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Abstract: One approach employed in brain–computer interfaces (BCIs) involves the use of steady-
state visual evoked potentials (SSVEPs). This article examines the capability of artificial intelligence,
specifically convolutional neural networks (CNNs), to improve SSVEP detection in BCIs. Imple-
menting CNNs for this task does not require specialized knowledge. The subsequent layers of the
CNN extract valuable features and perform classification. Nevertheless, a significant number of
training examples are typically required, which can pose challenges in the practical application of
BCI. This article examines the possibility of using a CNN in combination with data augmentation to
address the issue of a limited training dataset. The data augmentation method that we applied is
based on the spectral analysis of the electroencephalographic signals (EEG). Initially, we constructed
the spectral representation of the EEG signals. Subsequently, we generated new signals by applying
random amplitude and phase variations, along with the addition of noise characterized by specific
parameters. The method was tested on a set of real EEG signals containing SSVEPs, which were
recorded during stimulation by light-emitting diodes (LEDs) at frequencies of 5, 6, 7, and 8 Hz. We
compared the classification accuracy and information transfer rate (ITR) across various machine
learning approaches using both real training data and data generated with our augmentation method.
Our proposed augmentation method combined with a convolutional neural network achieved a high
classification accuracy of 0.72. In contrast, the linear discriminant analysis (LDA) method resulted in
an accuracy of 0.59, while the canonical correlation analysis (CCA) method yielded 0.57. Additionally,
the proposed approach facilitates the training of CNNs to perform more effectively in the presence of
various EEG artifacts.

Keywords: BCI; SSVEP; CNN; EEG; data augmentation; transfer-learning

1. Introduction

Brain–computer interfaces (BCI) have been continuously developing over twelve
years. They enable communication for completely paralyzed people, but at the same time
they are increasingly being used by healthy individuals, for example in the entertainment
industry [1–5]. BCI employs several EEG potentials. The most common are brain potentials
associated with movement (ERD/ERS), P300 potentials, and steady-state visually evoked
potentials (SSVEP) [6,7]. SSVEP-based BCIs are relatively common because they are easy to
use. They require the user to observe flashing lights at a given frequency. The stimulators
can be specially constructed panels with LEDs or LCD screens [8–10]. SSVEPs appear in
the back of the head, where the visual cortex is located [11]. Many SSVEP-based interfaces
utilize a limited number of electrodes, typically positioned over the visual cortex at the
back of the head, with O1, O2, and Oz being the most commonly used [12]. We can observe
the dominance of brain waves with the same frequencies as stimuli and their harmonics in
the visual cortex. Power spectral density analysis (PSDA) methods [13] are the most widely
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used for feature extraction to distinguish stimulation frequencies. Dedicated methods
have also been developed, such as canonical correlation analysis (CCA) [14] or simplified
matching pursuit (sMP) [15].

Typically, a calibration session is performed in BCI systems to train the classifier to
detect specific patterns. These patterns may differ for each person and each EEG signal
registration. For example, each user may have slightly different SSVEPs (amplitudes). This
may be due to anatomical and physiological differences (thickness of the skull, properties
of head skin, structure of the cerebral cortex). Differences in the registration of SSVEPs
may appear even for the same person (different electrode placements, skin contact surface
with the electrode, stimulus power). In a calibration session, a user observes the known
stimulation frequencies. The recorded EEG signal for a given stimulation frequency allows
for the extraction of features to train the system. BCI can also run without a calibration
session. In this case, we analyze the stimulation frequencies and their harmonics in the
EEG signal. This simplification, however, results in lower efficiency of the system [16,17].

Features for SSVEP-based BCIs may encompass specific frequencies and their harmon-
ics [18]. These features are utilized to train the classification and decision-making systems.
For the SSVEP interface, numerous standard machine learning techniques are employed,
including k-nearest neighbors (K-NN), linear discriminant analysis (LDA), quadratic dis-
criminant analysis (QDA), support vector machines (SVM), and multilayer perceptron
(MLP), among others [19]. Additionally, deep learning techniques are used for this purpose,
with convolutional neural networks (CNN), long short-term memory networks (LSTM),
and autoencoders (AE) being the most common structures [20]. Deep learning techniques
offer several benefits, such as improved classification results and the capability for auto-
matic feature extraction from signals and images, as seen with CNNs [21]. However, the
disadvantages of deep learning are notable, including the necessity for a large dataset for
training and the extensive time required for network training [22]. Given that deep learning
techniques demand substantial training data, the development of effective methods for
augmenting EEG data recorded during calibration sessions presents a significant challenge.

In recent years, numerous solutions employing convolutional neural networks (CNNs)
for SSVEP detection have been developed. The study referenced in [23], discusses a
machine learning approach for detecting SSVEP using a minimal number of channels.
In [24], a proposed CNN model is compared with a standard neural network and other
leading methods for SSVEP decoding—such as canonical correlation analysis (CCA), a
CCA-based classifier, a multivariate synchronization index, and CCA combined with a k-
nearest neighbors (K-NN) classifier—in an offline analysis. The research in [25] introduces
a fusion algorithm (CCA-CWT-SVM) that integrates CCA, continuous wavelet transform
(CWT), and support vector machine (SVM) to enhance classification accuracy for targetless
stimuli when a single feature extraction method is used. In [26], a novel deep neural
network (DNN) architecture is presented that processes multi-channel SSVEP signals
by convolving across sub-bands of harmonics, channels, time, and classifies the signals
at the fully connected layer. In [27], a classification method based on a convolutional
neural network (CNN) was presented to enhance the detection accuracy of SSVEP amid
competing stimuli. The method was evaluated using a seven-class SSVEP dataset from ten
healthy participants. The study in [28] demonstrates the use of a compact convolutional
neural network (Compact-CNN), which requires only raw EEG signals for automatic
feature extraction, in decoding signals from a 12-class SSVEP dataset without user-specific
calibration. In [29], a nonlinear model based on a convolutional neural network, named
convolutional correlation analysis (Conv-CA), was introduced. Unlike pure deep learning
models, Conv-CA combines a CNN with a unique correlation layer, where the CNN
transforms multiple EEG channels into a single signal, and the correlation layer computes
the correlation coefficients between this transformed signal and the reference signals.
In [30], a complex-valued convolutional neural network (CVCNN) is proposed to overcome
the limitation of SSVEP-based BCIs, which is the available stimulation frequency. The
presented results demonstrate that the proposed method not only overcomes the limitation
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of the stimulation frequency but also outperforms conventional SSVEP feature extraction
methods. Articles [31,32] introduce a convolutional neural network (CNN) specifically
designed to learn the relationship between EEG signals and the templates corresponding to
each stimulus frequency of SSVEPs. The effectiveness of the proposed method is validated
by comparison with the standard canonical correlation analysis (CCA) and other state-
of-the-art methods for decoding SSVEPs (i.e., CNN and task-related component analysis,
TRCA, Vaughan, ON, Canada) using actual SSVEP datasets. The study confirmed the
efficiency of the proposed CNN-based network in decoding SSVEPs. A comprehensive list
of various algorithms used for SSVEP classification, along with signal recording methods,
number of channels, number of users, and classification accuracy, is available in the work
cited as [23].

The analysis of the literature indicates that the use of convolutional neural networks
allows for satisfactory SSVEP recognition accuracy. However, the practical application of
CNNs has been investigated only on a limited basis. This limitation pertains to issues such
as the small number of electrodes, extended training times for CNNs, the application of
transfer learning techniques, and the effectiveness of CNNs for user-independent classifi-
cation. A particularly significant challenge in practical CNN application for BCI systems
is the limited size of training sets. Typically, the training (calibration) session is brief and
includes only a few examples. While such a limited dataset suffices for classical machine
learning algorithms, CNNs require many more training examples. Data augmentation (DA)
strategies are beneficial in this context. There are numerous data augmentation techniques,
primarily developed for image processing, which include geometric transformations, flip-
ping, cropping, rotation, photometric and color transformations, and noise injection [33].
However, techniques used for augmenting image data are not directly transferable to EEG
data augmentation. Additionally, it is expected that not every data augmentation method
will be applicable to all potentials (P300, ERD/ERS, SSVEP).

In recent years, deep-learning techniques have been employed for data augmentation,
with autoencoders (AE) and generative adversarial networks (GAN) being two common
strategies. The impact of noise addition on time series is discussed in [34], where it was
concluded that although noise can disrupt the amplitude and phase information, it does
not change the spectral feature distribution. In [35], a data augmentation method based on
graph empirical mode decomposition was introduced to generate EEG data, merging the
benefits of the multiplex network model and the graph version of classical empirical mode
decomposition. In [36], the authors explored the constraints of DA for EEG in emotion
recognition. Direct geometric transforms and noise addition can impair the time domain
features, potentially resulting in a negative DA impact. The issue of limited training
data and a proposed solution are discussed in [37], where the authors employed the LST
algorithm to transform SSVEP data across different users and devices to compile a larger
dataset. In [38], a novel DNN model named FB-EEGNet for SSVEP target detection is
introduced. This model integrates features from multiple neural networks to leverage
information from various sub-bands and non-target stimulus data. Furthermore, it uses
multiple labels for each sample and optimizes the parameters of FB-EEGNet across different
stimuli to encompass information from non-target stimuli.

Aim of the Article

The aim of the article is to propose a CNN structure to classify SSVEPs for a signifi-
cantly limited training dataset. An important element of our research was the development
of an augmentation method dedicated to SSVEP detection. The data augmentation method
that we applied is based on the spectral analysis of the EEG signal. Then we compared the
efficiency of the proposed CNN with the methods commonly used for SSVEP detection,
such as: CCA, MLP, sMP, LDA, and QDA. All comparisons were made under the same
conditions: window width, number of testing examples, etc. The idea of our research is
presented in Figure 1.
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2. Materials

Five users aged 23, 25, 31, 42, and 46 participated in the experiment. The users sat
comfortably in a chair. A green LED of 1 cm diameter was placed at a distance of 1 m from
a person’s eyes. The brightness of the LED light was set based on user evaluation, to be
bright enough but not to cause discomfort.

The EEG signals were recorded using a g.USBAmp 2.0 (g.tec Guger Technologies,
Graz, Austria) with three active electrodes. Participants were exposed to flickering LED
lights at frequencies of 5 Hz, 6 Hz, 7 Hz, and 8 Hz. Research outlined in [39] examined the
impact of stimulation frequency and color on the signal-to-noise ratio (SNR) of the recorded
SSVEP responses, revealing that frequencies below 10 Hz are adequate for eliciting robust
SSVEP responses. Additionally, such stimulation frequencies were found to influence the
power of SSVEP responses. We chose frequencies of 5, 6, 7, and 8 Hz to ensure the stability
of the generated signals and to distinguish between stimulations with similar frequencies,
spaced 1 Hz apart. To generate stable frequencies, a Siglent SDG1062X function generator
was utilized. The LED was wired in series with a 220 ohm resistor, and the LED brightness
was regulated by altering the voltage at the function generator’s output.

The stimulation lasted for 20 s in the training sessions and for 10 s in the testing sessions.
To minimize circadian influences on the measurements, all sessions were conducted at
the same time each day. For the recordings, three measurement electrodes (O2, Oz, O1), a
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reference electrode (Ref), and a ground electrode (Gnd) to balance the amplifier potential,
were employed. The EEG signals were sampled at a frequency of 256 Hz. They were
processed using a Butterworth bandpass filter with a range of 0.1–100 Hz and a notch filter
set between 48–52 Hz to eliminate power network artifacts. The recorded database has
been made available on the Internet.

3. Methods
3.1. Data Augmentation

The method of data augmentation applied by us is based on the spectral analysis
of the EEG signal. First, the spectral representation of EEG signals is built on the basis
of previously recorded signals for stimulations with frequencies 5, 6, 7, and 8 Hz. The
data augmentation procedure for each of the EEG signal channels is independent. The S
signal recorded for each electrode is split into 1 s Sm windows. For the data recorded in the
experiment, the sampling frequency is fs = 256 Hz. A window width of N = 256 samples
was used, and the window was shifted with a small overlap of o = 10 samples. This made it
possible to create a large number of M time windows. Then, for each Sm window, a spectral
analysis was performed using discrete Fourier transform (DFT) [40]:

Xk = ∑N−1
n=0 (Sm)ne−

i2π
N kn (1)

The spectral analysis enables the determination of the amplitudes of individual fre-
quencies, which range from 0 to fs/2 Hz. The number of samples, N = 256, allowed for the
acquisition of a frequency resolution of the signal equal to 1 Hz. As a result of the DFT
analysis, we obtained the sets Pk = {Xk1, Xk2, Xk3, . . . , XkM} representing the amplitude
values for the frequencies k = 0. . . fs/2 Hz. The Pk sets were used to generate new EEG
signals. The augmentation algorithm enables the creation of a new artificial EEG signal
with any number of L samples. The algorithm to create an artificial EEG signal is as follows:

1. Create a new zero-time vector Sa of length L. This vector corresponds to the newly
generated EEG signal for time samples from 0 to L × T − T (with step T).

2. In a loop, for each value of frequency k = 0 to fs/2, perform the following:

a. Choose an Ar value randomly from the range 〈−0.82; 0.82〉,
b. Choose a ϕr value randomly from the range 〈−2π; 2π〉
c. Choose a Pkr element randomly from the Pk set
d. Update vector Sa according to the formula:

Sa = Sa + (Pkr + Ar) sin(2πkt + ϕr),

where t is a vector of time samples

3. Add a vector R of length L to the vector Sa containing values chosen randomly from
the range –ε to ε, where ε = 〈−1.84 × 10−8; 1.84 × 10−8〉
The result is a vector Sa corresponding to the newly generated EEG signal. Particular

attention should be paid to the ranges from which the values Ar, ϕr, and ε are to be
chosen. The typical values of the parameters were selected based on observations and were
Ar = 〈−0.82; 0.82〉, ϕr = 〈−2π; 2π〉, and ε= 〈−1.84 × 10−8; 1.84 × 10−8〉, respectively.

To obtain the augmented signal, the first 20 s of the recorded real EEG signals were
used. As a result of data augmentation, we obtained 90,000 examples per class for each user
(S01–S05), totaling 360,000 examples. Out of these, 10% were designated as validation data.
Consequently, the CNN training set comprised 324,000 examples, while the validation set
included 36,000 examples. Only the generated data were utilized for training the CNN.
However, to evaluate the network’s performance, the last 10 s of the real recorded EEG
signals were used. The method itself does not limit the number of examples that can be
generated. From several hundred real EEG examples, it is possible to generate several
thousand artificial examples. The morphology of the generated EEG signals is distinct,
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exhibiting completely new signal characteristics in the time domain. Nevertheless, the
generated EEG signal maintains the same statistical parameters as the real one. Moreover,
the spectrum of the generated signal closely resembles that of the real one. An illustration
of one second of the real EEG signal (in blue) and the generated signal (in red) is presented
in Figure 2. Figure 3 displays a histogram comparing samples of one second from the real
EEG signal (in blue) and the generated signal (in red), highlighting their strong similarity.
The spectra of the real EEG signal (in blue) and the generated one (in red) are depicted
in Figure 4.
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3.2. Convolutional Neural Network

The operation of CNNs is based on convolutional filters. When a signal passes through
these filters, it is transformed into a vast array of features that are then classified by a fully
connected layer. In the search for the optimal CNN architecture, the impact of varying
the number of convolutional layers (ranging from 2 to 5) was examined. Additionally, the
effect of the number of filters with values of 2, 4, 8, 16, 32, 64, 128, and 256 was evaluated.
Subsequently, the influence of different filter sizes—2, 4, 8, 16, 32, and 64—was investigated.
The selection of the network structure was derived from an automated search for the
optimal combinations of layer count, filter count, and filter size. During our research, we
did not consider the impact of the dropout layer on the CNN training process. During
the selection of the best parameters, different optimizer algorithms (ADAM, SGD) and a
range of values for InitialLearnRate (0.0001, 0.001, 0.01) and L2Regularization (0.01, 0.001,
0.0001) were evaluated. The search for the optimal combination of network structure and
learning parameters spanned several days. The best network structure and parameters
were determined based on the classification accuracy obtained for the validation data. The
accuracies for the validation set for the considered structures ranged on average for all
users from 0.65 to 0.72. The best results were achieved for the CNN network structure,
which consisted of four convolutional layers, applying a ReLU activation function after
each. The final convolutional layer, along with the subsequent ReLU layer, consists of
128 filters, resulting in a considerable number of features fed into the SoftMax classifier. The
ADAM optimizer [37] was employed to train the CNN network, with an InitialLearnRate
set at 0.001. Training was conducted over a maximum of 50 epochs, with a MiniBatchSize
of 128 and an L2Regularization factor of 0.0001. The architecture of the CNN used in this
study is detailed in Table 1. During the training of the network, the learning curve and error
for the validation data were observed. No signs of overfitting in the CNN were noticed.

To train a CNN, a large number of training examples are needed. During training,
we utilized a dataset obtained through the proposed augmentation method. However, for
testing the performance of the CNN, we employed EEG signals recorded during the test
session. The schematic for CNN application is presented in Figure 5. In the Supplementary
Materials, there is the source code of our developed method for EEG data augmentation, as
well as the code for the implementation of a CNN network that enables the classification
of SSVEP.
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Table 1. CNN structure.

No. Name of Layer Parameters

1 Input Layer 256 × 3 × 1 signals with zero-center normalization

2 Convolution_1 32 filters of size 8 × 3 with stride [1 1]
and padding ‘same’

3 Batch Normalization_1 Batch normalization with 32 channels

4 ReLU_1 ReLU

5 Convolution_2 64 filters of size 16 × 3 with stride
[1 1] and padding

6 Batch Normalization_2 Batch normalization with 64 channels

7 ReLU_2 ReLU

8 Convolution_3 128 filters of size 32 × 1 with stride
[1 1] and padding

9 Batch Normalization_3 Batch normalization with 128 channels

10 ReLU_3 ReLU

11 Convolution_4 128 filters of size 64 × 1 with stride
[1 1] and padding

12 Batch Normalization_4 Batch normalization with 128 channels

13 ReLU_4 ReLU

14 Fully Connected 4 fully connected layer

15 Softmax Softmax

16 Classification Output Crossentropyex
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3.3. Classical SSVEP Detection Methods

The proposed CNN algorithm has been compared with a number of classical methods
traditionally used for SSVEP detection. The concepts of utilizing classical and dedicated
algorithms for SSVEP detection are illustrated in Figures 6 and 7. Figure 6 demonstrates the
application of typical machine learning methods, employing classifiers such as LDA, QDA,
SVM, or MLP. The initial step involves training the classifier with data from a calibration
session. Only after this step can the test data be classified. The classification process begins
with the extraction of features from the EEG signal, followed by the selection of the most
effective features. Figure 7 delineates the application of typical dedicated methods (such as
CCA and sMP) for analyzing SSVEP. These methods do not necessitate a training session,
but they do require knowledge of the frequencies of the stimuli. The aim is to find base
signals that most closely correspond to stimuli at frequencies of 5 Hz, 6 Hz, 7 Hz, and 8 Hz.
Canonical correlation analysis (CCA) seeks a linear combination between EEG signals and
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sinusoidal signals at the stimulation frequency and its harmonics. The frequency sought is
the one for which the maximum correlation between EEG signals and sinusoidal signals,
either at the stimulation frequency or its harmonics, is observed to be the largest [41].
Another method tailored for SSVEP detection is the sMP algorithm, which is derived from
the well-known matching pursuit (MP) algorithm. However, the set of base functions in
sMP is drastically narrowed down to sinusoidal signals at frequencies specifically chosen
for visual stimulation.
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Traditional machine learning methods require a feature extraction stage. Frequency
analysis is often used to extract features from the EEG signal to detect SSVEP [42]. This is
because, during user stimulation with frequency k, we expect an increased amplitude of
the EEG signal in the visual cortex for the stimulation frequency k and its harmonics 2k, 3k.
In our experiments, feature extraction was performed using DFT analysis. The spectrum
was calculated from each second of the EEG signal, with a frequency resolution of 1 Hz.
Such resolution should be sufficient to distinguish between the SSVEPs at stimulating
frequencies of 5, 6, 7, and 8 Hz.

Feature vectors were constructed for each channel, corresponding to one of the
two cases:

1. All frequencies between 1 and 40 Hz were extracted.
2. Only the frequencies of possible stimulations and their second and third harmonics

were extracted. For the frequencies of 5, 6, 7, 8 Hz, these were, respectively: 5, 6, 7, 8,
10, 12, 14, 16, 15, 18, 21, and 24 Hz.
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Feature extraction was performed for each channel separately. The use of three EEG
signal channels triples the number of features. For case 1, there are 120 features, and for
case 2, there are 48 features in total.

To ensure that the classifier is correctly trained using standard machine learning
techniques, only the most useful features should be utilized, necessitating a feature selection
stage. Various methods are employed to select the best features, with filter and wrapper
approaches being the most common [43]. A typical filter method that is widely used is
the t-test, which assumes a normal distribution of features. We implemented the absolute
value two-sample t-test with a pooled variance estimate [44]. However, the t-test selection
is typically designed for two groups, and in our case, there are four classes (5, 6, 7, and
8 Hz). Consequently, we adopted a strategy of selecting the best features for one class
in contrast to all other combined classes. This approach allowed us to select the most
distinctive features for the groups: 5 Hz versus (6, 7, 8 Hz), 6 Hz versus (5, 7, 8 Hz), 7 Hz
versus (5, 6, 8 Hz), and 8 Hz versus (5, 6, 7 Hz). Subsequently, a subset of 14 features was
chosen, which yielded the best classification performance for the training set. The number
14 was determined experimentally.

Unfortunately, feature selection methods do not always yield the best results because
they do not consider the interdependencies between features [45]. A method that accounts
for these types of dependencies is sequential forward selection (SFS) [46]. This method
operates by selecting an initial feature, assessing the classification accuracy, and then
incrementally adding the feature that most improves classification. For feature selection
using SFS, the LDA and QDA classifiers were employed [47]. During the experiments, it
was observed that the optimal number of features for achieving the highest classification
accuracy was 25 for both LDA and QDA methods.

All experiments were conducted using MATLAB R2021a software on a computer
equipped with an Intel Core i7-9800X processor, 128 GB of RAM, and an NVIDIA GeForce
RTX 2080 Ti graphics card. The time required to execute various algorithms on the applied
dataset, considering the established training parameters, varied significantly. Table 2
illustrates the time required to create the augmentation set, train the different classification
methods, conduct feature selection, and train the CNN. However, it is important to note
that both the CNN and MLP algorithms used a GPU for their calculations.

Table 2. Execution times of the individual algorithms.

Algorithm Execution Time

Data set augmentation 12.115 s

CCA algorithm for classification (does not require training) 0.112 s

sMP algorithm for classification (does not require training) 0.311 s

Training the CNN for 50 epochs 145 min 8 s

Training the MLP 11.1 s

Training the LDA 14.3 s

Training the QDA 17.2 s

Training LDA with SFS/t-test feature selection 31.4 s/19.2 s

Training QDA with SFS/t-test feature selection 41.8 s/22.5 s

4. Results

Classification accuracy was used to evaluate the performance of individual classifica-
tion methods. This measure is commonly used to assess classifiers and the effectiveness
of BCI systems. The classification accuracy for each classifier was determined based on
the last 10 s of real recorded EEG signals. During testing, 1 s windows overlapping by
0.5 s were employed, resulting in 72 windows for four stimulation frequency classes: 5, 6, 7,
and 8 Hz. Table 3 shows the accuracy and macro average F1-score results obtained for the
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individual classification methods on the test set. Macro average F1-score provides a bal-
anced assessment of precision and sensitivity. In addition to the methods’ symbolic names
(CNN, CCA, sMP, MLP, QDA, LDA, QDA-SFS, LDA-SFS, QDA-T, LDA-T), details about
the data used at the classifiers’ input (EEG raw, DFT 1–40 Hz, DFT specific frequencies)
and selection methods (SFS with 25 features, t-test with 14 features) are included. The table
also indicates whether data augmentation was used for training (Y) or if it was the first 20 s
of the recorded EEG signal (N).

Table 3. Comparison of the classification accuracies for the tested methods.

Method CNN CCA sMP MLP QDA LDA QDA LDA QDA-SFS LDA-SFS QDA-T LDA-T

Input EEG raw DFT
1–40 Hz

DFT
1–40 Hz

DFT
1–40
Hz

DFT
5 Hz, 6 Hz, 7 Hz, 8 Hz, 10 Hz, 12 Hz, 14 Hz, 16 Hz,

15 Hz, 18 Hz, 21 Hz, 24 Hz

Training the
classifier on

the generated
data

Y N N Y Y Y N N N N N N

Feature
selection - - - - - - - - SFS

25 features

SFS
25

features

t-test
14

features

t-test
14

features

Accuracy

User S01 0.81 0.75 0.58 0.62 0.62 0.75 0.65 0.66 0.62 0.63 0.68 0.76

User S02 0.88 0.54 0.51 0.61 0.61 0.59 0.56 0.40 0.48 0.47 0.61 0.50

User S03 0.42 0.40 0.29 0.30 0.27 0.31 0.23 0.33 0.26 0.33 0.18 0.22

User S04 0.75 0.54 0.54 0.70 0.65 0.68 0.58 0.65 0.56 0.65 0.59 0.56

User S05 0.75 0.63 0.61 0.63 0.63 0.65 0.62 0.58 0.61 0.59 0.66 0.62

Mean value 0.72 0.57 0.51 0.57 0.55 0.59 0.53 0.52 0.51 0.53 0.54 0.53

F1-score

User S01 0.79 0.59 0.46 0.51 0.48 0.59 0.56 0.53 0.51 0.51 0.55 0.60

User S02 0.87 0.41 0.33 0.49 0.50 0.48 0.45 0.28 0.31 0.33 0.48 0.33

User S03 0.29 0.30 0.19 0.18 0.18 0.23 0.15 0.24 0.12 0.25 0.11 0.14

User S04 0.60 0.40 0.42 0.56 0.54 0.55 0.46 0.55 0.43 0.54 0.47 0.45

User S05 0.60 0.51 0.50 0.50 0.52 0.51 0.50 0.46 0.50 0.48 0.53 0.49

Mean value 0.63 0.44 0.38 0.44 0.44 0.47 0.42 0.41 0.37 0.42 0.42 0.40

The highest mean classification accuracy was achieved with the CNN at 0.72. A lower
average accuracy of 0.57 was observed for both CCA and MLP. The sMP method yielded
slightly inferior results, with an average classification accuracy of 0.51. Standard machine
learning methods that employ spectral features and feature selection achieved classification
accuracies ranging from 0.51 to 0.54. It is important to note that the classification pertained
to 1 s windows across four classes. The random operation of a four-class classifier would
result in a classification accuracy of 0.25. Therefore, it can be concluded that the methods
under consideration deliver satisfactory results that are practically applicable. Attention
should also be given to the variations in classifier accuracies among individual users.
These differences can be attributed to the psychophysical characteristics of the person
being tested and are a normal phenomenon. Additionally, some individuals are more
naturally inclined to generate SSVEP responses to visual stimuli. To determine if the
comparison of classification algorithms across five subjects (S01–S05) is reliable, statistical
tests were conducted. Given the small sample size and the uncertain distribution of
results, the non-parametric Wilcoxon–Mann–Whitney test was utilized [48]. p-values were
calculated from a two-sided Wilcoxon signed-rank test. The classification accuracy results
for the CNN method compared with other methods used by us (QDA, LDA, QDA-SFS,
LDA-SFS, QDA-T, LDA-T, CCA and sMP) were found to be statistically significant at
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p = 0.0625. The improved classification accuracy of the CNN network may be due to
its ability to automatically generate features. In contrast, other algorithms—whether
specialized for SSVEP interfaces (like CCA and sMP) or standard machine learning methods
(such as QDA, LDA, QDA-SFS, LDA-SFS, QDA-T, LDA-T)—relied on features derived from
frequency analysis.

Table 3 presents the calculated F1-scores for various SSVEP potential classification
methods. Among these, the CNN method attains the highest average F1-score of 0.63.
Other methods, including CCA, MLP, QDA, and LDA, exhibit comparable results, with
their average F1-scores ranging approximately from 0.44 to 0.47. This range indicates a
moderate level of effectiveness for these techniques in SSVEPs classification. The sMP
method recorded the lowest F1-score at 0.38, suggesting its comparatively limited utility.
Meanwhile, the QDA and LDA methods, after incorporating SFS feature selection and the
t-test, achieved F1-scores between 0.37 and 0.42. Overall, these findings imply that the
CNN method is the most effective for SSVEP classification, whereas the other techniques
demonstrate similar yet generally lower levels of effectiveness.

Future research should consider expanding the training dataset with EEG recordings
from a greater number of individuals and employing different methods of stimulation, as
well as various EEG signal acquisition systems.

5. Discussion

The results obtained can be converted into the information transfer rate (ITR), which
are commonly used to compare brain–computer interface (BCI) systems. Table 4 compares
the ITR results for individual users using both the CCA and CNN methods. The calculations
reveal significant variations in the practical usability of the BCI interface among different
individuals. It is important to note that the ITR was calculated based on the classification of
one second continuous EEG signal segments. The decision-making time and classification
accuracy substantially influence the information transfer rate. In practice, the actual ITR
would be lower than the estimated values. Nonetheless, we can approximate the disparity
in ITR by comparing the CNN and CCA methods for EEG signal classification. The largest
difference, favoring the CNN method, is observed for user S02, at approximately 60.3 bits
per minute, and the smallest for user S03, at 1.3 bits per minute.

Table 4. ITR comparison for classifiers [bit/min].

Subject CNN CCA

S01 59.8 47.5

S02 76.8 16.5

S03 5.95 4.6

S04 47.5 16.5

S05 47.5 27.7

Mean 42.0 19.9

It is important to consider that the analyses were conducted on SSVEP signals recorded
under specific conditions and with individuals who had no previous experience with SSVEP
interfaces, utilizing only three EEG signal electrodes. Various types of amplifiers, stimu-
lation methods (such as stimulus brightness and LED size), and numbers of stimuli have
been employed for recording SSVEP signals in the literature, complicating the comparison
of classification results and ITR values across studies. In publication [38], EEG signals
recorded using 8 channels and 12 stimulations were utilized, and the FB-EEGNet algo-
rithm applied for classification yielded an ITR of 70.45 bits/min. In publication [49], a
method based on task-related component analysis (TRCA) and an extended method based
on canonical correlation analysis (CCA) for a 40-class SSVEP were implemented, with
the online BCI speller achieving an average ITR of 325.33 ± 38.17 bits/min. Lastly, in
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publication [50], EEG data were recorded from 32 active electrodes, and by employing a
spatially-coded BCI, the classification method reached an ITR of 31 ± 17 bits/min in novice
users completing the task for the first time.

CNN delivers significantly better results for classification accuracy compared to other
methods. During CNN training, filter weights are optimized to select useful features. The
number of features processed through the fully connected layer is considerable: 128 filters
× 3 EEG channels × 256 features per filter. This exceeds the number of features derived
from selecting the 1–40 Hz frequency band, which is common in other methods. However,
interpreting the function of these filters can be challenging. We can visualize the effects
of these filters on the signals. Figure 8 displays a one second segment of the EEG signal
from the O1 channel during a 5 Hz stimulus. Figure 9 illustrates the same signal after
processing through a chosen filter from the fourth convolutional layer. Additionally, the
spectra of these signals are shown, allowing for the analysis of the filter’s effect. In Figure 8,
the original input signal to the filter has a broad frequency spectrum, but frequencies at
5 Hz, 10 Hz, and 15 Hz are not readily distinguishable. In contrast, Figure 9 reveals that the
output signal from the filter predominantly features frequencies around 5, 10, and 15 Hz,
which correspond to the stimulation frequency and its harmonics. Therefore, the signal
post-filtering contains frequencies potentially beneficial for the classification of SSVEPs.
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Several studies on CNNs indicate that the network is more robust to artifacts [51,52]. To
determine whether the CNN approach is more effective in classifying SSVEPs with artifacts,
we introduced Gaussian noise into the test signal. Gaussian noise closely approximates
EMG artifacts resulting from muscular activities like jaw clenching, tongue movement,
and swallowing [53]. We then attempted to classify sections of the noisy EEG signals for
stimuli at 5, 6, 7, and 8 Hz. The classification accuracies for the CNN and CCA methods are
listed in Table 5. Case I presents the classification accuracies (0.81 for CNN and 0.75 for
CCA) obtained with the originally recorded EEG signal, which had a standard deviation of
0.87 × 10−5. In Case II, Gaussian noise was added to the EEG signal with a standard
deviation of 5.99 × 10−6, leading to a decrease in classification accuracy (0.69 for CNN
and 0.54 for CCA). For Case III, the noise standard deviation was significantly increased to
1.60 × 10−5, which resulted in a further reduction in classification accuracy to 0.59 for CNN
and 0.45 for CCA.

Table 5. Comparison of classification accuracy for a noisy signal.

EEG Signal (Std) Noise (Std) CNN CCA

I EEG (0.87 × 10−5) - 0.81 0.75

II EEG (0.87 × 10−5) 5.99 × 10−6 0.69 0.54

III EEG (0.87 × 10−5) 1.60 × 10−5 0.59 0.45

The augmentation of EEG data using the proposed method proved to be effective for
SSVEP. This technique enables the creation of any number of training examples. However,
the data augmentation method does not account for inter-channel relationships. If there are
significant dependencies between channels O1, O2, and Oz—related to phase, frequencies,
or amplitudes, for instance—the method may not generate accurate data for network
training. Therefore, caution is advised when applying this technique to other potentials
used in BCI, such as P300 or ERD/ERS.

The results we obtained align with those of other researchers who have applied CNN
and deep learning to classification tasks in BCI systems. The experiment detailed in [54]
involved nine flicker stimuli of different frequencies, and a CNN-based multitarget rapid
classification method was constructed for nine classification tasks. The average accuracy
of AR-BCI using the CNN model at a 1 s stimulus duration was about 81.83%. In [55],
to enhance the classification accuracy of SSVEP signals during movement, SSVEP data
were collected from five targets moving at speeds of 0 km/h, 2.5 km/h, and 5 km/h. A
convolutional neural network (CNN) was developed to discern the relationship between
the EEG signal and the pattern corresponding to each stimulus frequency. The proposed
method outperformed traditional methods (i.e., CCA, FBCCA, and SVM) at all speeds,
with CNN accuracies of 86.08%, 71.53%, and 60.63% from the lowest to highest walking
speeds, respectively. In [26], the use of 64 channels yielded excellent results; however,
when reduced to three channels, the classification accuracy was approximately 51% and
42% for sets of EEG signals. In [56], a BCI was utilized in an online experiment to spell
the word ‘SPELLER’ using a 2 s time window. The system attained an average accuracy
of 97.4% and an information transfer rate of 49 bpm, demonstrating the practicality and
feasibility of implementing a reliable single-channel SSVEP-based speller using a 1D CNN.
The study in [57] introduced a filter bank convolutional neural network (FBCNN) ap-
proach to optimize SSVEP classification. Three filters, each covering a harmonic of the
SSVEP signals, were used to extract and differentiate the relevant components, with their
information transformed into the frequency domain. Experimental results indicated that
FBCNN enhances the performance of CNN-based SSVEP classification methods and holds
significant potential for SSVEP-based BCIs. FBCNN results were approximately 2% better
than those of traditional CNNs, though a wide dispersion of results was observed for both
methods, varying by individual.
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When attempting to implement CNNs in practical applications, certain challenges may
arise. In our study, the classification time for 1 s of EEG signal was a rapid 3.7 ms. However,
the training time required for the CNN poses a challenge. Here, transfer learning techniques
could be vitally important. Utilizing transfer learning may necessitate adjustments to the
signal sampling frequency and the number of network inputs, which must align with the
number of recorded EEG channels. Additionally, it is crucial to retrain the network using a
relatively large dataset.

We implemented the CNN proposed in article [26] to explore the potential of using
transfer learning. The proposed network yields impressive results, achieving close to 98%
accuracy for 1 s segments of the signal across all 64 channels. Its architecture reflects an
understanding of EEG signal processing and analysis methods. The network was originally
trained on data from 70 healthy individuals and 40 target characters, which flickered
at frequencies ranging from 8 to 15.8 Hz in 0.2 Hz increments. This training used EEG
data recorded at 250 Hz. We adapted this network structure for the data recorded from
users S01–S05. The adaptation involved modifying the first and last layers of the CNN
to accommodate three input channels (O1, O2, Oz) and four SSVEP frequencies (5 Hz,
6 Hz, 7 Hz, 8 Hz). We then retrained the network with the EEG training data, using the
initial 20 s of the actual recorded EEG signal for S01–S05 users, after resampling the signals
from 256 Hz to 250 Hz. Subsequently, we calculated the classification accuracy for SSVEP
recognition on the training data (last 10 s) for each user. The classification results obtained
for the adapted CNN [26] using transfer learning techniques are summarized in Table 6.
The table also includes comparative results from the CNN network that we developed as
well as the CCA method.

Table 6. Comparison of classification accuracy for CNN [26].

Subject CNN [26] Our CNN CCA

S01 0.85 0.81 0.75

S02 0.55 0.88 0.54

S03 0.30 0.42 0.40

S04 0.52 0.75 0.54

S05 0.82 0.75 0.63

Mean 0.61 0.72 0.57

The average recognition accuracy for the CNN [26] method is 61%, for the CCA
method it is 57%, and for the CNN that we proposed, which includes data augmentation,
it is 72%. These results suggest that the application of transfer learning techniques yields
better outcomes than the use of standard machine learning methods like CCA. Nonetheless,
our specialized approach achieved an 11% higher accuracy.

6. Conclusions

The results presented demonstrate that the use of CNN can significantly enhance
the efficiency of SSVEP-based BCIs. Compared to traditional machine learning methods,
CNN can provide up to 20% better results. This improvement leads to a substantially
higher ITR and more effective BCI system operations. A CNN classifier trained for this
purpose is more resistant to artifacts in the EEG signal than other SSVEP detection methods.
The data augmentation method proposed for calibration sessions enables effective CNN
training. Unfortunately, the use of CNN is not without practical limitations. One drawback
is the extensive training time required, which may span several hours. Additionally, high
classification accuracy is typically achieved only when the data from a specific individual’s
calibration session are used for training. Furthermore, the same network structure cannot
be directly applied to different databases. The CNN structure must be modified for signals
recorded with varying equipment and different sampling frequencies.
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