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Abstract: Polymer-modified cement mortar has been increasingly used as a runway/road pavement
repair material due to its improved bending strength, bonding strength, and wear resistance. The
flexural strength of polyurethane–cement mortar (PUCM) is critical in achieving a desirable main-
tenance effect. This study aims to evaluate and optimize the flexural strength of PUCM involving
nano silica (NS) using a central composite design/response surface methodology (CCD/RSM) to
design and establish statistical models. The PU binder and NS were utilized as input parameters
to evaluate the responses, such as compressive and flexural strength. Moreover, machine learning
(ML) algorithms including artificial neural networks (ANN) and Gaussian regression process (GPR)
were used. The PUCM mixtures were prepared by adding a PU binder at 0%, 10%, 15%, and 25% by
weight of cement. At the same time, NS was incorporated into the mortar mixes at 0 to 3% (interval
of 1%) by cement weight. The results showed that the simultaneous effect of PU binder at the optimal
content and NS improved the performance of PUCM. Adding NS to the mortar mixture mitigated
some of the strength lost due to the PU binder, which remarkably reduces the strength properties at
a high content. The optimized PUCM can be obtained by partly adding 3.5% PU binder and 2.93%
NS particles by the weight of cement. The performance of the machine learning algorithms was
tested using performance indicators such as the determination of coefficient (R2), mean absolute
error (MAE), mean-square error (MSE), and root-mean-square error (RMSE). The GPR algorithm
outperformed the ANN with higher R2 and lower MAE values in the training and testing phases. The
GPR can predict flexural strength with 90% accuracy, while ANN can predict it with 75% accuracy.

Keywords: mortar; polyurethane; response surface methodology; artificial intelligent; mechanical
properties

1. Introduction

Concrete is a commonly used construction material [1], which exhibits high perfor-
mance and good durability. But, it is brittle and characterized by weak tensile strength,
resulting in easy crack formation when subjected to flexural loading [2]. Moreover, ordi-
nary concrete reveals weak deformability and low compression toughness, affecting its
ability to resist dynamic loads. These shortcomings limit the application of concrete in
some civil engineering structures prone to impact loads, like mechanical platforms and
airport pavement, often subjected to repetitive loads in their service life. Many studies have
been carried out to improve such desired concrete properties to overcome these shortcom-
ings [3,4]. Polyurethane polymer material is proving to be a potential candidate to enhance
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concrete properties such as durability, impact resistance, and water absorption capacity, as
found in the literature [5–7], required for engineering structure and maintenance purposes.

The damage in civil engineering structures results from several factors, such as cor-
rosion due to aggressive environments, the use of de-icing salts, high chloride levels in
the air, the alkali effect, and poor design or construction. Moreover, concrete cracking
usually complements steel corrosion, resulting in a decreased load-carrying capacity of the
structure [5,8]. Polymer concrete has been applied to maintain damaged concrete members,
such as industrial flooring, underground pipes, and road pavement, where high strength,
durability, and a fast setting are desirable [9]. The polymer comprises several thousand
repetitive units in their extremely long molecules. These include rubber, Polyethylene (PE),
Epoxy Resins, Polyurethane (PU), and other polymer materials [10–13]. Due to its desirable
properties, PU has attracted the attention of researchers among these polymeric materials
to carry out studies on PU-based polymer materials [7,14,15], a PU–cement composite [5,6],
elastomeric polymer material [16], polymer-modified bitumen [17], coating material [18],
grouting materials [19], and polyurethane foams [20,21]. Compared with ordinary polymer
materials, PU demonstrates a high resistance to chemical attacks, good adhesion, fast hard-
ening, and great mechanical properties, capable of enhancing the cementitious material
toughness with a low content [5,22]. It is widely used in pavement structures due to its
excellent performance [12,14]. A PU-cement based composite was obtained by adding
polyurethane binder into cementitious material such as concrete and mortar, which helps
maintain and rehabilitate engineering structures [23].

The mechanical properties of PU-cement based composite have been studied by [23–25].
Hussain et al. [5] investigated PU-based cement’s bonding strength and mechanical behavior
as a repair material for existing bridges. The result showed that the mechanical properties
and density were improved from 400 kg/m3 to 1650 kg/m3, and PUC demonstrates high
bond properties with cement-based materials. Harith [23] reported that PU foam decreases
mechanical behavior and improves shrinkage performance. Tang et al. [26] reported that
cation PU accelerates the hydration of cement, modifies its mineral content, and decreases
cement’s brittleness. Moreover, the inclusion of a 0.5% PU content improved the tensile
property at early age of curing time. Chen et al. [27] introduced nano silica as a filler
material in polymer nanocomposite for the improvement in mechanical properties.

In the last decade, conventional linear and nonlinear analyses have been employed
to evaluate the properties of concrete. For instance, the design of the experiment and
regression analysis was used to determine concrete behavior and optimize the concrete
mixtures. However, these conventional techniques have some deficiencies when dealing
with complex problems. Previous studies have indicated that artificial intelligence has
been used in engineering applications to solve complex problems. These include artificial
neural networks [28,29] emotional intelligence and traditional FFNNs [30], novel data
intelligent algorithms [31], the Hammerstein–Wiener and SVM models [32], ANNs, K-
nearest neighbor, regression tree, and Multi-response optimization [28,33] being adopted.
Lee et al. [34] evaluated the performance of credit scoring from the mining data techniques
using classification, regression trees, and adaptive regression splines. Chou and Tsai [35]
analyzed the compressive strength of high-performance concrete using classification and
regression techniques. Kooshkaki et al. [36] used a multi-objective ANN model to analyze
the porosity on the prediction of hardening behavior of mortar involving micro and nano-
silica. The results showed that concrete flexural strength was estimated with high accuracy.
Ayaz et al. [37] established artificial neural networks, decision trees, and gradient-boosting
models to predict concrete properties subjected to high temperatures. Rupasinghe et al. [38]
used a multiscale approach to estimate the strength of nano-engineered concrete involving
nano-silica.

Moreover, several studies have attempted to analyze the hardened behavior of
polyurethane cement concrete using conventional and artificial intelligence techniques.
Few studies have been performed so far concerning polyurethane–cement concrete. For
instance, Gao and Sun [39] proposed a combined theoretical deduction and experimental



Appl. Sci. 2023, 13, 13348 3 of 20

method to predict the fatigue life of a polyurethane cement composite subjected to low
and high temperatures. The authors reported that the proposed formula could effectively
evaluate polyurethane cement composites’ fatigue life and limit. Diaconescu et al. [40] used
the ANN algorithm to study the effect of powdered tire waste and the epoxy resin content
on the mechanical properties of polymer concrete. Marinela et al. [41] developed an ANN
model for the prediction of mechanical properties (compressive and flexural strength) of
polymer concrete containing fly ash. The polymer concrete containing different fly ash and
resin contents was tested to evaluate the effect of fly ash on the strength.

PU-cement mortar has been widely used as a repair material for civil engineering
infrastructure such as concrete buildings and pavement. However, previous [6,26,42]
studies have indicated that PU binder negatively affects cementitious material by reducing
mechanical properties. On the other hand, nanosilica improves the mechanical properties
of cementitious materials (mortar and ordinary concrete) by reducing pore structures, thus
densifying the materials, which leads to the improvement in mechanical properties [43,44],
was incorporated into the PU–cement mortar in this study, targeting the mitigation of
the negative effect PU binder in the mortar. Therefore, the main aim of this study was to
comprehensively evaluate the mechanical properties of PU–cement mortar incorporated
with nanosilica. The RSM/CCD model was employed to optimize mortar mixtures and
evaluate the mechanical properties. On the other hand, machine learning (ML) algorithms
Such as ANN and GPR were used to predict the flexural strength. The prediction skill of
ML algorithms was then compared with the RSM model.

2. Materials and Methods
2.1. Materials

The PUCM mixtures were prepared using Grade 42.5R cement, and the chemical
properties of the cement are summarized in Table 1. The river sand was utilized as the
fine aggregate, with a fineness modulus of 2.08, and its apparent density was 2626 kg/m3,
with a maximum particle size of 2.26 mm. The particle size distribution curve is depicted
in Figure 1. The PUCM was prepared with a polycarboxylate-based superplasticizer
characterized by a 20% water reducer introduced at 0.15% by cement weight to achieve
better performance.
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Table 1. Chemical compositions of cement.

Material
Oxides

SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O SO3 TiO2 LOI

Cement 23.270 4.410 2.450 62.850 1.420 0.480 0.210 2.570 0.080 1.820

PU Binder

The polymerization reaction between diol (involving two or more hydroxyl –OH
groups) and isocyanate (involving two or more isocyanate –NCO groups) produced a PU
binder [45]. It is a type of polymer with broad applications in civil engineering structures
due to its excellent performance, such as elastic modulus and elongation at break. The
physical indexes of the PU binder are presented in Table 2. The PU binder was produced
by mixing polyol (mixture of castor oil and CaCO3) as the main chemical composition
with polymethylene polyphenylene isocyanate (PAPI) involving the diisocyanate group
(–NCO), using a mixing ratio of 6:1 by weight, and carefully mixed in a container at
room temperature.

Table 2. Indexes of PU binder.

PU Binder Viscosity (CPS) Appearance
Curing Age (h)

Tension Property (MPa)
Initial Final

Polyol 35,000 Grey white sticky - - -
PAPI 250 Brown transparent - - -

PU binder - - 3.5 72 5.5

2.2. Mix Proportion and Specimen Preparation

Table 3 summarizes the mixed proportion of PUCM modified with NS. A total of
13 groups of PU–cement mortar containing different PU binders and NS content were
prepared in this study. The PU binder was introduced to the cement mortar mixtures by
cement weight at 0%, 10%, 15%, and 25%, while NS was introduced into the mortar mixture
also by the weight of cement at 0 to 3% (interval of 1%) as summarized in Table 3. The
constant water-to-cement (w/c) ratio of 0.25 was used to prepare all PU-modified cement
mortar mixtures.

Table 3. Mix proportion of the mortar material (1 kg/m3).

S/N Mixture ID Cement PU Binder NS Sand Water Superplasticizer

1 PUCM0-0 702 0.00 0.00 1404 175.5 14.04
2 PUCM10-0 702 70.2 0.00 1404 175.5 14.04
3 PUCM10-1 702 70.2 7.02 1404 175.5 14.04
4 PUCM10-2 702 70.2 14.04 1404 175.5 14.04
5 PUCM10-3 702 70.2 21.06 1404 175.5 14.04
6 PUCM15-0 702 105.3 0.00 1404 175.5 14.04
7 PUCM15-1 702 105.3 7.02 1404 175.5 14.04
8 PUCM15-2 702 105.3 14.04 1404 175.5 14.04
9 PUCM15-3 702 105.3 21.06 1404 175.5 14.04
10 PUCM25-0 702 175.5 0.00 1404 175.5 14.04
11 PUCM25-1 702 175.5 7.02 1404 175.5 14.04
12 PUCM25-2 702 175.5 14.04 1404 175.5 14.04
13 PUCM25-3 702 175.5 21.06 1404 175.5 14.04

The mortar containing PU binder modified with NS were produced based on the
following steps: firstly, the dry materials, which includes sand, cement, and NS were placed
in an SJ-15 cement mortar mixer and mixed thoroughly for 1 min with a slow speed. Then,
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water containing superplasticizer was introduced to the dry mix and continued mixing
for another 2 min. Subsequently, freshly prepared PU binders with various contents were
introduced to the mortar mixes and we continued mixing until a homogeneous cement
mortar mixture was achieved. Therefore, three specimens from each group were cast using
prismatic specimens of a 40 × 40 × 160 mm3 mold to evaluate mechanical properties.
After 24 h, the beam specimens were de-molded and kept in the standard curing room
(temperature = 20 ± 2 ◦C and relative humidity ≥ 99%) for 28 days before the testing. To
achieve more reliable results, three samples from each PUCM sample were tested, and
their average was measured as the test result. Figure 2 illustrates the systematic process of
PUCM mixture and testing method.
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2.3. Methods
Mechanical Properties Test

The PUCM mechanical qualities were tested following DL/T5126-2001 [46]. For each
mixing condition, prismatic specimens of 40 × 40 × 160 mm3 were tested utilizing a
3-point flexural load. The prism specimens were positioned on two equal supports with a
defined span of 100 mm. Compression testing was performed after dividing the flexural
test samples into two pieces. The mechanical properties tests were conducted using UTM,
which has a 30 tons capacity and is set at speed rates of 50 N/s for the flexural and 2.4 kN/s
for the compressive strength test.

2.4. Response Surface Methodology

RSM is a mathematical method commonly used to evaluate and establish a model for
a dataset containing independent and dependent variables. In addition, RSM has been
applied in multi-objective optimization models that try to accomplish desired objectives
according to either predicted or input parameters [47]. Many models can be employed in
RSM modeling to establish statistical connections between independent variables and the
target variable. These consist of the historical data model, Box–Behnken, central composite
design (CCD) model, etc. The number of variables and degree of variability determine the
model type for analysis [47]. If the relationship between the input parameter and output
is uncertain, a linear function could be constructed using the first-order expression, as
given in Equation (1). Figure 3 illustrates the CCD framework according to four points,
displaying factorial points (±1) and four central points describing (±α) design points. The
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experimental dataset from thirteen (13) mixes was prepared with combination of three
levels of variables (PU binder and NS) that were used to analyze the CCD model due to its
flexibility for selecting α (distance from design center to axial run); α = 1 was implemented
in this study [47]. According to Equations (1) and (2), the input parameters and output
responses were statistically stated in a linear or polynomial form, respectively [47].

r = βo + β1X1 + β2X2 + . . . βnXn + ε (1)

However, for non-linear interactions in the dataset, a higher-degree polynomial model,
the second-order function stated in Equation (2), can be utilized:

r = βo +
k

∑
i=1

βiXi +
k

∑
i=1

βiiX2
i + ∑

i<
∑

j
βijXiXj + ε (2)

where r is the output, βo is the r-intercept, in which X1 = X2 = 0, β1 is the coefficient of
first input parameter, β2 is the coefficient of the second input parameter, X1 and X2 are the
first and second input parameter coefficients, ε represents the error, i an j are the linear and
quadratic coefficient, and k is the variable number [47].

The CCD was utilized for model analysis to optimize the response variable. Therefore,
a PU binder content of 0%, 10%, 15%, or 25% was added to the mortar mixture based on
the cement weight, and NS was also added to the mortar from 0 to 3% (intervals of 1%) by
cement weight, and they were modeled as input parameters.
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2.5. Artificial Intelligence-Based Model
2.5.1. ANN

The ANN is a modeling algorithm used in data analysis that employs a decision-layer
network. This model is made up of processing components linked together by synaptic
weight or neurons. As seen in Figure 4, an input, hidden, and an output layer comprises
the model structures. The inputs are multiplied by a modified weight and then sent via a
transfer function to generate the neurons’ output [48]. As a result of the network’s training
of the dependent and independent parameters, the best weight is computed through
learning practice. The neurons in Figure 4 collect the input parameters, and the Net is the
total of computed weight and bias in each neuron [49], and expressed in Equation (3):

Net =
n

∑
i=1

wijxi + bi (3)

The hyperbolic tangent function was used for better prediction skills. It has function
values from −1 to 1, and it is given in Equation (4):

y = f (Net) =
2

1 + e−2.net − 1 (4)
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2.5.2. GPR

GPR is a probabilistic, nonparametric, reliable nonlinear prediction model, supervised,
and unsupervised learning technique that uncovers nonlinear and complicated function
mapping concealed in datasets. GPR has recently drawn more research interest from
engineers across all engineering disciplines [50,51]. Kernel functions are used in GPR to
handle nonlinear data. Furthermore, the GPR model’s ability to respond accurately to the
input parameter is one of its benefits [52]. The modelling procedure is depicted in Figure 5.
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For a training set K = {(zi, yi)|i = 1, . . . n} the input data Z ∈ RK×n is known as the
design matrix, and y ∈ Rn is the vector of the target output. The major assumption of the
GPR model is that the predicted y is determined as [53]

y = f (z) + ε (5)

where ε ∼ N(0, σ2
n), є R is the homoscedastic noise of the all samples zi.

For the GPR model, the n observation in the dataset of interest y = {y1, . . . yn} is
regarded as a one-point sample from a multivariate Gaussian distribution (GD).

2.6. Hyperparameter Turning and Cross-Validation

The operation and structures of the learning process of AI techniques were controlled
by hyperparameters, as depicted in Figure 6. It was considered the best way to improve the
estimation accuracy of the developed model. Therefore, the random search (RS) method
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was adopted to tune the ML algorithm of hyperparameters, which outperformed the firefly
algorithm [39,40] and was adopted in this study. Cross-validation was used to control the
model and applied when tuning hyperparameters for small datasets. Moreover, tenfold
validation was also adopted in our work. The experimental dataset was proportioned to
70 for training and 30 for testing.
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2.7. Performance Evaluation

Five evaluation matrices were utilized in this study to determine the performance of
the established ML algorithms. The matrices included the MSE, RMSE, MAE, R2, and R.
Additionally, Table 4 summarizes the expression equation for each matrix. The mi and pi
are the measured and predicted values, respectively; p is the number of input variables,
and n is the number of observations.

Table 4. Evaluation matrices.

Matric Equation Description

R2
[

∑n
i=1 (mi−m)(pi−p)

∑n
i=1 (mi−m)2∑n

i=1 (pi−p)2

]2 R2 is a commonly used performance metric to describe how well a model
predicts a given variable. Its value ranges from 0 to 1. When R2 is near to 1,

high prediction accuracy is attained [54,55].

MSE 1
n ∑n

i=1 (mi −mi)
2 The statistical error demonstrating the model’s performance. The MSE

value was very near to zero, which indicates excellent prediction accuracy.

RMSE
√

1
n ∑n

i=1 (mi − pi)
2

The difference between the predicted value and the observed value is
indicated by RMSE. When the RMSE value approaches 0, better

performance is achieved.

MAE 1
2

n
∑

i=1
|mi − pi|

MAE revealed the mean absolute error value between the predicted and
observed value. It has a range between 0 < MAE < ∞.

3. Results and Discussions
3.1. Compressive Strength of PU–Cement Mortar

Figure 7 shows the compressive strength of the PU–cement mortar containing nano
silica. The average compressive strength of the control mortar (PUCM0-0) at 28 d curing
age was 60.28 MPa. All PU–cement-modified specimens revealed a decrease in compressive
strength due to adding the PU binder. As depicted in Figure 7, the addition of 10% PU
binder without NS led to a decrease in strength of 22.81%. However, the rate of strength
reduction was mitigated due to the reinforcing effect of the NS particles at various contents,
as noted in PUCM10-1, PUCM10-2, and PUCM10-3, which reduced by 19.81%, 15.56%,
and 17.44%, respectively, compared to the reference sample. The result indicated that
the addition of the NS material mitigated some of strength lost due to the PU binder.
This finding agreed with previous studies [43,44], which showed that NS improves the
compressive strength of mortar, and the improvement mechanism is due to the filling of
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pore structure in the cement mortar and promotes the hydration process of the matrix.
Additionally, a further decrease in the compressive strength was noted in the PU–cement
mortar containing 15%PU binder. The PUCM15-0 revealed a compressive strength of
41.52 MPa, which was 31.51% lower than the control specimen (PUCM0-0). Similarly, a
remarkable reduction in the compressive strength of the PU-cement mortar was noted in
the specimens involving the highest PU binder content (25% PU binder), as revealed in the
PUCM25-0 specimen with 31.34 MPa, which appeared to be the lowest strength recorded
among all mixes. This strength was improved due to the addition of NS, as demonstrated
in PUCM25-1, PUCM25-2, and PUCM25-3. This indicates the reinforcing effect of NS. In
spite of the negative effect of PU binder content when added in lower and higher content,
NS particles were able to mitigate some of the strength loss due to the introduction of the
polymer materials.

Appl. Sci. 2023, 13, 13348 9 of 21 
 

age was 60.28 MPa. All PU–cement-modified specimens revealed a decrease in compres-

sive strength due to adding the PU binder. As depicted in Figure 7, the addition of 10% 

PU binder without NS led to a decrease in strength of 22.81%. However, the rate of 

strength reduction was mitigated due to the reinforcing effect of the NS particles at vari-

ous contents, as noted in PUCM10-1, PUCM10-2, and PUCM10-3, which reduced by 

19.81%, 15.56%, and 17.44%, respectively, compared to the reference sample. The result 

indicated that the addition of the NS material mitigated some of strength lost due to the 

PU binder. This finding agreed with previous studies [43,44], which showed that NS im-

proves the compressive strength of mortar, and the improvement mechanism is due to the 

filling of pore structure in the cement mortar and promotes the hydration process of the 

matrix. Additionally, a further decrease in the compressive strength was noted in the PU–

cement mortar containing 15%PU binder. The PUCM15-0 revealed a compressive strength 

of 41.52 MPa, which was 31.51% lower than the control specimen (PUCM0-0). Similarly, a 

remarkable reduction in the compressive strength of the PU-cement mortar was noted in 

the specimens involving the highest PU binder content (25% PU binder), as revealed in 

the PUCM25-0 specimen with 31.34 MPa, which appeared to be the lowest strength rec-

orded among all mixes. This strength was improved due to the addition of NS, as demon-

strated in PUCM25-1, PUCM25-2, and PUCM25-3. This indicates the reinforcing effect of 

NS. In spite of the negative effect of PU binder content when added in lower and higher 

content, NS particles were able to mitigate some of the strength loss due to the introduc-

tion of the polymer materials. 

Previous research has indicated that the polyurethane binder significantly decreases 

the mechanical properties, particularly the compressive strength of cement-based compo-

sites, as reported in the literature [6,26,42]; the strength decreases with the increase in PU 

binder content. The reduced strength is attributed to the cement particles’ adsorption to 

reduce the mixtures’ hydration process and the formation of more void in the cement 

mortar. However, the incorporation of PU binder in the cement-based composite im-

proved the desirable performance of durability-related properties such as water absorp-

tion, early and long-term shrinkage, etc. Due to its viscoelastic behavior, the influence of 

PU binder prevents crack propagation in cement-based materials [56]. 

 

Figure 7. Compressive strength of PUCM modified with nano silica. 

3.2. Flexural Strength of PU–Cement Mortar 

The flexural strength of PU–cement mortar modified with or without NS particles is 

shown in Figure 8. The flexural strength of the control mortar (PUCM0-0) is 12.96 MPa. 

Figure 7. Compressive strength of PUCM modified with nano silica.

Previous research has indicated that the polyurethane binder significantly decreases
the mechanical properties, particularly the compressive strength of cement-based com-
posites, as reported in the literature [6,26,42]; the strength decreases with the increase in
PU binder content. The reduced strength is attributed to the cement particles’ adsorption
to reduce the mixtures’ hydration process and the formation of more void in the cement
mortar. However, the incorporation of PU binder in the cement-based composite improved
the desirable performance of durability-related properties such as water absorption, early
and long-term shrinkage, etc. Due to its viscoelastic behavior, the influence of PU binder
prevents crack propagation in cement-based materials [56].

3.2. Flexural Strength of PU–Cement Mortar

The flexural strength of PU–cement mortar modified with or without NS particles is
shown in Figure 8. The flexural strength of the control mortar (PUCM0-0) is 12.96 MPa.
Adding 10% PU without NS led to an increase in strength of 6.17%. Under the same
10%PU content and reinforced with NS, the flexural strength revealed improved strength,
as indicated in PUCM10-1, PUCM10-2, and PUCM10-3 specimens. This behavior is at-
tributed to the combined effect of PU binder and NS in improving the flexural strength of
cement-based composites. The positive effect of PU binder agrees with findings in the past
literature [6,26]; the viscoelastic properties of PU binder are responsible for this behavior.
Due to the addition of 10% PU binder and 2% NS and 3% NS, the flexural strength was
increased by 8.88% and 16.69%, respectively. Similarly, the reinforcing effect of NS was also
noted in the specimens containing 15% PU binder. A moderate PU binder content obviously
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improved cement mortar’s flexural strength. The average flexural strength of PUCM15-0
was 14.10 MPa which is 8.79% higher than the reference specimen. For the specimens
prepared with 15% PU, the flexural strength decreased and then increased with an increase
in NS particles. PUCM15-3 demonstrated the highest strength of 14.77 MPa among this
group. The higher PU binder content also negatively affects the flexural strength, as shown
in Figure 8. All the specimens containing 25% PU revealed a reduced flexural strength
compared to others. The flexural strength of PUCM25-0 was 31.34 MPa, and appeared to
be the lowest strength among all the specimens. However, some of the lost strength was
mitigated due to the reinforcing effect of NS, as revealed in the PUCM25-1, PUCM25-2, and
PUCM25-3 specimens.
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3.3. Result of RSM/CCD Analysis

Table 5 shows the developed RSM analysis involving the independent parameters
(PU binder and NS) and response parameters, including compressive strength and flexural
strength, demonstrating the model combination. Therefore, the ANOVA was used to
determine the significance and variability of the established model, as indicated in Table 5.

Table 5. Coded model combination for developed CCD analysis.

Run
Coded Value Responses

PU Binder NS Flexural Strength
(MPa)

Compressive Strength
(MPa)

1 0 0 13.8 49.77
2 0 0 13.8 49.77
3 −1 1 15.13 49.77
4 −1 0 14.23 50.9
5 0 1 14.77 53.36
6 0 −1 13.6 51.06
7 0 0 13.8 49.77
8 −1 −1 11.6 33.5
9 0 0 13.8 49.77
10 1 1 11.57 38.63
11 1 0 13.34 36.1
12 1 −1 11.34 33.5
13 0 0 13.8 49.77
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3.3.1. ANOVA Result

The ANOVA of the cubic models developed from the RSM/CCD model is summarized
in Table 6. The established model F-values of 5.04 and 12.75 were obtained for the flexural
and compressive strength model, respectively, revealing the significance of the model with
a p-value of 0.0468 for the flexural strength and 0.0064 for the compressive strength. The
significance of the models and related terms was checked using a 95% confidence level (i.e.,
p-value < 0.05). As shown in Table 7, the model terms associated with the flexural strength
model were insignificant, with a p-value higher than 0.05. Similarly, some model terms in
modeling the compressive strength revealed insignificance. But the direct interaction of the
PU binder and NS (PU binder × NS) and square of the PU binder were significant in the
model, with p-values of 0.0106 and 0.0017, respectively, demonstrating a significant p-value
less than 0.05. The model’s equations for the observed values of all responses of PU-cement
mortar modified with NS are expressed in Equations (6) and (7). In the model equations
preceding the terms, the synergistic impact of independent parameters on the responses is
indicated by negative and positive signs.

ft = +14.04− 0.445PU + 0.585NS− 0.825PU ∗ NS− 0.865PU2 − 0.464NS2 + 0.355PU2 ∗ NS
−0.51PU ∗ NS2 (6)

fc = +50.75− 7.4PU + 1.15NS− 2.78PU ∗ NS− 9.69PU2 − 0.983NS2 + 4.2PU2 ∗ NS + 4.61PU ∗ NS2 (7)

where ft, and fc, are the flexural strength (MPa), and compressive strength (MPa), respec-
tively. PU is the polyurethane binder (%), and NS is the Nano silica (%).

Table 6. Analysis of variance of the models.

Response Variable Sum of
Squares DF Mean

Square F-Value p-Value Significant

Flexural strength Model 15.09 7 2.16 5.04 0.0468 significant
PU binder 0.3961 1 0.3961 0.9270 0.3799

NS 0.6845 1 0.6845 1.60 0.2614
PU binder × NS 2.72 1 2.72 6.37 0.0529

PU binder2 2.06 1 2.06 4.83 0.0793
NS2 0.5963 1 0.5963 1.40 0.2906

Compressive strength Model 618.80 7 88.40 12.75 0.0064 significant
PU binder 109.52 1 109.52 15.80 0.0106

NS 2.64 1 2.64 0.3815 0.5639
PU Binder × NS 31.02 1 31.02 4.47 0.0880

PU binder2 259.48 1 259.48 37.42 0.0017
NS2 2.67 1 2.67 0.3847 0.5623

PU2 × NS 23.52 1 23.52 3.39 0.1249
PU × NS2 28.40 1 28.40 4.10 0.0989

Table 7. Statistical indicators and model verification.

Response R2 Adj. R2 Pred. R2 Mean Std. Dev. COV. (%) AP

Flexural strength 0.8760 0.7023 0.6413 13.43 0.6536 4.87 7.3913
Compressive strength 0.9469 0.8727 5.1647 45.87 2.63 5.75 8.3932

The statistical indicators utilized to evaluate the performance of the developed mod-
els are summarized in Table 7, which is sufficient to assess the model’s effectiveness in
evaluating the responses and reflecting the goodness-of-fit criteria. The proposed model
achieved the model’s precision level with statistical indicators. The outcome revealed that
the CCD/RSM model is capable of handling models with a large number of free features,
and the mechanical strength was estimated with high accuracy (refer to Table 7); the cor-
responding scatter plots are shown in Figure 9. The responses (flexural and compressive
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strength) were estimated with high accuracy. Additionally, the compressive strength model
showed the highest performance with a value R2 = 0.9469. The standard deviation values
can be considered when evaluating the models’ performance concerning datasets obtained
from experimental studies. The models’ mean values were compared to standard deviation
values to determine how accurately the data fit the developed models. Furthermore, ade-
quate precision (AP) value was needed with the appropriate signal as achieved from the
developed model were greater than 4. As a result, the established models might be used
to explore the design space as specified in CCD [57]. Moreover, the model’s performance
was assessed using the coefficient of variation, which reflects the scattering of the data. The
models’ COV results of 4.87% and 5.75% demonstrated that the scattering in the dataset
is insignificant.
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Figure 9. Relationship between actual and predicted values using CCD/RSM model for (a) flexural
strength and (b) compressive strength.

Figures 10 and 11 illustrate the dataset of the established model for 3D and 2D response
surface plots showing the relationship among the input parameters against the responses.
The surface plots also clearly noted the reinforcing effect of PU binder and NS on the
cement mortar. As depicted in Figure 10, the flexural and compressive strength increases
with the increase in NS, and the peak strengths were obtained by adding 3% NS (the red
color portion in the plot). The strength improvement was promoted by adding 10 to 15%
PU binders, and then the strengths tended to decline with a further increasing PU binder
content, as revealed against 25% PU binders (the blue color portion). From Figure 10a, it
can be observed that the mitigating effect of NS is more pronounced in the flexural strength
compared with compressive strength, which showed a flatter convex curve. The modeling
result agreed with the experimental result regarding the mechanical properties of cement
mortar due to the combined effect of the PU binder and NS. The 2D response surface plots
of the strength of the PUCM are shown in Figure 11. The plots also reveal the combined
effect of the polymer material and NS with optimum PU binder content of 10 to 15%.
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3.3.2. Optimization of the PUCM Mixtures

The optimization method aims to explore the correct proportion of independent pa-
rameters (PU binder and NS) suitable for achieving an optimized PUCM mixture, agreeing
to peak values in relation to mechanical strength. The variables were adjusted to a specific
range during the optimization method to account for all possible result combinations,
and responses were maximized, as listed in Table 8. The solution revealing maximum
desirability was considered as the optimal PU–cement mortar mixture, as listed in Table 8,
and the optimized strength is depicted in Figure 12. The optimized PUCM mixture was
achieved by adding 3.5% PU binder and the addition of 2.93 NS particles by weight of
cement. The peak response values were 15.13 MPa and 52.21 MPa for flexural strength and
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compressive strength, respectively, with 97.1% of the overall desirability of independent
variables, as shown in Table 9.

Table 8. Evaluation criteria for optimization process.

Variables Symbol Goal Lower Limit Upper Limit

PU binder (%) PU In range 0 25
Nano silica (%) NS In range 0 3

Flexural strength (MPa) f t Maximize 11.34 15.13
Compressive strength (MPa) f c Maximize 33.5 53.36
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Table 9. Optimized PU–cement mortar mixture.

PU Binder
(%)

NS
(%)

Flexural Strength
(MPa)

Compressive Strength
(MPa)

Desirability
(%)

3.50 2.93 15.13 52.21 97.1

3.4. Result of AI-Based Model
Sensitivity Analysis of Input Variables

Many studies have popularly used the sensitivity analysis of datasets to treat the
inappropriate potential input variable in the modeling task, because utilizing the irrelevant
variable in the AI-based model reduces the accuracy of the prediction model and increases
the computational demand [58]. Therefore, the Pearson correlation matrix was used in
this study to determine the most sensitive variables from the experimental datasets, as
depicted in Figure 13. The parameter relevance decreases as it become closer to zero and
increases to unity (−1 or +1). The unity values translate the perfect variable. The +ve
and −ve values demonstrate a direct and inverse relationship between the independent
and dependent parameters. As shown in Figure 14, most input parameters showed a low
correlation value with the target parameter. Moreover, an inverse relationship existed
between flowability and target parameter, and compressive strength appeared to be the
most sensitive parameter for predicting the flexural of the PU–cement mortar with a PC
value of 4. The low correlation value between all input and target parameters is attributed
to the abnormal distribution of the datasets. The descriptive statistical feature of the input
and output parameters are summarized in Table 10.

Table 10. The statistical description of the dataset.

Parameters Description Symbol Unit Max Min Mean STD Skew. Kurt.

Input 1 Curing age C d 7.00 28 17.04 10.56 −2.05 0.089
Input 2 PU binder content PU % 0.00 25.0 13.69 10.31 −1.48 −0.30
Input 3 Compressive strength fc MPa 21.80 71.6 40.61 12.70 −0.65 0.636
Input 4 Flow ability F mm 90.00 230 178.6 61.68 −1.41 −0.74
Output Flexural strength ft Mpa 8.400 15.9 12.13 1.833 −0.98 0.001
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The variation and distribution in the strength of the most sensitive parameter and
target parameter in the modeling task are depicted in Figure 14. As noted in Figure 14a,b,
the flexural and compressive strength nearly follow normal distribution. Most of the
datasets are within the superimposed curve, and the mean values are concentrated at the
center of the curve, particularly for flexural strength data shown in Figure 14b, which reflect
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the lesser variation in the flexural strength dataset. The training data and testing data was
separated with vertical dotted line, shown on the left side of Figure 14a,b.

Figure 15 presented an agreement plot between the measured and predicted flexural
strength from ANN and GPR. It can be observed that predicted values using the GPR
model lie closer to the line with minimum deviation than the ANN model. The GPR model
achieved a higher coefficient of determination R2 values = 0.928 and 0.896 in the training
and testing phase than the ANN model, with 0.761 and 0.749. Similarly, the GPR model has
the lowest MSE, RMSE, and MAE values in both train and testing phases than the ANN
model (see Table 11), indicating that the GPR model outperformed ANN in predicting
flexural strength in both the training and testing phases.
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Table 11. Performance evaluation matrices.

Model
Training Testing

MSE RMSE MAE R2 MSE RMSE MAE R2

ANN 0.775 0.880 0.744 0.761 0.785 0.886 0.723 0.749
GPR 0.237 0.487 0.411 0.938 0.316 0.562 0.451 0.895
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A Taylor diagram and box plot are presented in Figure 16 to compare the performance
of the two models better. Taylor plots were used to show the prediction accuracy of the
GPR and ANN models in a schematic approach. Three statistical parameters, including the
correlation coefficient, RMSE, and standard deviations, were used to evaluate the degree
of compliance among the actual and predicted flexural strength. The Taylor diagram
(Figure 16a) shows that the GPR model has higher correlation and lower RMSE values than
ANN, which confirms that the GPR model performs better than the ANN model.
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Figure 16b presents a box plot in which the distribution of relative error of the two
models is presented for the two models. The value of the minimum, median, and maximum
error, and first quartile and third quartile, were the features used to judge the two models
performance. The lower quartile (Q25) value of the ANN model was−0.0456, and the upper
quartile (Q75) value was 0.552, which was higher when compared with the GPR model
where (Q25) and (Q75) is −0.0358 and 0.0395, respectively. The minimum and maximum
error of the ANN was −0.163 and 0.175, and the GPR model was −0.126 and 0.1400,
respectively, which shows the capacity of the GPR to predict the flexural strength compared
to the ANN model.

4. Conclusions

In this study, PUCM was modified with the level of NS particles and tested for me-
chanical properties tests. Response surface methodology and machine learning algorithms
were employed to optimize and model the cement mortar mixtures. The fresh and me-
chanical properties were used to train the machine learning algorithms, which included
artificial neural networks and Gaussian process regression. Four performance indicators
assessed the prediction accuracy of the developed. The conclusions outlined in this study
are stated below:

1. The mechanical properties of PUCM remarkably decreased with increases in PU
binder content, more pronounced in the compressive strength values. However, some
part of the lost strength was mitigated due to the reinforcing effect of NS particles.
The compressive strength of the PUCM25-0 specimen was 31.34 MPa, which appeared
to be the lowest strength among all the mixes.

2. The RSM/CCD developed models evaluated the mechanical properties of PUCM,
involving the PU binder and NS material as the independent variable with high
accuracy, with R2 values of 0.8760 and 0.9469 for the flexural and compressive strength,
respectively. The optimized PUCM mixture can be achieved by introducing 3.5% PU
binder and 2.93% NS particles by weight of cement.
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3. Artificial intelligence models were developed to predict the flexural strength of the
PUCM. The performance of the machine learning algorithms was tested using perfor-
mance indicators such as R2, MAE, MSE, and RMSE. The GPR algorithm outperformed
the ANN with higher R2 and lower MAE values in the training and testing phases.
The GPR can predict flexural strength with 90% accuracy, while ANN can predict
it with 75% accuracy. The Taylor diagram and box plots also confirmed that GPR
outperforms the ANN model.

4. The macro properties of the polyurethane–cement mortar were explored extensively.
However, the finding showed that polyurethane binder significantly affected the
mechanical properties of the cementitious-based composite, particularly compressive
strength. Therefore, the mechanism development behind these behaviors and how
the PU binder affects the reaction kinetics are essential, and may likely change the
microstructure of cement mortar, something which has not been explained. Thus, this
requires future research.
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