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Abstract: In constructing hydraulic tunnels, construction disturbances and complex geological
conditions can induce variations in the surrounding rock parameters. To navigate the complex
non-linear interplay between rock material parameters and tunnel displacement during construction,
this study proposes a hybrid learning model. It employs particle swarm optimization (PSO) to refine
the hyperparameters of the eXtreme Gradient Boosting (XGBoost) technique. Sensitivity analysis
and inversion of rock parameters is performed by using orthogonal design and the Sobol method
to analyze the sensitivity of environmental and rock material factors. The findings indicate that the
tunnel depth, elastic modulus, and Poisson ratio are particularly sensitive parameters. Mechanical
parameters of the rock mass, identified through sensitivity analysis, are the focal point of this research
and are integrated into a three-dimensional computational model. The resulting tunnel displacement
calculations serve as datasets for the inversion of the actual engineering project’s surrounding rock
mechanical parameters. These inverted parameters were fed into the FLAC3D software (version 7.0),
yielding results that align closely with field measurements, which affirms the PSO-XGBoost model’s
validity and precision. The insights garnered from this research offer a substantial reference for
determining rock mass parameters in tunnel engineering amidst complex conditions.

Keywords: sensitivity analysis; inversion; soft rock tunnel; PSO-XGBoost; numerical simulation;
machine learning

1. Introduction

In recent years, water resources allocation projects have been continuously evolv-
ing [1]. As these projects involve the construction of tunnels through geological formations,
the geological conditions have become increasingly complex [2]. Challenges accompany
the operation, wherein the application of numerical simulations has become a pivotal
foundation for operational design and support plans [3]. The effectiveness of calculation
depends on the accuracy of the selected mechanical parameters [4]. Nevertheless, the
inherent complexity of the rock mass, coupled with the intricate environmental conditions,
leads to substantial variability in its mechanical properties [5]. Due to the influence of
size effects and engineering considerations [6,7], rock mechanical parameters obtained
through field or laboratory testing often fail to capture the comprehensive properties of the
surrounding rock masses on a large scale [8]. Consequently, the acquisition of more precise
rock mechanical parameters has become a pivotal challenge, limiting theoretical analysis
and numerical computations in rock engineering.

The variability of rock parameters in subterranean chambers significantly affects their
construction safety and stability [9]. Investigating the impact of these parameters on tunnel
construction provides a precise foundation for safety evaluations. Sensitivity analysis, a
common quantitative method, assesses this impact, and is divided into local and global
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types [10]. The one-at- A -time (OAT) method is prevalent in local sensitivity analysis, while
global sensitivity analysis includes techniques like multiple regression, Morris screening,
and the variance-based Sobol method [11]. For models with numerous attributes and when
explicit output parameter equations are infeasible, establishing a relationship between these
parameters and evaluation criteria is crucial. Machine learning offers an effective solution
for forming non-linear mappings, learning input–output relationships from data without
prior knowledge, and making adaptive adjustments [12–14]. This approach captures the
logical connections between data, providing a robust computational method for sensitivity
analysis of rock parameters. While there is a focus on sensitivity analysis for slopes, dam
foundations, and bridges in geotechnical engineering, research on rock mass parameters
during the construction of underground chambers is less common [15]. Studies often use
quantitative statistical methods like grey relational analysis, which qualitatively express
impacts on output indicators but do not quantify the extent of their influence.

Since the 1970s, the rapid development of inversion methods has offered effective
means for addressing the issue of data collection [16–18]. In the initial stages of parameter
inversion research, a common approach entailed multiple iterations of pure finite element
computations to compare the results with monitoring data, thereby ascertaining parameter
values [19]. However, in practical engineering applications, the rock mass parameters
obtained using this method often deviate significantly from monitoring data in long-term
calculations [20,21]. This highlights the need for timeliness in the inversion of parameters.
This method lacks a well-defined range for forward model parameters. The limitations
of this approach pertain to both accuracy and computational cost [22,23]. As computer
technology advances, an increasing number of optimization algorithms and machine
learning methods are employed in the field of rock mass parameter inversion [24–26].
Optimization algorithms including artificial neural network (ANN), genetic algorithm
(GA), and particle swarm optimization (PSO) were employed to seek optimal combinations
of rock mass parameters by analyzing observed data [27–29], thus resulting in reduced
computational costs [30–32].

The above studies have explored inverse modeling of rock parameters to some extent,
yielding valuable insights. However, they mainly focus on inverting multiple input pa-
rameters using a single output parameter. The machine learning algorithms utilized are
set with default hyperparameters, without optimization, leading to less predictable results.
Moreover, the use of these algorithms is limited, indicating a need for further evaluation of
their fitting performance with a wider range of algorithms.

Red-bed soft rock (RBSR) displays poor mechanical properties, and especially terrible
deterioration when exposed to water. This susceptibility to disintegration was evaluated
using drying–wetting cycles experiments conducted in accordance with ASTM D4373-
14 [33]. In accordance with the Chinese standard for assessing the physical and mechanical
properties of rock (DZ/T 0276.9-2015) [34], cylindrical specimens of 50 mm diameter and
100 mm (±1 mm) height, and weighing 0.39–0.41 kg, were used. Two representative RBSR
kinds, (a) argillaceous sandstone and (b) silty mudstone, were selected for the wetting–
drying cycle testing. Figure 1 shows the results of disintegration experiments. Specimens
disintegrated after three cycles, and complete disintegration was observed after ten cycles.
This evidence confirms the substantial degradation of the parameters of the RBSR mass
in tunnels in water infiltration conditions, which is of paramount concern during tunnel
operation. Therefore, the establishment of a numerical tunnel modeling framework for
the purpose of obtaining parameter samples and subsequently deducing rock mechanics
properties has considerable practical utility.
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parameter inversion. The Latin Hypercube Sampling (LHS) approach generates 1000 pa-
rameter samples for tunnel model simulation using FLAC3D, yielding 1000 datasets for 
inversion. The results show that the PSO-XGBoost model achieves over 90% accuracy in 
predicting critical parameters. Verification on five monitoring data cross-sections demon-
strates a consistent relative error of less than 15%, affirming the accuracy of the PSO-
XGBoost inversion model. This model holds promise for offering valuable insights into 
the engineering of soft rock tunnels and similar projects, contributing to the field of engi-
neering geology. 

2. Methodology 
This section introduces the methodology of sensitivity analysis and inversion process 

in operating the RBSR tunnel model, as shown in Figure 2. The inversion method in this 
study consisted of four components: (1) the construction of metamodel by the PSO-
XGBoost algorithm; (2) the Sobol sensitivity analysis method based on orthogonal exper-
imental results; (3) the establishment of finite element model (FEM) and numerical com-
putations for tunnel operation. The operation included three distinct processes: excava-
tion, primary support, and lining; and (4) the parameter inversion, including metamodel 
validation, algorithm comparison, and verification of the forward process using inversed 
parameters. 

Figure 1. Cyclic wetting–drying disintegration test of typical RBSR. (a) Argillaceous sandstone;
(b) silty mudstone.

This study investigates a red-bed soft rock (RBSR) tunnel section in the Chuxiong
segment of the Central Yunnan Water Diversion Project. Geological data form the foun-
dation for determining surrounding rock parameters. A hybrid algorithm model, PSO-
XGBoost, was proposed. A finite element model for tunnel operation was established and
a Mohr–Coulomb constitutive model was employed. Seven influencing factors, including
environmental conditions and rock mass parameters, are selected. Numerical calculations,
based on the orthogonal design method, utilize crown displacement, convergence around
the tunnel, and the proportion of the plastic zone as output indicators. Global sensitivity
analysis, employing the Sobol method, identifies the rock mechanics parameters of elasticity
modulus (E), Poisson ratio (µ), cohesion (c), and internal friction angle (φ) for parameter
inversion. The Latin Hypercube Sampling (LHS) approach generates 1000 parameter sam-
ples for tunnel model simulation using FLAC3D, yielding 1000 datasets for inversion. The
results show that the PSO-XGBoost model achieves over 90% accuracy in predicting critical
parameters. Verification on five monitoring data cross-sections demonstrates a consistent
relative error of less than 15%, affirming the accuracy of the PSO-XGBoost inversion model.
This model holds promise for offering valuable insights into the engineering of soft rock
tunnels and similar projects, contributing to the field of engineering geology.

2. Methodology

This section introduces the methodology of sensitivity analysis and inversion process
in operating the RBSR tunnel model, as shown in Figure 2. The inversion method in this
study consisted of four components: (1) the construction of metamodel by the PSO-XGBoost
algorithm; (2) the Sobol sensitivity analysis method based on orthogonal experimental
results; (3) the establishment of finite element model (FEM) and numerical computations
for tunnel operation. The operation included three distinct processes: excavation, primary
support, and lining; and (4) the parameter inversion, including metamodel validation,
algorithm comparison, and verification of the forward process using inversed parameters.
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2.1. PSO-XGBoost
2.1.1. Particle Swarm Optimization

The principle of the particle swarm optimization (PSO) method [35] involves config-
uring a swarm of m particles, each with a position represented as xi = (xi1, xi2, . . ., xiD)

T

in a D-dimensional space and a corresponding velocity, denoted vi = (vi1, vi2, . . ., viD)
T .

Position and velocity are two unique characteristics of each particle. A random function
is used for determining a particle’s initial position and velocity. Assuming that velocity
and position are independent features of each particle, their positions and velocities are
determined using random functions. During each iteration, the particle identifies its best
cost solution, termed the local best Pbesti = (pi1, pi2, . . ., piD) in comparison to its previous
states. Concurrently, the particle swarm collectively identifies the lowest-cost solution
among all these local bests within the search space, which is designated as the global best
Gbesti = (g1, g2, . . ., gD). The speed and position of each particle are changed in accordance
with the following equation:

vh+1
id = wvh

id + c1rand1

(
ph

id − xh
id

)
+ c2rand2

(
gh

d − xh
id

)
(1)

xh+1
id = xh

id + vh+1
id (2)

where i = 1, 2, . . ., m, and i is the position of the particle, d = 1, 2, . . ., D, m is the particle size,
ph

id is the dth dimension component of the Pbesti, which is the individual optimal location
of the particle j in the hth iteration. gh

d is the dth dimension compoent of the Gbesti, which
is the optimal position of all particles in the hth iteration; w is the inertia weight coefficient,
c1 and c2 are learning factors, and rand1 and rand2 are random numbers in the range [0, 1].

2.1.2. eXtreme Gradient Boosting

Extreme gradient boosting (XGBoost) was proposed by Chen [36], which is an ensem-
ble learning algorithm based on gradient boosting and provides good results for many
bioinformatics problems. Moreover, XGBoost is an ensemble method based on gradient-
boosted tree, for which the new models could correct the residuals or errors of prior models,
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thus making the final prediction. XGBoost is a machine learning algorithm based on gradi-
ent boosting trees. Its fundamental concept revolves around learning the residuals or errors
of the original model, correcting the original model by increasing the number of branches,
adjusting the depth of learning, and then combining these corrections to achieve the final
regression prediction. The prediction result is the sum of scores predicted by individual
trees, and it can be expressed using the following formula:

ŷ =
K

∑
k=1

fk(xi), fk ∈ F (3)

where fk(xi) corresponds to the prediction value given by the kth tree to the ith sample. x
represents the variables used in this study.

The purpose of the objective function Obj(θ) is to minimize the combination of the
loss term and the regularization term for each tree, as defined, for instance, in the classifica-
tion tree:

Obj(θ) =
n

∑
i=1

l(yi, ŷi) +
K

∑
k

Ω( fk) (4)

Ω( f ) = γT +
1
2

λ
T

∑
j=1

ω2
j (5)

where γ and λ represent the degrees of regularization, and T indicates the number of leaves,
ω, and is the vector of values in each leaf.

Obj(t) ∼=
n
∑

i=1

[
gi ft(xi) +

1
2 hi f 2

t (xi)
]
+ Ω( ft) =

n
∑

i=1

[
giωq(xi) +

1
2 hiω

2
q(xi)

]
+ γT + 1

2 λ
T
∑

j=1
ω2

j

=
n
∑

i=1

[(
∑

i∈Ij

gi

)
ωj +

1
2

(
∑

i∈Ij

hi + λ

)
ω2

j

]
+ γT

(6)

where Ij denotes the instance set of leaf j. x represents the variables used in the study.

2.1.3. PSO-XGBoost

In this paper, PSO was chosen for hyperparameter tuning in XGBoost due to its
specific advantages over traditional methods like grid search CV and random search
CV. PSO is more efficient in navigating high-dimensional space, which is particularly
beneficial to the given hyperparameters in the XGBoost model. This method often converges
faster than gird or random searches in extensive parameters, which is a critical factor
when considering computational cost. Additionally, the collaborative search approach
of PSO effectively avoids local minima, which could be a limitation of traditional search
methods. The balance between the exploration and exploitation of PSO, coupled with its
demonstrated success in similar publication references, made it the preferred choice for
our study [37,38]. The XGBoost algorithm is known for its ability to handle non-linear
relationships, independence from data feature scaling, and suitability for imbalanced class
distributions. However, during computation, different hyperparameter values can yield
distinct outcomes. Therefore, the PSO optimization algorithm is employed to optimize
five XGBoost hyperparameters: learning rate, number of estimators, maximum depth,
minimum child weight, and subsampling rate, aiming to create the best-performing hybrid
model [39–41]. The optimized hyperparameter values are presented in Table 1. Learning
rate governs the step size during each iteration towards the minimum of the loss function.
A lower learning rate enhances algorithm stability. The number of estimators determines
the quantity of decision trees, and opting for a larger value can improve model accuracy.
However, it is important to note that excessively increasing the number of estimators can
lead to overfitting. Maximum depth is a parameter used to prevent overfitting, but a
too-high value of maximum depth can cause overfitting as well. Minimum depth controls
the minimum sum of child node weights. The subsampling rate is employed to specify



Appl. Sci. 2023, 13, 13341 6 of 18

the fraction of data randomly sampled for constructing the training dataset, which can
expedite training and address overfitting issues. A five-fold cross validation was conducted
to prevent overfitting when selecting hyperparameters.

Table 1. Values of the optimized hyperparameters in the XGBoost algorithm.

Parameters Learning
Rate

Number of
Estimators

Maximum
Depth

Minimum
Child
Weight

Subsampling
Rate

Values 0.01 100 7 5 0.6

2.2. Sobol Method

The Sobol method is widely employed in sensitivity analyses, as it can elucidate the
individual impacts of each random variable or group of random variables on the system
response variance.

The unconditional variance V(Y) can be decomposed into partial variances accord-
ingly, where Vi and Vij represent the variances of fi and fij respectively:

V(Y) =
∫

Ω
f 2(X)dX − f 2

0 (7)

V(Y) =
t

∑
i=1

Vi +
t−1

∑
i=1

t

∑
j=i+1

Vij + . . . + V1,...t (8)

Using these partial variances, the first-order and total Sobol sensitivity indices can be
defined on the basis of the total variance:

Si =
Vi

V(Y)
=

Vxi

[
EX∼i (Y | xi)

]
V(Y)

(9)

STi = 1 − V∼i
V(Y)

=
EX∼xi

[Vxi (Y | X ∼ xi)]

V(Y)
(10)

The first-order index Si indicates that the fraction of the output variance is reduced
on average by fixing xi within its range. The total sensitivity index, STi, encompasses the
contributions of the first-order index Si and the comprehensive effects of all higher-order
interaction terms. The difference between S1 and ST can reflect the importance of the
interactions of this parameter with other parameters.

2.3. Establishment of the Operational Tunnel Model

This study was conducted in the context of an engineering project pertaining to the
downstream portion segment of the No.1 auxiliary tunnel at Liujia Village, situated in the
Chuxiong section of the Central Yunnan Water Diversion Project (CYWDP). As is shown in
Figure 3a, the CYWDP is a large (I)-type project in China, characterized by its extensive
water diversion scope, long tunnel route, and complex geological conditions. Figure 3b
shows the surrounding rock of the working face, which is composed of mudstone and
exhibits profusion of fractures within the rock mass. The rock mass displays prominent
fissures, and the adjacent strata are notably saturated by moisture. In summary, the overall
quality of the surrounding rock is deemed suboptimal.
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work face in the RBSR tunnel.

The objective of establishing a finite element model is to clarify the construction
process of a tunnel. The FLAC3D program was employed to perform numerical simulation
on the tunnel operation. As shown in Figure 4a, the computational model extends in the x
and z directions until 10 times the tunnel’s diameter, considering the influence of boundary
effects. The tunnel excavation direction, denoted the y-direction, spanned a length of
20 m [42]. The simulation of the tunnel’s surrounding rock and lining was accomplished
using zone elements, while cable elements were utilized to represent anchor bolts. In
addition, the shell elements were employed to simulate the initial support of shotcrete,
as shown in Figure 4b. The analysis is based on geological conditions and the buried
depth of the tunnel in the No. 2 branch tunnel of the Liujia Village Tunnel in the Chuxiong
Section of the Central Yunnan Water Diversion Project. The surrounding rock near five
monitoring sections, including CX22 + 710, was used as the research object to conduct
inversion analysis. The depth of this tunnel section is 300 m on average.
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Figure 4. Numerical model in FLAC3D. (a) Dimensions and grid partition of model; (b) primary
support and lining; (c) layout of monitoring points.

In terms of constitutive models, the Mohr–Coulomb model was applied to describe
the behavior of the rock mass, while a plastic model was employed for both concrete and
anchor bolts. The model included a total of 92,003 grids and 17,413 nodes. Based on the
practical monitoring locations in the operating tunnel operation, monitoring points were
positioned in the corresponding places in the model, as shown in Figure 4c, so that arch
crown (A), shoulder (B–C) and waist (D–E) convergence could be recorded.
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3. Parameter Sensitivity Analysis Based on Orthogonal Design
3.1. Orthogonal Design of Calculation Scheme

The orthogonal experiment is a methodology based on orthogonality, which involves
selecting several representative experiments from a comprehensive set of trials. This ap-
proach is used to determine the sensitivity of various factors by analyzing the experimental
results. The notation LM

(
QF) represents an orthogonal array with F factors and Q levels.

Here, M stands for the number of designed experiments, which is typically much less
than the total number of comprehensive experiments denoted by QF. In the safety and
stability analysis of large underground chambers, in addition to the rock’s inherent strength
parameters, the presence of groundwater imposes external hydrostatic pressure on the
tunnel overburden. Furthermore, the surrounding rock, due to prolonged immersion in
groundwater, remains in a fully saturated state. Thus, both environmental factors and
rock parameters are considered. The depth of the tunnel and water pressure are chosen
as environmental factors. The elastic modulus, Poisson ratio, cohesion, internal friction
angle, and saturated density are chosen as rock parameters. Benchmark values for the
physical properties of the rock mass are determined based on engineering geological data;
the reference mean for the sensitivity analysis of influencing factors is presented in Table 2.

Table 2. Reference mean for sensitivity analysis of influencing factors.

Depth (m) Water Pressure
(MPa)

Elasticity
Modulus (GPa)

Poisson
Ratio

Cohesion
(MPa)

Internal Friction
Angle (◦)

Saturated Density
(kN/m3)

300 0.35 2.84 0.31 0.42 32.78 25.4

The variation of influencing factors within a ±20% range is studied. The mean value
listed in Table 2 is set as a reference value, as shown in Table 3. It is assumed that these
parameters follow a uniform distribution, and the construction process remains constant.
This approach significantly enhances model accuracy while reducing model complexity
and minimizing the workload associated with data analysis.

Table 3. Orthogonal computational samples for sensitivity analysis.

Levels Depth
(m)

Water Pressure
(MPa)

Elasticity
Modulus (GPa)

Poisson
Ratio

Cohesion
(MPa)

Internal Friction
Angle (◦)

Saturated
Density (kN/m3)

Reference
value (1) 300 0.35 2.84 0.31 0.42 32.78 25.4

1 240
(2)

0.28
(10)

2.272
(18)

0.248
(26)

0.336
(34)

26.224
(42)

20.32
(50)

2 255
(3)

0.2975
(11)

2.414
(19)

0.2635
(27)

0.357
(35)

27.863
(43)

21.59
(51)

3 270
(4)

0.315
(12)

2.556
(20)

0.279
(28)

0.378
(36)

29.502
(44)

22.86
(52)

4 285
(5)

0.3325
(13)

2.698
(21)

0.2945
(29)

0.399
(37)

31.141
(45)

24.13
(53)

5 315
(6)

0.3675
(14)

2.982
(22)

0.3255
(30)

0.441
(38)

34.419
(46)

26.67
(54)

6 330
(7)

0.385
(15)

3.124
(23)

0.341
(31)

0.462
(39)

36.058
(47)

27.94
(55)

7 345
(8)

0.4025
(16)

3.266
(24)

0.3565
(32)

0.483
(40)

37.697
(48)

29.21
(56)

8 360
(9)

0.42
(17)

3.408
(25)

0.372
(33)

0.504
(41)

39.336
(49)

30.48
(57)

(number) refers to the number of samples.
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3.2. Analysis of Calculation Results

Crown displacement, shoulder displacement, and waist displacement were identified
as key tunnel assessment indicators per the actual construction’s monitoring scheme.
Maximum principal stress is essential for evaluating potential structural damage, whereas
minimum principal stress is crucial for assessing tunnel stability. Both stresses are thus
selected as primary assessment indicators. Additionally, the extent of the plastic zone,
indicative of rock’s permanent deformation and mechanical properties, is also incorporated
into the evaluation criteria.

Figure 5 illustrates variations in response simulation results for monitoring points in
the tunnel section under different input parameter conditions. Based on response time–
history curves for various conditions, it can be observed that for vertical displacement,
significant variations are evident within the ranges of sample numbers 2–9, 18–25, 26–33,
and 50–57. This suggests that changes in input sensitivity parameters within these four
sample number ranges have a substantial impact on the response of the tunnel. Similarly, for
horizontal displacement, pronounced response variations are observed in sample numbers
2–9, 26–33, 42–49, and 50–57, indicating a notable influence of changes in input sensitivity
parameters within these four sample number ranges on the response of the tunnel. In
the case of maximum and minimum principal stresses, conspicuous response variations
are found within the sample number ranges of 2–9, 18–25, 26–33, and 50–57, highlighting
the significant impact of changes in input sensitivity parameters within these four sample
number ranges on the response of the tunnel.
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Figure 5. Calculation results. (a) Crown displacement, B–C convergence, and D–E convergence;
(b) maximum principal stress, minimum principal stress, and proportion of plastic zone.

The regression prediction performance of PSO-XGBoost mentioned in Section 2.1.3
and XGBoost in Section 2.1.2 for the five output values in this case study is depicted in
Figure 6. It is evident that PSO-XGBoost exhibits a favorable predictive performance for the
outputs, demonstrating excellent predictive capabilities. This makes it a suitable foundation
for sensitivity analysis. The model verification process employed a common technique,
R-squared (R2), which could be expressed as follows:

R2 = 1 −

n
∑

i=1

(
yi − y∗i

)2

n
∑

i=1
(yi − y)2

(11)
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Figure 6. Regression prediction performance of PSO-XGBoost and XGBoost. (a) Crown displacement;
(b) B–C convergence; (c) D–E convergence; (d) maximum principal stress; (e) minimum principal
stress; (f) proportion of plastic zone.

3.3. Sensitivity Analysis Results of the Sobol Method

Figure 7 illustrates the first-order sensitivity indices and the global sensitivity indices
for the input parameters across six output metrics, using Equations (9) and (10) introduced
in Section 2.2, as well as the sum of sensitivities of individual sensitive parameters affecting
the parameters in different output responses. It is evident that when using crown dis-
placement, convergence around the tunnel, maximum/minimum principal stress, and the
proportion of the plastic zone as output variables for sensitivity analysis, the specific rank-
ings of the seven input factors vary across different output indicators from the perspective
of significance analysis.

For the crown displacement, the four most sensitive factors in descending order
are burial depth, saturation density, elastic modulus, and Poisson ratio. In terms of the
B–C/D–E convergence, the four factors with the highest sensitivity indices are Poisson ratio,
cohesion, internal friction angle, and burial depth. Regarding the maximum/minimum
principal stresses, the four most sensitive factors are burial depth, saturation density,
elastic modulus, and Poisson ratio. As for the proportion of the plastic zone, the four
factors with the highest sensitivity indices are cohesion, internal friction angle, burial
depth, and Poisson ratio. From the perspective of factors with minimal influence, various
output models consistently exhibit factors of relative insignificance. For instance, external
hydrostatic pressure and Poisson ratio have a negligible effect on the evolution of plastic
zones, and the internal friction angle has a minimal impact on the settlement of arch crowns.

Comparative analysis of S1 and ST reveals that the interaction among various input
parameters exerts differential impacts on distinct factors. In general, burial depth, Poisson
ratio, and saturation density significantly influence the response of cavern displacement,
which is particularly evident in their impact on tensile and compressive stress within the
cavern. In terms of displacement effects, burial depth, elastic modulus, and saturation
density primarily affect the cavern’s vertical displacement characteristics, while the Pois-
son ratio predominantly influences its horizontal displacement traits. Cohesive force is
identified as the principal factor affecting the proportion of the plastic zone. The influence
patterns of S1 and ST are consistent. These conclusions are consistent with those of previous
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studies [43]. Specifically, the interplay between factors has the most pronounced effect on
the elasticity modulus, Poisson ratio, and internal friction angle. Therefore, selecting the
mechanical parameters of rocks for parameter inversion simplifies the inversion analysis
process and ensures the accuracy of the results.
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Figure 7. S1 and ST of seven factors. (a) Crown displacement; (b) B–C convergence; (c) D–E
convergence; (d) maximum principal stress; (e) minimum principal stress; (f) proportion of plastic
zone; (g) sum of S1 and ST.

4. Inversion and Verification of Mechanical Parameters
4.1. Acquisition of Dataset

In this paper, the results of the sensitivity analysis are employed to understand the
impact weight of environmental factors and rock mass parameters on various evaluation
indices of the tunnel, as well as the comprehensive impact weight. In the inversion study,
the environmental factors of the research tunnel section are determined, and the basis for
inversion relies on displacement monitoring data. The mechanical parameters of the rock
mass are key in reflecting displacement changes. Therefore, elasticity modulus, Poisson
ratio, cohesion, and internal friction angle were selected as the parameters for inversion.
Based on the geological data of CX22 section in the RBSR tunnel, the essential mechanical
properties of the surrounding rock in the study area were selected. Such a selection of
training samples aligned with the specified range of pivotal mechanical properties of the
rock surrounding the tunnel (detailed in Table 4). From Table 4, E varies between 0.5 and
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5 GPa, while µ varies from 0.27 to 0.35. c, and φ values vary from 0.1 to 0.7 MPa and 22◦ to
33◦, respectively.

Table 4. Input parameters involved in the inversion of the operational tunnel.

Input Variables Items Unit Ranges Mean

Elasticity modulus E GPa (0.5, 5) 2.75
Poisson ratio µ - (0.27, 0.35) 0.31

Cohesion c MPa (0.1, 0.7) 0.4
Internal friction angle φ ◦ (22, 33) 27.5

In this study, we employed the Latin Hypercube Sampling (LHS) method to generate
a set of 1000 samples within the range of parameters [44,45]. Figure 8 illustrates the
distribution of samples, demonstrating a comprehensive coverage within the defined range.
Moreover, the average values of the 1000 samples for each parameter were close to the
specified range’s mean values (elasticity modulus: 2.743 GPa, Poisson ratio: 0.31, cohesion:
0.4 MPa, and internal friction angle: 27.5◦). Consequently, it is evident that the outcomes of
this sampling method can serve as a foundation for the establishment of a metamodel.
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Figure 8. Scatter plots and distribution histogram of 1000 samples for each parameter using the LHS
method. (a) Elasticity modulus; (b) Poisson ratio; (c) cohesion; (d) internal friction angle.
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A total of 1000 parameter samples were sequentially put into the finite element model
to calculate the displacement of the surrounding rock at five monitoring points. The data
were subsequently summarized. Figure 9 shows the results of numerical simulation for
1000 samples. It is evident that the vast majority of results in the output samples fall within
the range of 2 to 30 mm.
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Figure 9. The crown displacement, B–C convergence, and D–E convergence data generated by the
FEM calculation.

4.2. Verification of Inversion Model

The 1000 parameter samples are divided into two groups. Some 800 samples were
chosen for training the metamodel, and the remaining 200 samples were reserved for testing
and inversion. A comparative evaluation between the XGBoost and PSO-XGBoost inversion
results was undertaken. Figure 10 presents the outcomes of both models, highlighting
a significant contrast in the performance across four input parameters in the testing set.
Equation (11) and mean squared error (MSE) were employed to evaluate the outcomes,
which could be expressed as follows:

MSE =

n
∑

i=1

(
yi − y∗i

)2

n
(12)

Figure 10a reveals that the MSE attained in elasticity modulus (E) amounts to 0.162,
with a corresponding R2 value of 0.835. However, an entirely different outcome emerged
when employing the XGBoost model for the same inversion task. In this case, the MSE was
substantially reduced to a value of merely 0.033, while the R2 value increased significantly
to 0.955. The same trends were observed in the inversion results for Poisson ratio (µ),
cohesion (c), and internal friction angle (φ), as shown in Figure 10b–d. The MSE values
for the XGBoost inversion model were found to be 4.19 × 10−5, 0.0027, and 0.796, while
the corresponding R2 values were 0.806, 0.735, and 0.821 respectively. In contrast, the
PSO-XGBoost inversion model exhibited improved performance, with MSE values reduced
to 9.67 × 10−6, 6.61 × 10−4, and 0.184. Meanwhile, the R2 values significantly enhanced
to 0.943, 0.934, and 0.948. Therefore, the results indicate that the PSO-XGBoost model
demonstrates superior precision in the parameter inversion of the surrounding rock mass
in RBSR tunnel operation.
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4.3. Verification of Parameter Inversion

To further access the reliability of PSO-XGBoost inversion model, actual monitoring
data from the downstream portion segment of the No.1 auxiliary tunnel at Liujia Village,
Chuxiong Section, was employed as the focal point of investigation. The monitoring points,
namely CX22 + 630, CX22 + 670, CX22 + 710, CX22 + 750, and CX22 + 790, were selected
for inversion. The depth of these five monitoring points is 273 m, 271 m, 27 0m, 272 m, and
273 m, respectively. The results of the inversed parameters are listed in Table 5.

Table 5. Inversion results of inversed parameters.

Monitoring
Point

Input Output

Crown
Displacement

(mm)

B–C
Convergence

(mm)

D–E
Convergence

(mm)

Elasticity
Modulus

(GPa)

Poisson
Ratio

Cohesion
(MPa)

Internal
Friction

Angle (◦)

CX22 + 630 65.5 70.5 62 2.506 0.351 0.664 26.767
CX22 + 670 62 70.2 58.4 2.524 0.374 0.579 30.652
CX22 + 710 49.9 58.1 55.8 1.887 0.316 0.608 25.894
CX22 + 750 81.2 62.8 61.4 2.990 0.341 0.317 28.226
CX22 + 790 55.6 56.3 55.8 1.668 0.347 0.449 26.752

Subsequently, we brought the inversed parameters into the FEM calculation to obtain
the simulated values when tunnel operation became stable. A comparative analysis was
performed between computed results and actual monitoring data. Figure 11 illustrates the
error range of the monitoring data variation (15%). Figure 11a indicates an average error
of 9.52% between the monitoring data and the computed results in crown displacement.
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Similarly, discrepancies of 6.28% and 8.68% in B–C convergence and D–E convergence
exist, as shown in Figure 11b,c are within the project’s allowable error range [46]. The full
results revealed an acceptable error interval, as was specified in the engineering scale. The
findings further indicated that the parameter inversion model based on the PSO-XGBoost
algorithm demonstrates a commendable level of reliability, and can also serve as a valuable
reference for the recognition of surrounding rock mass properties under tunnel operation.
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5. Conclusions and Future Work

The rock mass parameters obtained from either laboratory examinations or on-site
investigations prove insufficient in representing the dynamic variations in these param-
eters under the influence of complex coexistent geological conditions during practical
operational phases. It is necessary to propose an effective approach for the inversion
of parameters based on the displacement data from monitoring points. In this study, a
PSO-XGBoost inversion model was developed to conduct sensitivity analysis and inversion
of the surrounding rock parameters of the Chuxiong section in the Central Yunnan Water
Diversion project. The findings can be concluded as follows.

(1) The PSO algorithm was employed to optimize the hyperparameters of the XGBoost
algorithm for parameter inversion. The outcomes of the inversion process revealed
that the PSO-XGBoost model achieved an exceptional accuracy, exceeding 90% in the
estimation of parameters.

(2) The employment of the Sobol method for global sensitivity analysis provided deep
insights into the influence of various environmental and rock mass parameters on tun-
nel behavior. The parameter inversion process primarily focuses on rock mechanical
parameters, including the elasticity modulus, Poisson ratio, cohesion, and internal
friction angle.
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(3) The inversion process, informed by a Latin Hypercube Sampling (LHS) approach
and 1000 parameter samples integrated into FLAC3D simulations, yielded highly
accurate predictions. The confirmation of the PSO-XGBoost model’s precision through
cross-sectional monitoring data, with a less than 15% relative error, solidifies its value
as a reliable tool in the engineering analysis and construction of soft rock tunnels.

This study focuses on the sensitivity and inversion of rock parameters in tunnel engi-
neering, underscoring the importance of acknowledging variational parameters’ origins
and the multifaceted environment impacting hydraulic tunnel operations. It underscores
the necessity of assessing the interplay among environmental factors, rock materials, and
tunnel safety. Crucially, accurately predicting tunnel operation displacement is vital for ef-
fective safety management. In real-world engineering, given complex geological conditions,
parameters often exhibit interdependencies rather than being entirely independent. Thus,
future research will increasingly prioritize sensitivity analysis and parameter inversion,
taking into account their interrelationships.
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