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Abstract: Over the last decade, event prediction has drawn attention from both academic and industry
communities, resulting in a substantial volume of scientific papers published in a wide range of
journals by scholars from different countries and disciplines. However, thus far, a comprehensive
and systematic survey of recent literature has been lacking to quantitatively capture the research
progress as well as emerging trends in the event prediction field. Aiming at addressing this gap,
we employed CiteSpace software to analyze and visualize data retrieved from the Web of Science
(WoS) database, including authors, documents, research institutions, and keywords, based on which
the author co-citation network, document co-citation network, collaborative institution network,
and keyword co-occurrence network were constructed. Through analyzing the aforementioned
networks, we identified areas of active research, influential literature, collaborations at the national
level, interdisciplinary patterns, and emerging trends by identifying the central nodes and the nodes
with strong citation bursts. It reveals that sensor data has been widely used for predicting weather
events and meteorological events (e.g., monitoring sea surface temperature and weather sensor
data for predicting El Nino). The real-time and multivariable monitoring features of sensor data
enable it to be a reliable source for predicting multiple types of events. Our work offers not only a
comprehensive survey of the existing studies but also insights into the development trends within
the event prediction field. These findings will assist researchers in conducting further research in this
area and draw a large readership among academia and industrial communities who are engaged in
event prediction research.

Keywords: event prediction; complex network analysis; visual analysis; CiteSpace

1. Introduction

Events occur at a specific location and time with a certain topic, which covers a
wide variety of real-world phenomena, ranging from natural disasters (e.g., earthquakes,
typhoons, and floods), to public health events (e.g., infectious disease epidemics and
adverse drug events), to social security incidents (e.g., crime, terrorist attacks, and economic
security incidents). No matter what type of event it is, either event location or event content
usually varies over time due to the event evolution mechanism. Through mining the
spatiotemporal and semantic evolution patterns from historical events, the occurring time,
location, and content of the upcoming events can be predicted. Predicting events with
accurate information aids the management department as well as individuals in making
decisions in a timely manner.

Appl. Sci. 2023, 13, 13346. https://doi.org/10.3390/app132413346 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132413346
https://doi.org/10.3390/app132413346
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-7635-5436
https://orcid.org/0009-0005-7604-9032
https://orcid.org/0000-0002-8244-5681
https://doi.org/10.3390/app132413346
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132413346?type=check_update&version=2


Appl. Sci. 2023, 13, 13346 2 of 23

With the continuous development of data science and artificial intelligence technology,
event prediction has drawn attention from scholars of multiple fields, e.g., social science,
computer science, statistics, etc. In other words, event detection emerges as an interdisci-
plinary hotpot with significant characteristics of collaboration among different domains.
As such, there appears an increasing number of studies that are related to event prediction
in recent years, which makes it difficult to capture the hot topics as well the future trends
in a short time.

There are some review papers that survey the event-prediction-related studies [1–7],
among which Zhao [4] made the most comprehensive one in the big data era, including
the existing techniques, application domains, evaluation procedures, and future directions
with regard to event prediction. However, there is a lack of a comprehensive and systematic
survey paper that survey and analyze recent literature on event prediction to obtain its
evolution patterns over time. With the objective of addressing the aforementioned gap, a
few methods can be considered, including bibliometric analysis and scientometric analysis.
The bibliometric analysis is focused on organizing and analyzing literature within a specific
field to discover the overview and details of this field, which is not conducive to capturing
the evolution process, future trends as well as cooperation patterns among interdisciplinary
research [8]. The scientometric analysis leverages quantitative methods and indicators
to assess the influence and development trends of an author, a document, or a journal
in the interdisciplinary research network, helping researchers grasp the hot topics and
academic dynamics of the surveyed field [9]. As such, we selected scientometric analysis
in this work to survey the event prediction-related literature. Web of Science (WoS) is
a comprehensive and widely used online research database that provides access to a
vast collection of academic literature, including scholarly articles, conference proceedings,
books, and patents, across various disciplines. Web of Science is widely used by researchers,
academics, and professionals for literature reviews, citation analysis, and staying up-to-date
with the latest research in their respective fields. It is considered a valuable resource for
conducting comprehensive and rigorous research across various disciplines. Based on
the publications obtained from WoS, the CiteSpace tool of version 6.2.R4, which has been
widely used for the scientometric analysis of academic literature, was used to conduct co-
occurrence and co-citation network analysis among scholars, publications, institutions, and
keywords in order to discover and visualize the central scholars, hot topics, top institutions
as well as the future trends in the event prediction field. Those findings are beneficial for
scholars to obtain an overview of this field at the frontiers.

The rest of the paper is organized as follows. Section 2 summarizes the background
knowledge of event prediction. Section 3 outlines the methodology employed for con-
ducting scientometric analysis in this field. The results are then analyzed, visualized, and
discussed in Section 4. Finally, Section 5 draws conclusions based on the findings.

2. Background Knowledge

As the characteristics as well as the evolution patterns of events vary in space, time,
and semantics, the predictability of events and how they can be predicted draw concerns
from academia and industry. Muthiah, et al. [10] had been running a system for civil
unrest event prediction for four years, based on which they systematically summarized the
uncertainty of event prediction from two perspectives, i.e., timing and cause. As shown
in Table 1, by selecting the known or unknown time and cause as indicators, the events
can be classified into four types, including planned events, recurring events, spontaneous
events, and black swan events. Since the cause and timing of black swan events are both
unknown, there is little research that places focus on predicting such types of events. In the
following, we will elaborate and discuss the background knowledge concerning the four
types of events.
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Table 1. Four types of events with known or unknown timing and cause.

Event Type Cause Timing

Planned events
√ √

Recurring events ×
√

Spontaneous events
√

×
Black swan events × ×

Note: “
√

” means known and “×” means unknown.

2.1. Planned Event Prediction

The planned events occur with known cause and timing. The time, location, and
topics concerning those events are usually announced in advance through social media or
other public platforms. Protests organized by political parties, labor, and student unions
are the most common type among the panned events. Those who organize the protests
would like to post the gathering date, time, and place as well as the specific demands on
their websites or social media accounts in order to attract as many people as possible to
obtain support. They assume that larger protests tend to be more disruptive and effective at
conveying support compared to smaller ones. To mobilize a large number of participants,
it is advisable to plan and publicize the protest’s details in advance [11–13]. In this case,
the planned events can be predicted by detecting the event occurrence and tracking critical
indicators from news and social media rather than mining patterns from the previous data.
For instance, Basnet, et al. [14] developed a clustering technique based on spatiotemporal
k-dimensional structure trees. This method was used to investigate the spatiotemporal
patterns of conflict events that occurred in India during 2014 based on the Global Database
of Events, Language, and Tone (GDELT) data. Twitter serves as a widely used social
media platform that contains abundant information regarding planned events. Iyda and
Geetha [15] introduced an Improved Deep Belief Neural Network (iDBNN) to predict
protests using Twitter data, where the efficiency of the proposed method was validated with
the case study of the 2019 Hong Kong protests. In addition to Twitter, Google Trends (GT)
offers a valuable gateway to access extensive big data on various global topics. Timoneda
and Wibbels [16] proposed a novel “variance-in-time” approach that utilized GT to predict
the protests in the United States, contributing fresh insights into the specific domain of
political protests.

2.2. Recurring Event Prediction

Recurring events refer to those events that occur or appear on a regular basis, but
the causes may be different. For example, multiple types of protests and violent events in
countries with a large number of Muslim people usually take place after the communal
prayer on Fridays since there are crowds gathered [17]. Such types of events can be
predicted using frequent pattern mining-based methods, time series forecasting-based
methods, and temporal point process-based methods.

The frequent pattern mining-based methods predict certain events by exploring the
frequent occurrence patterns from a series of historical events. As the type of events to
be predicted is determined, the key to this method is to search the associated event sets
that frequently co-occur in the previous event streams. An integrated framework was
designed to discover the frequent episodes, which were composed by the continuous event
sequences, to predict a specific type of events [18,19] or multiple types of events [20]. Zhou,
et al. [21] further sorted the predicted events by confidence in a descending order to retrieve
the top-k events so as to improve the reliability of prediction results.

The time series forecasting-based methods partition the event streams into a series of
events based on constant time intervals, e.g., one hour, one day, or one week. Yonamine [22]
took the instability of events in time sequences into consideration and adopted the Auto-
Regressive Fractionally Integrated Moving Average (ARFIMA) model to predict the levels
of violence in the Afghanistan area. Given a sequence of terrorist incidents data with
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different states, Petroff, et al. [23] predicted the future event state by searching for the
state that was most likely to generate the sequence data based on the Hidden Markov
Model (HMM). A similar approach was also applied for communication system failure
detection, showing effective and efficient performance [24]. Air pollution stands as one
of the most detrimental environmental issues globally, necessitating the need for effective
and accurate prediction of ozone concentrations. Carbo-Bustinza, et al. [25] employed
the seasonal trend decomposition method to decompose the time series into three distinct
sub-series, i.e., long-term trend, seasonal trend, and random series, for ozone concentration
prediction. The methodology of time series prediction is also commonly applied in the
realm of studying infectious diseases. Ballı [26] proposed a time series prediction model
using machine learning techniques to capture disease curves and forecast epidemic trends.

Different from time series forecasting-based methods that predict events with equal
time intervals, the temporal point process-based methods model the events with tempo-
ral heterogeneity in order to generate more accurate time stamps. The classical models
such as the Poisson point process model [27,28], Hawkes point process model [29], and
Weibull point process model [30] for event prediction purposes. As deep learning shows
great potential for mining hidden patterns, some scholars have proposed the deep point
process model by leveraging neural network technologies for event prediction but with
less interpretability [31].

2.3. Spontaneous Event Prediction

The spontaneous events are with known or traceable causes but unknown occurrence
times, which make up most of the studies in the event prediction field. With regard to
predicting such types of events, the causes can be extracted from crowd-sourcing data
using machine learning-based classification methods, unsupervised learning methods,
knowledge graph-based methods, and multi-technology fusion methods.

The typical classification methods such as Naïve Bayes (NB), Logistic Regression (LR),
and Support Vector Machine (SVM) have been widely used for predicting whether the event
occurs (i.e., binary classification problem) or what type of the event (multi-classification
problem). Korkmaz, et al. [32] integrated heterogeneous data (e.g., Twitter data, blogs, and
currency exchange rates) to predict whether civil unrest would happen based on the LR
model. Zhao, et al. [33] proposed a parameter optimization algorithm on the basis of a
lasso regression model to predict the event occurrence at a given location during the next
time period, which achieved good performance on the datasets of civil unrest events in
Brazil and Venezuela. Tama and Comuzzi [34] compared a total of 20 classification models
to evaluate their performance for predicting the following event in the business process,
where the credal decision tree (C-DT) model performed best.

The unsupervised methods without labeling the data mainly include outlier detec-
tion methods and clustering-based methods. Xu, et al. [35] proposed a spatial–temporal-
semantic approach to detect local events using geosocial media data. They first extracted
spatiotemporal outliers by measuring the geographical regularities of posting tweets, fol-
lowing which the event content was summarized by adopting the topic modeling method.
A case study of the 2014 Toronto International Film Festival (TIFF) was conducted and
the results illustrated that 87% of the events can be correctly detected. Kattan, et al. [36]
proposed a genetic programming-based framework that integrated the k-means clustering
analysis method to predict the location of the particular events defined by users in a time
series. This approach helped e-marketing managers decide where and when to advertise
their products by monitoring and predicting the users’ searching trends using the Google
Trends data that records the keywords and searching time in different countries. Chen
and Neill [37] identified the abnormal clusters in the heterogeneous social media graph
to predict the event time, location, type, and participants based on the Non-Parametric
Heterogeneous Graph Scan (NPHGS) method. Xu, et al. [38] applied a spatiotemporal
clustering-based method to identify traffic events from Twitter data, where the content of
detected events was automatically generated using a list of representative terms.
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As the knowledge graph emerged in the past ten years, the event knowledge graph
has been leveraged for event prediction. The events (or event attributes) compose the nodes
and the relationships between events (or between events and their attributes) compose
the edges. The causal relationship between events has been mostly investigated through
building event causality graphs, based on which the future events are inferred through
either knowledge reasoning or semantic web technologies [39–42]. Despite that, other logic
relationships such as sequential relationships, conditional relationships, and subordination
relationships were also mined for event prediction with the emergence of the event logic
graph [43], where a number of neural networks have been recently adopted to learn the
embedded event features with the aim of improving prediction accuracy. Chimmula and
Zhang [44] combined the Long Short-Term Memory (LSTM) and the Recurrent Neural
Network (RNN) model to predict COVID-19 events. Kapoor, et al. [45] further took spatial
information into consideration and constructed spatiotemporal graph neural networks to
forecast the COVID-19 trends in space and time. With the aim of improving the deep neural
networks, Deng, et al. [46] proposed a dynamic graph convolutional network to provide
the context of multi-event prediction results.

In addition, some scholars have fused two or more of the above-mentioned methods to
predict event time, location, and content. Some researchers developed an EMBERS system
integrating five types of prediction models to predict the event time, location, causes,
and scale, and the prediction results were sorted by confidence values [13]. A similar
system named carbon was proposed by Kang, et al. [47] to predict civil unrest events using
news and social media data. Wang, et al. [48] integrated multiple data mining methods for
forecasting the extreme flood events occurring in the next 5 to 15 days. Artificial intelligence,
human–machine combination, and hybrid intelligence technologies have also been applied
for predicting geopolitical events [49,50] and epidemic diseases [51] in order to improve
the model performance as well as the human–machine interaction experience.

2.4. Black Swan Events

Black swan events are rare, unexpected, unpredictable, and highly influential [52,53].
In terms of risk management and decision-making under uncertainty, much attention has
been paid to so-called black swans [54,55], such as the financial crisis in 2008 [56], the 911
terrorist attacks in 2001 [57] and the COVID-19 event [58]. Unpredictable extreme weather
events often have particularly severe consequences as well [59]. Such types of events have
resulted in long-term influence on the globe. Due to the extreme nature of black swan
events, they often fall outside the range of normal or conventional events and lack historical
records for reference. In this case, the black swan events are unpredictable since most of
the event prediction models are constructed and trained with historical data [60]. As such,
there exists little literature that focuses on predicting black swan events in recent studies.

In order to provide an overview of the aforementioned types of events that have been
mainly selected for predictive study, we further summarized the subclasses (i.e., scenario
cases) of planned events, recurring events, and spontaneous events by reviewing a list
of relevant literature [61–65] in Table 2, where a set of keywords regarding each type is
also presented.

Table 2. A summary of event types and relevant keywords.

Event Type Classification Category Keywords

Planned events Political activities, performance, sports events,
celebrations

Political polls, voting behavior, political forecasting, political
campaigns, political sentiment and trends, artistic performance,
concert, theater, sports prediction, holiday trend, celebration
event, holiday culture
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Table 2. Cont.

Event Type Classification Category Keywords

Recurring events

Seasonal weather events, regular update and
maintenance of the computer, traffic
congestion, regular meeting, religious
ceremony, financial events regularly

Seasonal precipitation, seasonal climate changes,
meteorological seasons, seasonal weather, seasonal patterns,
recurring events, system maintenance, patch management,
preventive maintenance, IT infrastructure, commuter patterns,
transportation planning, rush hour, commuter behavior, public
transportation, meeting scheduling, meeting frequency, agenda
setting, worship practices, rituals and traditions, ceremonial
practices, faith-based celebrations, religious festivals, financial
events, economic cycles, market fluctuations

Spontaneous events

Geological hazards, sudden network attacks
and data leaks in computers, traffic accident,
unexpected weather events, emergency health
crisis, sudden environmental disaster (oil spill,
etc.)

Earthquake prediction, volcanic activity, landslide
susceptibility, natural disaster, geological monitoring,
geological hazards, cyberattacks, intrusion detection,
cyberattacks, network security, hacker attacks, traffic collisions,
vehicle safety, road infrastructure, driver behavior, emergency
response, traffic accident, extreme weather, tornado outbreaks,
severe storms, climate anomalies, hurricane, typhoon, public
health emergency, epidemic, pandemic, health crisis
management, environmental crisis, pollution incident,
ecological impact, environmental monitoring

3. Methodology

Figure 1 illustrates the overall procedure for conducting the scientometric analysis
of the publications in the field of “event prediction”, including data collection, author co-
citation network analysis, document co-citation network analysis, collaborative institution
network analysis, and keyword co-occurrence network analysis. In this way, the collabora-
tion patterns among authors and institutions as well as the dynamics of the domain can
be identified.

Figure 1. The overall framework of analyzing relevant event prediction research in a scientometric way.
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3.1. Data Collection

We collected literature from the Web of Science (WoS) website on February 11, 2023, to
prepare data for scientometric analysis. To begin with, we used (TP = (event * prediction)
OR (event * forecasting)) as topics in the WoS to perform a broad search, where “OR”
means at least one topic appearing in the document, and “*” means any characters. In
order to investigate how event prediction research has evolved over the last decade, which
is usually selected as the time interval for conducting scientometric surveys in multiple
disciplines, the time range was set from 1 January 2012 to 31 December 2022. As a result,
a total of 9191 documents were returned. Since the documents with the selected topic
anywhere in the full paper can be returned, it is likely that a large number of documents
are not closely related to event prediction in the original search results. We added further
filters by taking three types of constraints into consideration. First, the literature types
were set as articles, review papers, editorial materials, and conference papers. Second,
the research category was set as Meteorology Atmospheric Sciences, Computer Science
Information Systems, Environmental Sciences, Geosciences Multidisciplinary, Computer
Science Artificial Intelligence, Computer Science Interdisciplinary Applications, Imaging
Science Photographic Technology, and Transportation Science Technology, which covers
almost all event types summarized in Section 2 as well as retains effective sources for
analyzing interdisciplinary research patterns. Third, the language was set as English. As a
result, a total of 4473 documents were finally obtained and exported.

3.2. Scientometric and Visual Analysis Using CiteSpace

A number of tools can be used for scientometric and visual analysis of the literature in
a research field, including Bibexcel, Gephi, VOSviewer, and CiteSpace. A summary of their
advantages and disadvantages is presented in Table 3.

Table 3. A summary of scientometric analysis tools.

Tool Advantages Disadvantages

Bibexcel • Small and practical
• Strong compatibility with other software

• Requiring specific input data format
• Poor visualization ability
• Lack of dynamic analysis

Gephi
• Large user community
• Supporting multiple data format
• Strong visualization ability

• Cumbersome operation of data cleaning and
data conversion

• Limited functions of analyzing scientific literature
• Lack of quantitative indicators for explaining results

VOSviewer
• User-friendly operation interface
• Supporting geographic visualization
• Supporting multiple data format

• Poor visualization effect of cluster analysis results
• The node information of the visual network cannot

be viewed

Citespace

• Powerful visualization function based on various criteria
• Capable of analyzing large-scale networks
• Rich functions for scientific literature analysis
• Supporting dynamic analysis

• Requiring high computer performance
• The old version of the software cannot be used after the

new version of the software appears

With the aim of visualizing and analyzing multiple networks to capture hot topics and
development trends of event prediction research, we finally chose to use CiteSpace soft-
ware [9] by importing those literature documents collected from the WoS in a scientometric
way. CiteSpace is an academic literature visualization analysis software developed on the
basis of data visualization and metrology, which specializes in analyzing potential knowl-
edge in scientific research. Since the software analyzes the structure, rule, and distribution
of scientific knowledge presented by means of visualization, the analysis results are called
“scientific knowledge map” [66].

Specifically, the deduplication function of CiteSpace was first used to remove duplicate
documents and retain a single source, after which 4438 valid documents were left. As
shown in Figure 2, we counted the number of documents published year by year. It reveals
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that an overall upward trend occurs, especially since 2020, the number of published papers
on event prediction has increased significantly. Among all the documents, 94.9% are articles,
2.7% are review papers, 2.2% are conference papers, and 0.2% are editorial materials. The
distribution of the literature types is shown in Figure 3.

Figure 2. The number of publications on “event prediction” for the years 2012–2022.

Figure 3. The distribution of the literature types for the years 2012–2022.

Based on the preprocessed documents, we used CiteSpace software to conduct four
types of analyses, including author co-citation network analysis, document co-citation
analysis, collaborative institution network analysis, and keyword co-occurrence network
analysis. Specifically, the co-citation networks of authors and documents aimed at iden-
tifying the influential academic researchers and papers, respectively. The collaborative
institution network was composed to identify cooperation patterns among different in-
stitutions. Finally, we analyzed the keyword co-occurrence patterns and the timeline of
keywords to obtain the development of research hotspots. The key parameters as well
as parameter settings involved in analyzing and visualizing the four types of research
networks are introduced as follows.

With regard to the networks generated by CiteSpace, they are composed of nodes
and lines. The nodes refer to the objects to be analyzed (e.g., authors and documents),
and the lines represent the interaction between nodes. The thicker the line is, the stronger
the relationship between the nodes is. The size of nodes indicates the importance of the
objects in the network, which can be measured by a variety of indicators, such as citation
frequency and the number of publications. The concentric ring of different colors enclosing
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the nodes represents the time span information of the nodes. Each color ring represents
a specific year. The networks can be analyzed and visualized based on degree centrality,
betweenness centrality, closeness centrality, citation frequency, or citation burstiness.

Centrality measures the importance of a node within a network in terms of its connec-
tions, interactions, and influence on other nodes. In this paper, degree centrality, between-
ness centrality, and closeness centrality were used for centrality measurement. The degree
of centrality quantifies the number of direct connections a node has in the network. Nodes
with higher degrees are regarded as more central due to their larger number of immediate
connections. The betweenness centrality is used to quantify the degree of mediation of
nodes in the network, that is, the importance of nodes in the shortest path between different
nodes. By calculating the betweenness centrality of nodes, we can identify the central
nodes in the network. In CiteSpace, the betweenness centrality score ranges between 0 and
1. Nodes with a betweenness centrality that is not less than 0.1 are highlighted with purple
concentric rings. The thickness of the purple rings is proportional to the betweenness
centrality score. The closeness centrality is calculated by taking the reciprocal of the sum
of the shortest path lengths from a node to all other nodes in the network. The higher the
closeness centrality value, the more central the node is in terms of its proximity to others.
Citation frequency reflects the number of times a node is cited within a specific time period,
providing insights into the influence and popularity of that node in the field of event
prediction. Nodes that experience a substantial increase in citations within a specific time
frame are identified as “burst” nodes. The occurrence of citation bursts allows researchers
to discern trends in research development.

Furthermore, we performed cluster analysis for the author co-citation network, doc-
ument co-citation network, and keyword co-occurrence network, where two metrics in-
cluding modularity and silhouette value were used to explain the scholarly framework of
the event prediction domain. Modularity is a metric that quantifies the extent to which a
network can be partitioned into distinct components or modules. The modularity measures
the degree of connection between nodes in the same module divided by the degree of
connection between nodes in different modules, which is usually measured using the Q
value. If a network has a high modularity (i.e., the Q value is larger than 0.3), it means that
there is an obvious modular structure in the network. The silhouette value, also known as
the S value, which ranges from −1 to 1 [9], is another metric used to assess the quality of a
clustering configuration. A higher silhouette score indicates a higher level of homogeneity
within the cluster and a higher level of heterogeneity among clusters. The S value of 0.7
is often taken as the threshold to determine whether the clustering results are reasonable.
With the purpose of interpreting the clustering results, we adopted the log-likelihood
ratio (LLR) algorithm for label analysis methods, which generates a set of representative
terms to explain the cluster content. LLR measures the degree of association by comparing
the observed and expected frequencies of words (or terms) in a document. The specific
calculation formula is as follows:

LLR = log
p
(
Cj\Vij

)
p
(
Cj\Vij

) ,

where p
(
Cj\Vij

)
and p

(
Cj\Vij

)
refer to the density function of the feature vector Vij in the

cluster Cj and Cj, respectively. The larger the LLR, the more representative the word is to
the cluster. The words with high LLR values serve as the chosen labels for the cluster.

4. Results and Discussion
4.1. An Overall View of the Types of the Predicted Events

According to the information summarized in Table 2, we identified and classified
the events predicted in the obtained 4473 documents through keyword matching. As
shown in Figure 4, around half the events belong to “spontaneous events”, which indicates
that predicting those events is of great significance and draws a large number of scholars
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to get involved in such research. The documents related to “planned events” hold the
smallest number. It is likely that such events with planned time, location, and content are
less appealing to prediction research compared to those events with uncertainty, such as
spontaneous events and recurring events. The distribution of the number of documents
related to each event type is almost consistent with the elaboration in Section 2.

Figure 4. The distribution of the number of documents related to each event type.

4.2. Author Co-Citation Network Analysis

This section assesses the influential authors in the field of event prediction by con-
ducting the author co-citation network analysis in CiteSpace. The analysis encompasses
the period from 2012 to 2022, with a particular emphasis on the top N authors within
each one-year segment. The N usually falls between 10 and 50. A large value of N poses
great pressure for CiteSpace for network analysis and visualization that returns results
with low efficiency, while a small value leads to the sparse relationship between nodes
and certain research patterns are likely to be missed in this case. In order to keep the
balance between computation efficiency and result integrity, we set the N as 20 in this study.
This number is typically chosen for network construction in the majority of scientometric
analysis studies [67–69]. The anonymous authors were excluded from the analysis. As
shown in Figure 5, the author’s co-citation network includes 116 nodes and 645 links. The
nodes in the network represent individual authors. When two authors are cited in the same
document, a link is established between them, indicating a co-citation relationship. Each
color in the visualization corresponds to a specific time slice, typically one year. The con-
centric rings display the changing patterns of author co-citations over time, with different
colors representing different periods.

In Figure 5, the larger the node size is, the more frequently cited the author is. The
nodes (i.e., authors) owning high citation frequency can be regarded as the core authors in
the event prediction field. It reveals that Fausto Guzzetti has the highest citation frequency
of 263 during each time slice, whose node holds the largest radius in the whole network,
followed by Leo Breiman and Dick Dee with 185 citations and 170 citations, respectively.
It reveals that their publications related to event prediction are much more popular and
acknowledged by scholars in the relevant fields.

The purple rings enclosing the concentric circles represent the betweenness centrality
of the author. The thicker the purple ring, the higher the betweenness centrality. Table 4 lists
the top five authors in the event prediction field sorted by the betweenness centrality scores.
It shows that there is no significant difference among those authors, indicating that they
play critical roles in connecting all authors to compose the research network. Specifically,
William C. Skamarock owns the highest betweenness centrality and closeness centrality,
he is from the National Center for Atmospheric Research (NCAR), United States, and his
research interests cover a few areas, including Meteorology and Atmospheric Sciences,
Geology, Physics, Computer Science, and Environmental Sciences and Ecology. It reveals
that he has been a promoter of cooperative and interdisciplinary research as well as an
important author with the sum of the shortest path from an author to all other authors in
the event prediction field since the year 2013. Fausto Guzzetti holds the lower betweenness
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centrality but has the highest degree of centrality, indicating that he has the most direct
connections with 45 authors to compose the partial network but is less important for
connecting all authors to compose the entire network.

Figure 5. The author’s co-citation network for the years 2012–2022.

Table 4. The top five authors sorted by the betweenness centrality.

Author Betweenness Centrality Degree Centrality Closeness Centrality Year

William C. Skamarock 0.12 33 0.83 2013
Kevin Edward Trenberth 0.11 27 0.76 2012

Eugenia Kalnay 0.10 26 0.65 2012
Richard M. Iverson 0.09 12 0.47 2012

Fausto Guzzetti 0.09 45 0.71 2012

We summarized the top five authors by ranking their citation burst scores in Table 5.
The highest score was obtained by Alex Graves with a citation burst of 22.08. Alex Graves
has 57 publications and 92,987 citations on the WoS. His event prediction-related studies
have been increasingly gaining attention from scholars since 2020 and reached an h-index
of 34 on the WoS, which is a metric usually used for measuring a research’s academic
achievement. The other three authors Wei Chen, Samuele Segoni, and Dieu Tien Bui exhibit
similar citation burst patterns over time, indicating that event prediction has emerged as
a prominent research direction. This observation suggests that an increasing number of
scholars have directed their attention towards this field in recent years.

Table 5. The top five authors sorted by the citation burst.

Author Citation Burst Year (Begin to End)

Alex Graves 22.08 2020–2022
Wei Chen 15.66 2020–2022

Samuele Segoni 15.15 2020–2022
Dede Sinan Akkar 15.07 2017–2019

Dieu Tien Bui 14.72 2020–2022

We further conducted a cluster analysis to detect author clusters exhibiting comparable
co-citation patterns in the event prediction field. Those authors with similar academic
influence and cooperative relationships are grouped in one cluster. As presented in Figure 6,
there exist five significant clusters in the network, which are rendered in different colors.
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The modularity indicated by the Q value equals 0.5069 which is over 0.3, reflecting that the
modularization of the author co-citation network is significant. The authors in the same
cluster are homogeneous, which can be distinguished from other clusters since the average
S value equals 0.786 which is larger than 0.7, proving the clustering outcomes are both
reasonable and desirable.
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Table 6 presents the cluster details, arranged in descending order based on the cluster
size, which refers to the number of authors within each cluster. The table also includes the
S value, mean year, and labels generated by the LLR method for each cluster, aiding in
the interpretation of the clustering outcomes. Notably, all S values surpass 0.7, indicating
the meaningful grouping of authors with similar research interests into distinct clusters.
For example, cluster #0 appearing around the year 2013 includes 37 authors, who were
mainly engaged in predicting and validating weather-related events, e.g., extreme sea level
forecasting and performance assessment by regions. Other clusters concerning rainfall
events and debris flow (cluster #1), ground motion events (cluster #3), and eruption and
earthquake (cluster #4) occur in similar years to cluster #0. In the most recent years,
deep learning technologies such as convolutional neural network has rapidly emerged in
the event prediction field, which aligns with the research trends of leveraging artificial
intelligence (AI) for academic research as well as industrial applications.

Table 6. The largest five clusters in the author co-citation network.

ID Size Silhouette Mean (Year) Label (LLR)

0 37 0.758 2013 Weather research

1 31 0.83 2014 Rainfall threshold;
Debris flow

2 20 0.777 2019 Deep learning;
Convolutional neural network

3 13 0.794 2015 Ground motion model;
Ground motion prediction equation

4 12 0.946 2012 Eruption forecasting;
Earthquake forerunner

4.3. Document Co-Citation Network Analysis

In this section, we conducted a document co-citation analysis to determine the key
literature from 2012 to 2022. Similar to selecting the top N nodes for network analysis
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in Section 4.2, we selected the top 20 documents during each time slice for document
co-citation network analysis. The merged network includes 283 nodes and 469 links
as shown in Figure 7. The nodes represent independent documents, each of which is
indicated by the author and publication time. The links refer to the co-citation relationship
between documents. Similar to the author’s co-citation network, the concentric rings of
different colors in the document co-citation network reflect the co-citation patterns of the
documents over time. The largest node in the network represents a paper published by
Hans Hersbach (2020) with the highest citation frequency of 30 times. The orange and
red thick rings enclosing this node indicate that this paper has been frequently cited and
received extensive attention from scholars in 2021 and 2022, aligning with the color bar
shown at the left bottom of Figure 6.

Figure 7. The document co-citation network for the years 2012–2022.

The outermost ring surrounding the node represents the betweenness centrality of
the document, indicated by the color purple. The thicker the purple ring, the higher the
betweenness centrality of the document. The information regarding the top five documents
with higher betweenness centrality in the document co-citation network is shown in Table 7,
including title, betweenness centrality, degree centrality, closeness centrality, authors,
year of publication, and published journal. The betweenness centrality scores of those
documents are all around 0.40 and published in highly impacted journals, covering various
topics such as forecasting shallow landslides, determining rainfall intensity and duration,
predicting traffic flow, reviewing social media-based event detection techniques, and
predicting human behaviors. Specifically, the paper entitled “Calibration and validation of
rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy” which was
published in Geomorphology in 2015 stands out with the highest betweenness centrality of
0.45 and highest degree centrality, reflecting this paper plays an important intermediary
role and serves as a bridge connecting different research groups in the event prediction
field. Similarly, there is a slight difference among documents regarding closeness centrality.
The journal paper “Deep learning for short-term traffic flow prediction” published in
Transportation Research Part C: Emerging Technologies in 2017 has the highest closeness
centrality of 0.67, indicating that this paper plays an important role in connecting all
documents through the shortest path in the network.
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Table 7. The top five documents sorted by betweenness centrality.

Title Betweenness
Centrality

Degree
Centrality

Closeness
Centrality Author Year Source

Calibration and validation of
rainfall thresholds for shallow
landslide forecasting in Sicily,
Southern Italy

0.45 22 0.64 Gariano, S. L.
et al. 2015 Geomorphology

Objective definition of rainfall
intensity–duration thresholds for
the initiation of post-fire debris
flows in Southern California

0.44 20 0.65 Staley, D. M.
et al. 2013 Landslides

Deep learning for short-term
traffic flow prediction 0.44 16 0.67

Polson, N. G.,
and

Sokolov, V. O.
2017

Transportation
Research Part C:

Emerging
Technologies

Review on event detection
techniques in social multimedia 0.40 13 0.61 Garg, M., and

Kumar, M. 2016 Online Information
Review

Ontology-based deep learning for
human behavior prediction with
explanations in health social
networks

0.39 16 0.63 Phan, N. et al. 2017 Information
Sciences

When a document experiences a substantial increase in the number of citations within
a specific timeframe, it is recognized as having a pronounced citation burst. The paper titled
“The JRA-55 reanalysis: general specifications and basic characteristics” was proposed
by the Japan Meteorological Agency (JMA) who performed the second Japanese global
atmospheric reanalysis (JRA-55) from 1958, gaining the strongest citation burst of 8.03 (see
Table 8). The potential reason is that this milestone paper was frequently cited for analyzing
and forecasting the meteorological events during 2019 and 2020. Another strongly cited
document in the most recent years (i.e., from 2019 to 2022) is a review paper surveying
the rainfall thresholds for landslide occurrence since threshold selection is usually a big
concern among scholars and this paper provides highly persuasive reference. The other
documents with strong citation bursts mainly aim at proposing specific equations and
models for predicting meteorological events and natural hazards. Their citation bursts
last for two or three years during 2015 and 2019, indicating during those periods, those
equations and models had gained widespread recognition and acceptance within the
academic community.

Table 8. The top five documents sorted by the citation burst.

Title Citation Burst Author Burst Year (Begin to End) Source

The JRA-55 reanalysis: general
specifications and basic characteristics 8.03 Kobayashi, S.

et al. 2019–2020
Journal of the

Meteorological Society
of Japan

A review of the recent literature on rainfall
thresholds for landslide occurrence 7.66 Segoni, S.

et al. 2019–2022 Landslides

NGA-West2 equations for predicting PGA,
PGV, and 5% damped PSA for shallow
crustal earthquakes

7.58 Boore, D. M.
et al. 2016–2019 Earthquake Spectra

Empirical ground-motion models for point-
and extended-source crustal earthquake
scenarios in Europe and the Middle East

6.86 Akkar, S.
et al. 2017–2019 Bulletin of Earthquake

Engineering

Skill of real-time seasonal ENSO model
predictions during 2002–2011: Is our
capability increasing

6.26 Barnston, A. G.
et al. 2015–2017 Bulletin of the American

Meteorological Society

To identify distinct groups of documents with high homogeneity, we performed cluster
analysis on the document co-citation network. Figure 8 illustrates the network divided
into five clusters, each represented by a different color. The modularity, indicated by a



Appl. Sci. 2023, 13, 13346 15 of 23

Q value of 0.8537, and the weighted S value of 0.932 both fall within desirable ranges.
These cluster analysis results provide reliable insights that align with our expectations,
enabling scholars to gain a better understanding of the academic structure surrounding
event prediction-related research.
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The details of the five clusters are illustrated in Table 9, including the number of
documents, S value, mean year, and cluster labels generated by the LLR method. Cluster #0
and cluster #1 include the same number of documents but take place in different years. The
topic of cluster #0 concerns machine learning technologies leveraged for event prediction
in recent years. The other clusters all occurred before 2015. Cluster #1 and cluster #3 talk
about climate phenomena by exploring their evolution patterns, e.g., seasonal changes.
Cluster #2 and cluster #4 focus on monitoring and predicting natural disasters such as seis-
mic hazards and seismic hazards and sensitivity analysis was also conducted to optimize
the prediction models.

Table 9. The largest five clusters in the document co-citation network.

ID Size Silhouette Mean (Year) Label (LLR)

0 33 0.993 2017 Machine learning

1 33 0.878 2014 Westerly wind bursts;
El Nino diversity

2 27 0.923 2012 Volcanic hazard;
Volcanic eruption

3 18 0.870 2013 Enso;
Seasonal prediction

4 18 0.996 2014 Seismic hazard;
Sensitivity analysis

4.4. Collaborative Institution Network Analysis

In this section, we examined and visualized the collaboration patterns among research
institutions worldwide by constructing a collaborative institution network. The institution
information was extracted from the authors’ affiliations, resulting in a network consisting
of 141 nodes and 868 links. Each node represents an institution, while the links indicate
cooperative relationships between institutions. The size of each node corresponds to
the frequency of event prediction-related publications from that institution. Figure 9
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showcases the node representing Centre National de la Recherche Scientifique in France,
which possesses the largest size, indicating a publication frequency of 195. Similarly, the
Chinese Academy of Sciences in China also has a node with a comparable size, reflecting a
publication frequency of 192. The contributions of these two institutions have significantly
advanced the field of event prediction.
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The concentric rings encircling the nodes display the temporal patterns of documents
published by each institution. The color of the links corresponds to the year when the
collaboration between institutions first emerged. The thickness of the outermost purple
ring signifies the significance of the institution in maintaining interconnected relationships
within the collaborative institution network. Institutions with thicker purple rings have
higher betweenness centrality scores, indicating their crucial role in bridging connections
among all institutions involved in event prediction research. Table 10 illustrates the top five
institutions measured by the betweenness centrality. It reveals that the Centre National de
la Recherche Scientifique, France, which has published the most event prediction relevant
articles since 2012, also has the highest betweenness centrality, degree centrality, and
closeness centrality. As such, it can be identified as the most core research institution
with significant cooperation advantages and can communicate and cooperate with others
more quickly in the event prediction field. The University of California System and the
National Oceanic Atmospheric Admin in the United States of America and the Helmholtz
Association in Germany have the same centrality score of 0.15, reflecting that they are in
the collaborative institution network.

In order to investigate the developmental trends of event prediction-related research
in the last decade, we performed a citation burst analysis focusing on research institutions.
The top ten institutions with strong citation bursts are listed in Figure 10, including the
strength score as well as the beginning year and the end year. The National Taiwan
University, Swiss Federal Institute for Forest, and University Toulouse III—Paul Sabatier
have the highest citation burst scores in the very beginning years, covering a time span of
around two years. During the mid-term, the strongest citation burst appeared in Hohai
University, China with a strength of 6.34 and lasted a period of three years from 2014 to
2017. Kyoto University and Duy Tan University have received a lot of attention from other
researchers in the most recent years.
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Table 10. The top five institutions sorted by the betweenness centrality.

Institution Betweenness
Centrality

Degree
Centrality

Closeness
Centrality Country Year

Centre National de la Recherche Scientifique 0.17 95 0.93 France 2012
University of California System 0.15 75 0.79 United States of America 2012
Helmholtz Association 0.15 72 0.87 Germany 2014
National Oceanic Atmospheric Admin 0.15 53 0.84 United States of America 2012
Swiss Federal Institutes of Technology Domain 0.12 65 0.86 Switzerland 2012

Figure 10. The citation burst history of the institutions in the timespan of 2012–2022.

4.5. Keyword Co-Occurrence Network Analysis

Keywords serve as a valuable means to succinctly encapsulate the key topics covered
in a document. The keyword co-occurrence network analysis was performed to observe the
connections and development of research topics in the event prediction field. According to
the elaboration of selecting N terms for composing a network in Section 4.2, we selected
the top 20 keywords per year in the last decade for analysis. As revealed in Figure 11, the
network consists of 328 nodes and 752 links. The nodes represent the distinct keywords. If
the two keywords appear in one document at the same time, a link is built between the two
keywords to illustrate their co-occurrence relationship. The color of the link indicates the
year in which the co-occurrence relationship initially emerged. The node size indicates how
often the keyword has been used in the surveyed documents. It can be seen in Figure 11
that the node of “extreme event” holds the largest size with a publication frequency of
74, indicating that predicting extreme events has drawn the most interest and appealed to
those researchers to get engaged in the multidisciplinary studies. In addition, the keywords
“neural work”, “deep learning”, “machine learning”, “numerical weather prediction” and
“el nino” also occur frequently. Neural networks, deep learning and machine learning
acting as advanced technologies in computer science and data science have been frequently
used for event prediction. This aligns with the related work reviewed in Section 2 that deep
learning and machine learning methods have been applied for predicting spontaneous
events and recurring events in recent years. As indicated in Table 2, the unexpected weather
event is a typical type of spontaneous event, which is consistent with the results that the
keywords “numerical weather prediction” and “el nino” frequently occur in the keyword
co-occurrence network. In a word. the frequent occurrence of the aforementioned keywords
reflects the diversity and complexity of cross-domain event prediction research, where
researchers attempt to address the problems they face by adopting advanced techniques
and multidisciplinary approaches.
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Figure 11. The keyword co-occurrence network for years 2012 to 2022.

In Figure 11, the purple rings outmost the concentric circles reflect the betweenness
centrality of the keywords. The thicker the purple rings, the higher the betweenness cen-
trality of the keywords. A high betweenness centrality score signifies that the associated
keyword acts as a crucial intermediary in connecting all co-occurring keywords within
the keyword co-occurrence network. The top five keywords with the highest betweenness
centrality are displayed in Table 11. The keywords “extreme event” and “el_nino” with
higher publication frequency also hold the highest betweenness centrality, degree centrality
as well as closeness centrality, revealing that predicting extreme events, especially weather-
related events (e.g., “el_nino” and “extreme weather event”) have been hot research focus
and of great significance in the event prediction field during the past decade and play
important roles in the partial network as well as the entire network. Predicting extreme
weather events requires monitoring weather data such as atmospheric conditions, tem-
perature, humidity, etc., which is usually collected through weather sensors and weather
stations. The El Nino prediction usually requires monitoring climate and meteorological
indicators such as sea surface temperature from satellites and ocean sensors. Evaluating
the performance of prediction models and methods with accuracy is also a concern in the
event prediction field.

Table 11. The top five keywords sorted by the betweenness centrality.

Keywords Betweenness Centrality Degree Centrality Closeness Centrality Year

Extreme event 0.23 87 0.86 2012
El Nino 0.16 64 0.77 2013

Sea surface temperature 0.13 21 0.68 2012
Extreme weather event 0.10 29 0.73 2016

Prediction accuracy 0.08 38 0.69 2012

Table 12 presents the top five keywords with the strongest citation bursts. A stronger
citation burst is indicated by a higher strength score. The term “recurrent neural network”
exhibits the most robust citation burst, with the highest score of 13.32 during 2017 and 2022.
This is because recurrent neural network as a typical type of deep learning method has
been widely used for event prediction in multidisciplinary fields, aiming at improving the
performance of prediction models with advanced techniques. The “extreme event” with a
citation burst of 11.32 has received an increase in attention since 2018.



Appl. Sci. 2023, 13, 13346 19 of 23

Table 12. The top five keywords sorted by the citation burst.

Keywords Citation Burst Year (Begin to End)

Recurrent neural network 13.32 2017–2022
Prediction model 12.39 2016–2022

Extreme event 11.32 2018–2022
Weather sensor 10.07 2014–2022

Artificial intelligence 7.35 2019–2022

Sensors have usually provided effective data sources for monitoring and predicting
abnormal situations (i.e., events) in multiple fields since 2014, especially in dealing with
weather event prediction. For instance, weather sensor data can be imported into models
such as recurrent neural networks to capture the association between meteorological
conditions and extreme weather events. Another keyword cited with a significant increase
in the most recent years is “artificial intelligence”, of which the citation burst score is 9.75.
It is a trend that the large-scale collection and processing of sensor data require powerful
computing power and intelligent algorithms.

Furthermore, we constructed a two-dimensional keyword timeline graph in Figure 12,
which arranges the keyword co-occurrence network and the corresponding cluster analysis
results in chronological order, so as to investigate the distribution of research topics in
the event prediction field and how they evolve over time. The horizontal axis on the top
signifies time. Each horizontal line denotes a cluster. The clusters are ordered according
to the earliest occurrence time of the documents in each cluster. The circle located on the
horizontal line represents the keywords in the cluster, and the position of the circle is the
time when the keyword first emerged in the cluster. The concentric rings around each
keyword illustrate the time range during which the keyword appeared.
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The labels of the clusters were generated by the LLR method. Cluster #0 was labeled
as “system”, where the representative keywords include “precipitation”, “debris flows”,
“landslides” and “shallow”, revealing that a number of event prediction systems were built
for various purposes. The “machine learning” was assigned cluster #1, where a list of
model representations such as “logistic regression” and “neutral networks” was adopted
in the event prediction field. The deep learning methods emerged as a hot keyword in 2021.
Another research focus in the event prediction field was placed on climate change. Scholars
investigated the evolution patterns, variability, and impact of temperature, rainfall, and
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soil moisture with the prediction purpose. Cluster #4 labeled as “retrieval” illustrates that
the simulation algorithms were used for event prediction between 2012 and 2018.

5. Conclusions

This study utilizes CiteSpace software to conduct a scientometric analysis of research
focused on event prediction. To explore research productivity and emerging trends in
the surveyed field, we gathered documents published from 2012 to 2022 from the Web
of Science database. The number of publications concerning event prediction has kept
increasing in the last decade, especially with significant increases since 2019, indicating this
topic has attracted more and more attention from the research communities over time. Four
networks were then generated and visualized based on the collected documents for scien-
tometric analysis, including the author co-citation network, document co-citation network,
collaborative institution network, and keyword co-occurrence network. The four types of
network analysis have produced several remarkable findings. The representative authors
and documents are from different disciplines (e.g., meteorology science, computer science,
and data mining), showing that event prediction research holds obvious interdisciplinary
characteristics promoting cooperation and communication among research institutions
worldwide. The frequently co-occurring keywords reveal hot research topics (e.g., extreme
events and weather events) and widely used methods (e.g., deep learning and machine
learning methods) as well as the research trends (e.g., artificial intelligence aiding event
prediction) with great potential. In addition, sensor data has been playing an integral role
in event prediction since 2014, especially for predicting weather events and meteorological
events (e.g., monitoring sea surface temperature and weather sensor data for predicting El
Nino). The real-time and multivariable monitoring features of sensor data enable it to be a
reliable source for predicting multiple types of events.

In spite of the notable results achieved in this work, there is still room for improvement
in the near future. The scope of this study was limited to articles written in English and
collected exclusively from the Web of Science database. As a result, it is possible that certain
pertinent research might have been inadvertently omitted from this survey. Aiming at
overcoming this limitation, the documents written in other languages (such as Chinese)
and literature data obtained from other databases (such as Scopus) can be incorporated to
enable a more comprehensive comparison and analysis in the future.
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