space that is used for classification of the data set. In our work, RBF (radial basis function)
has been used as the SVM kernel. LDA involves projecting multidimensional data features
onto one or lower-dimensional space to maximize the distance between different categories
while minimizing the distance within the same category.

In our study, the architecture of our ANN network is structured as follows: it con-
sists of three fully connected layers, where the number of neurons in the hidden layer is
dynamically adjusted based on the varying feature quantities. The number of neurons in
the output layer is also adapted to the number of categories in different datasets. We have
opted for the LeakyReLU activation function [38]. The specific parameter configurations
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are as follows: the learning rate is set at 0.01, with a learning rate adjustment strategy of
CosineAnnealingLR. We employ the AdamW optimization function, a batch size of 256,
and 200 iterations. To address potential distribution differences between the training and
test data, a total trail is used for the training and testing. Specifically, Ninapro DB4, the trials
numbered 1, 3, 4, and 6 of all 10 subjects were used for training, and the trials numbered
2 and 5 were used for testing. More detail is provided in Table 1.

Table 1. Specifications of the sEMG databases used in this paper.

Name Gestures Subjects Channels Trials Training Testing Sampling
Rate

Ninpro
DB4 53 10 12 6 1, 3, 4, 6 2, 5 2000 Hz

Ninapro
DB5 53 10 16 6 1, 3, 4, 6 2, 5 200 Hz

BioPatRec
DB1 10 20 4 3 1, 3 2 2000 Hz

BioPatRec
DB2 26 17 8 3 1, 3 2 2000 Hz

BioPatRec
DB3 10 8 4 3 1, 3 2 2000 Hz

Mendeley
Data 10 40 4 5 1, 2, 4 3, 5 2000 Hz

Regarding the hardware setup, we utilized an Intel Core i5-12400F with a 3.9 GHz
CPU, 32 GB of RAM, and an Nvidia RTX 3060 GPU. The project was developed using the
PyTorch deep learning library, and all comparative experiments were conducted in this
aforementioned environment.

4.4. Performance Evaluation Standards

In this work, the performance of methods is evaluation by classification accuracy and
F1-score. Accuracy is the most commonly used classification evaluation index. The formula
of it is defined by Equation (11):

Accuracy =
Correctedly predicted samples

All samples
× 100 (11)

The F1-score is selected as another evaluation index due to the presence of a large
number of similar actions in the data, it and accuracy forms the evaluation index system of
the method. The formula of it is defined by Equation (12):

F1 score =
Precision × Recall
Precision + Recall

× 2 (12)

in which precision and recall are determined with the following Equation:

Precision =
TP

TP + FP
Recall =

TP
TP + FN

(13)

where the operators TP, FP, and FN are true positives, false positives, and false negatives,
respectively. The results for each label are weighted by the number of samples in each class
to calculate the F1-score.

5. Experiment and Results
5.1. Comparison of the Original Data and Data after Extending Function

In this section, we compared the performance of different feature-extraction method
combinations and analyzed the classification accuracy when employing the space-to-space
(SPS) technique. Our test involved classifiers such as LDA, SVM, KNN, and ANN, con-
ducted on the BioPatRec DB1 dataset, and the results are presented in Table 2 and the
accompanying graph.
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Table 2. Ablation experiments of SPS technique, where † represents the operation of expanding
sEMG signals, testing on BioPatRec DB1 database. To clearly describe the final data input format for
each feature domain, let us consider signal segments X(c × n) and X′((c × scale)× n

scale ) as examples.
Here, n represents the time length of the signal segment, c denotes the number of channels, and scale
signifies the scaling factor for down-sampling. X and X′ represent different electromyographic signal
segments before and after SPS processing. In the table, † indicates whether a feature participates.
After SPS processing, the time length and number of channels of the signal segment are reduced to

n
scale and c × scale, respectively. The shape of X, untreated by SPS, after feature extraction through
TD, mDWT, and ICC is (c × 5), (c × 3), and (c × c), respectively. On the other hand, the shapes of
X, post SPS processing, after feature extraction through TD, mDWT, and ICC, are ((scale × c)× 5),
((scale × c)× 3), and ((scale × c)× (scale × c)), respectively. Bold indicates the best result under the
current method.

Method LDA SVM KNN ANN

TD 50.88 30.17 64.43 85.09
TD † 52.15 36.59 65.65 85.95

mDWT 47.29 63.90 74.57 79.53
mDWT † 48.55 65.19 77.05 81.52

ICC 39.04 39.39 69.59 76.56
ICC † 41.76 38.94 70.51 78.08

TD and mDWT 53.27 61.85 78.71 85.19
TD and mDWT † 55.60 63.90 81.41 87.25

TD and ICC 52.39 43.60 79.07 85.91
TD and ICC † 55.59 44.86 79.27 86.84

ICC and mDWT 50.48 60.27 74.66 84.01
ICC and mDWT † 53.43 59.28 77.24 85.09

ICC and TD and mDWT 54.60 59.69 78.71 86.36
ICC and TD and mDWT † 57.81 61.00 81.57 88.40

From the table, it is evident that the utilization of SPS for expanding the original
sEMG signal segments, in conjunction with various feature-extraction methods, has led to a
significant improvement in overall accuracy. The average classification accuracy of the four
classifiers increased by 2.39%, 1.5%, 1.7%, and 2.49% after using the SPS technique. This
underscores the effectiveness of SPS, as it allows for the extraction of more feature informa-
tion within individual channels, thereby enhancing the accuracy of gesture classification.
Furthermore, It is worth noting that when utilizing a single-feature-extraction method,
the use of SPS results in a more pronounced enhancement in classification performance.
This phenomenon may be attributed to the inability of a single-feature-extraction method
to fully exploit the latent features within sEMG signals. The incorporation of SPS allows
for the extraction of additional features, enriching the feature set and ultimately improving
recognition accuracy.

Additionally, Figure 4 illustrates the normalized confusion matrix obtained using our
proposed approach with an KNN classifier for the BioPatRec DB1 database, with gestures
represented by numbers 0 through 9. A majority of the original labels were correctly
predicted, and the proposed approach achieved an average classification accuracy of 88.4%
across all 10 gestures, with the best class achieving 95.52% accuracy. This further confirms
the robust performance of our proposed approach.

Figure 3 illustrates the different classification results with and without the involvement
of SPS. It is evident that the inclusion of SPS leads to an enhancement in the classification
performance of the classifier. This improvement is particularly notable in categories where
the previous recognition accuracy was lower, consequently resulting in an overall elevation
of the accuracy in EMG pattern recognition.
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(a) ICC & TD & mDWT † (b) ICC & TD & mDWT

Figure 4. For the selected KNN classifier, confusion matrices were generated to evaluate the classifi-
cation performance with and without the involvement of SPS in the methods ICC, TD, and mDWT.
The dataset used for this evaluation was BioPatRec DB1. (a) The confusion matrix with the inclusion
of the SPS method. (b) The confusion matrix without the SPS method. The symbol † indicates an SPS
operation that extends the sEMG signal.

5.2. Comparison of Different Feature Extraction Combinations

To evaluate the performance of the SPS method on different datasets, we selected
six publicly available datasets for validation. Additionally, to assess the improvement in
EMG pattern recognition achieved through the combination of spatial-domain, frequency-
domain, and time-domain features from multiple perspectives, we tested various combi-
nations of feature domains. Furthermore, to mitigate any biases introduced by different
classifiers, we conducted tests using four classifiers: LDA, SVM, KNN, and ANN, cover-
ing both machine learning and deep learning methods to ensure the generalizability and
practicality of our approach.

The results presented in Table 3 demonstrate that employing a multi-perspective
fusion approach consistently yields superior outcomes across most classifiers, with the deep
learning classifier ANN showing the most significant performance improvement. Across
all six datasets, the performance of the artificial neural network (ANN) surpasses those of
other machine learning classifiers. The utilization of the ICC, TD, and mDWT-fused feature-
extraction method exhibits superior performance compared to other feature-extraction
approaches, showcasing average classification accuracy improvements of 2.04%, 3.17%,
4.27%, 2.27%, 4.93%, and 4.26% on Ninapro DB4, DB5, BioPatRec DB1-DB3, and Mendelay
Data, respectively. Notably, the smallest enhancement is observed in Ninapro DB4, while
the most significant improvement is witnessed in BioPatRec DB3.

Additionally, Table 3 indicates that the inclusion of multiple feature perspectives
leads to performance improvements in most classifiers. In cases where spatial domain
features are combined, there is a performance increase of 2–3% compared to methods that
lack such features. Moreover, multi-perspective feature classification, when compared to
single-feature domain methods, results in enhancements of at least 3% or more.

However, it is important to note that SVM and LDA exhibit distinctive trends. The SVM
classifier demonstrates greater sensitivity to frequency domain feature information, achiev-
ing higher accuracy in feature recognition when compared to multi-perspective fusion
methods. It excels at handling feature information in the frequency domain but struggles
with multi-dimensional data. In contrast, LDA exhibits a sensitivity to time-domain feature
information, performing well in both single-feature domain and time–frequency-domain
combination methods. Nevertheless, its capabilities in managing multi-dimensional feature
information are comparatively weaker than other classifiers.
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Table 3. Classification accuracy (%) on Ninapro DB4, DB5, BioPatRec DB1, DB2, DB3, and Mendeley
Data using four classifiers. Furthermore, all methods are processed by SPS. Bold indicates the best
results under the same method for the same dataset.

Datasets Method LDA SVM KNN ANN

TD 58.96 50.89 63.85 75.78
mDWT 56.18 66.47 73.03 75.79

ICC 55.92 54.76 69.74 76.61
Ninapro DB4 TD and mDWT 57.26 65.30 74.94 75.11

TD and ICC 62.27 55.55 75.51 76.09
ICC and mDWT 60.37 62.30 74.73 76.19

ICC and TD and mDWT 62.91 63.15 75.70 77.64

TD 69.43 66.54 69.88 75.37
mDWT 67.08 70.97 73.78 78.83

ICC 66.68 68.86 69.38 79.12
Ninapro DB5 TD and mDWT 69.55 70.27 74.52 79.73

TD and ICC 70.55 70.91 70.91 79.19
ICC and mDWT 69.21 70.89 74.47 79.97

ICC and TD and mDWT 70.59 71.25 75.41 81.88

TD 52.15 36.59 65.65 85.95
mDWT 48.55 65.19 77.05 81.52

ICC 41.76 38.94 70.51 78.08
BioPatRec DB1 TD and mDWT 55.60 63.90 80.41 87.25

TD and ICC 55.59 44.86 79.27 86.84
ICC and mDWT 53.43 59.28 77.24 85.09

ICC and TD and mDWT 57.81 61.00 81.57 88.40

TD 40.93 19.78 55.11 83.33
mDWT 36.17 68.20 76.59 83.74

ICC 31.12 23.37 70.96 82.31
BioPatRec DB2 TD and mDWT 43.24 64.32 77.29 84.60

TD and ICC 46.39 27.03 72.15 85.16
ICC and mDWT 44.18 55.19 77.15 85.45

ICC and TD and mDWT 48.06 55.52 78.67 86.37

TD 44.39 28.76 57.18 82.31
mDWT 43.90 64.97 77.20 82.77

ICC 37.82 30.92 65.67 73.59
BioPatRec DB3 TD and mDWT 48.36 63.87 79.83 85.84

TD and ICC 49.74 34.10 71.98 82.36
ICC and mDWT 47.99 58.08 77.73 85.99

ICC and TD and mDWT 52.27 59.00 81.04 87.08

TD 54.87 41.93 44.62 70.14
mDWT 49.83 61.72 66.90 72.64

ICC 34.70 27.61 59.60 73.59
Mendeley Data TD and mDWT 56.19 61.67 69.92 73.50

TD and ICC 57.55 39.15 52.54 76.77
ICC and mDWT 54.84 59.59 68.11 77.13

ICC and TD and mDWT 58.71 62.00 70.06 78.23

Furthermore, we assessed F1-score performance on these datasets. The F1-score is
employed to characterize performance in scenarios with sample imbalances for each label,
as illustrated in Figure 5. We observed that classifiers with stronger decoding capabilities
could extract more information from electromyographic signals as the feature information
increased. Even classifiers with relatively weaker decoding abilities exhibited good perfor-
mance. Importantly, the ANN classifier demonstrated performance improvements after the
fusion of spatial domain features, further enhancing the multidimensional perspective.
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Figure 5. The F1-score of all datasets is tested by five classifiers on seven methods.

5.3. Comparison of Result with Recent Feature-Extraction Methods

In this section, we conducted a comparative analysis of our proposed method against
existing sEMG-based gesture recognition techniques to underscore the superiority of our
approach, as illustrated in Table 4. Recognizing the substantial variations in data collec-
tion conditions and environmental factors, we followed the settings outlined in [21] and
selected a set of machine learning and traditional deep learning methods for comparison.
To ensure fairness and minimize the influence of data quantity variations due to different
acquisition devices, we adopted a uniform approach, using sEMG data from eight channels.
Our comparison was conducted using the BioPatRec DB2 dataset, which encompasses
data from 17 subjects and includes 26 distinct gestures, making it the dataset with the
highest gesture diversity among those considered for comparison, thus presenting greater
recognition complexity.

Table 4. Comparison with recent pattern-recognition research. Bold indicates the optimal result
among all methods.

Method Participants Gesture Channels Accuracy

Machine learning with
multi-window

majority Voting [18]
40 6 8 80.70%

Deep Learning [38] 10 10 8 77.78%
Machine learning with
the sequential floating

feature selection
method [39]

21 17 8 84.50%

Machine Learning [36] 4 7 8 89.20%
Machine Learning

with SPD-manifold
based features [21]

10 11 8 84.85%

This work 17 26 8 86.37 %

There are a total of five methods participating in the comparison, as shown in Table 4.
The authors of [18] investigated the effects of different window sizes and overlaps on
machine learning performance, and developed a novel multi-window majority voting
strategy to improve hand gesture recognition accuracies using electromyography signals.
The authors of [38] introduced an innovative hand gesture recognition system that utilizes
long short-term memory (LSTM) deep learning algorithms to classify hand gestures by
training and testing the collected inertial measurement unit (IMU), electromyographic
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(EMG), and finger and palm pressure data. The authors of [39] studied the feasibility
of using electromyography (EMG) signals for hand gesture recognition, with a focus
on comparing the effects of recording EMG signals from the forearm versus the wrist.
The results showed that wrist EMG signals have higher signal quality metrics for subtle
finger motions, while maintaining comparable quality for wrist motions. The authors
of ref. [36] presented an EMG acquisition and gesture recognition system based on an
embedded platform, which employs customized analog front-end circuits and digital
signal processing algorithms to achieve high-precision and real-time gesture recognition.
The authors of ref. [21] proposed a myoelectric pattern-recognition method based on the
SPD manifold, which utilizes the SPD manifold to extract spatial structural information
from electromyography signals as features for hand gesture recognition.

Table 4 clearly demonstrates that our proposed method is highly competitive when
juxtaposed with recent studies. This work achieved an accuracy rate of 86.37%; while this
is slightly below the 89.2% reported in ref. [36], it is essential to note that [36] focused on
classifying only 7 gestures, whereas our method addresses 26 gestures and still attains
remarkably close results. This underscores the remarkable effectiveness of our approach.

Notably, in the context of the machine learning with multi-window majority vot-
ing technique, which utilized data from 40 subjects performing six different gestures,
our method showcased a performance improvement of 5.67%. In the case of the deep
learning method based on LSTM, incorporating data from 10 subjects and encompassing
10 different gestures, our approach exhibited substantial performance enhancements of
8.59%. It is important to highlight that deep learning methodologies have been increasingly
adopted in EMG pattern recognition, as they aim to automatically extract more informa-
tive features and identify EMG patterns end-to-end, despite the associated increase in
computational complexity.

Furthermore, with regard to the machine learning with sequential floating feature
selection approach, which involved data from 21 subjects encompassing 17 gestures, our
method demonstrated a performance improvement of 1.87%. The SPD-manifold achieved
84.85% with 10 subjects and 11 gestures. However, it is worth noting that the feature extrac-
tion process in this method is relatively complex and can be time-consuming, potentially
presenting challenges for real-time recognition in practical scenarios.

6. Discussion

This paper proposes a surface electromyography (sEMG) feature-extraction method
based on spatial expansion to improve gesture recognition accuracy. The innovation lies in
introducing the “Space-to-Space (SPS)” framework, which folds the signals in the time di-
mension to expand the original sEMG data points in the spatial dimension, releasing more
feature information within a single channel. On the SPS processed signals, time-domain fea-
tures (including RMS, MAV, SSC, WL, ZC, etc.), frequency-domain features (using wavelet
transform), and spatial features (ICC matrix constructed from inter-channel covariance
matrix) are extracted to achieve multi-dimensional feature fusion. The experimental results
demonstrate that compared to using only time-domain and frequency-domain features,
this method achieves significant recognition performance improvements of 2.04% to 4.93%
in average accuracy on the Ninapro DB4, DB5, BioPatRec DB1–DB3, and Mendeley Data
datasets. This clearly shows that spatial features play a key role in sEMG decoding. In ad-
dition, comparative analysis with other state-of-the-art methods also proves the superiority
of this method in terms of higher gesture recognition accuracy.

While adopting the multi-view feature fusion strategy enriches the feature expres-
sion of sEMG signals and improves gesture recognition accuracy, different classifiers
demonstrate varying sensitivities towards features. For instance, the SVM classifier is
more sensitive to frequency-domain features and can achieve higher accuracy using only
frequency-domain features, but struggles in handling multi-dimensional features. In con-
trast, the LDA classifier is more sensitive to time-domain features and performs well in
both individual time-domain features and combinations of time–frequency-domain fea-
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tures, yet has weaker capabilities in dealing with multi-dimensional features. Overall, this
article has made useful explorations in the expression and fusion of multi-view sEMG
features, which provides a reference for the selection of classifiers and feature-extraction
methods in practical applications, and provides new ideas for surface electromyographic
signal analysis.

7. Conclusions

To better decode additional feature information from electromyographic signals,
thereby achieving the recognition task of movement postures, this paper introduces a
method for EMG pattern recognition using space-to-space (SPS), which integrates multiple
feature perspectives from the spatial domain (ICC), time domain, and frequency domain.
By combining spatially-extended SPS with subsequent feature extraction techniques, it
extensively explores spatial, temporal, and frequency-domain features within and across dif-
ferent channels of electromyographic signals. To evaluate the performance of the proposed
architecture, experiments were conducted on six sEMG benchmark databases: Ninapro
DB4, Ninapro DB5, BioPatRec DB1, BioPatRec DB2, BioPatRec DB3, and Mendeley Data.
The results demonstrate that the feature-extraction method based on multi-perspective
fusion can better extract kinematic information from sEMG signals and decode them, lead-
ing to improved recognition accuracy compared to traditional feature-extraction methods.
The experimental findings underscore the superiority of our approach and offer a novel
method for electromyographic pattern recognition.

In the future, we plan to explore alternative feature-extraction methods in Euclidean
space, projecting them into Riemannian space to seek more suitable representations of
electromyographic signals. Additionally, we aim to enhance the algorithm’s robustness
and stability by combining these methods with existing feature extraction techniques.
Furthermore, we will investigate the fusion of modal information from other domains with
electromyographic signals and establish a unified decoding framework, providing a new
option for human–computer interaction.
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