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Abstract: In practical applications, the multidisciplinary dynamic system design optimization
(MDSDO)-based solution is limited by uncertainty, which causes random variation in the physical
design variable in the static discipline and the equation of state in the dynamic discipline. To address
the lack of reliability of the MDSDO solution, a crossrate-based MDSDO approach (C-MDSDO),
consisting of the MDSDO stage and a reliability assessment stage, is proposed in this paper. In the
reliability assessment stage, a sub-optimization problem based on the crossrate of the objective relia-
bility index sample trajectory is designed to obtain the shifting vector, which is employed to obtain a
sufficiently reliable solution. In addition, the proposed approach adopts a sequential problem-solving
framework that avoids nested optimization and a reliability assessment. One numerical case and
two engineering cases were employed to validate the effectiveness of the proposed method. The
results show that the reliability of the proposed solutions significantly improved.

Keywords: multidisciplinary dynamic system design optimization; sequential approach; reliability
assessment; shifting vector; crossrate

1. Introduction

In engineering applications, designing a complex system such as a flying vehicle
always involves time-independent static and time-dependent dynamic disciplines. In
the traditional design method, the design process of the physical design of static disci-
plines and the control strategies of dynamic disciplines are performed separately and
sequentially. The control strategy is developed based on the physical design solution,
which is completed beforehand [1,2]. In the design of static disciplines, the design vari-
ables involved in different disciplines are highly coupled, which makes traditional design
approaches inefficient. Therefore, researchers proposed the multidisciplinary design opti-
mization (MDO) theory, which decouples the various disciplines and significantly improves
problem-solving efficiency [3]. The commonly used MDO approaches can be categorized
into two types: the single-level approach and the multilevel approach [4]. Commonly
used single-level optimization approaches can be further divided into multidisciplinary
feasible (MDF) and single-disciplinary feasible (IDF) approaches [5,6]. In contrast, com-
monly employed multilevel optimization approaches include collaborative optimization
(CO), concurrent subspace optimization (CSSO), bi-level integrated system collaborative
optimization (BLISS), and analytical target cascading (ATC) [7-10]. In order to improve the
applicability of the above MDO method, researchers propose many improvements [11,12].
As for the design approach for dynamic disciplines, researchers focus on the trajectory
optimization of control objects, which is known as the optimal control problem (OCP) [13].
The most frequently used OCP approaches can be divided into indirect and direct ap-
proaches [14]. In the indirect approach, the boundary condition and the Hamilton—Jacobi
information of the control object are derived on the basis of the maximum principle, and the
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control problem is converted into a boundary value problem [15,16]. In the direct approach,
i.e., direct transcription (DT), the control problem is converted into nonlinear programming
(NLP) using discrete control and state variables at the time nodes. Typical direct approaches
include control vector parameterization and orthogonal collocation [17,18].

The design approaches for the static and dynamic disciplines are fairly well developed
and enable the optimal solution to be obtained for each discipline. However, it is difficult
to obtain the optimal solution for a whole system with a split design process [9]. Therefore,
researchers proposed the multidisciplinary dynamic system design optimization (MDSDO)
theory by introducing the concept of integrated design. Azad et al. coupled the optimization
process of static and dynamic disciplines to form the nested optimization algorithm [19].
Furthermore, various researchers constructed the surrogate model of the right-hand-side
function of the state equation in the inner dynamic discipline optimization loop, which
significantly improves the efficiency of the inner loop and overcomes the inefficiency of
the nested algorithm [20-22]. Moreover, other researchers employed the simultaneous
optimization approach [23,24]. The research on MDSDO is still in its developmental stage,
and its problem-solving approaches need to be further improved.

In the static discipline of an MDSDO problem, design variables may vary because of
certain known or unknown factors, which is known as the “uncertainty”. To avoid the
negative effects associated with uncertainty in design approaches using static disciplines,
researchers proposed reliability-based design optimization (RBDO) [25,26], which assesses
the deterministic solution and improves its reliability based on the assessment result. In
addition, the practicality of the approach is significantly enhanced by further improve-
ments [27,28]. Since the static discipline is an essential part of MDSDO, introducing the
reliability assessment also acts to improve reliability-based design optimization for the
MDSDO problem. The findings related to reliability-based MDSDO remain limited. Some
researchers propose a three-loop framework, in which the reliability assessment is directly
nested in the static discipline design loop [29]. However, as the complexity of the problem
increases, the efficiency of this nested framework becomes insufficient. Certain researchers
propose a transformation-based reliability-based MDSDO framework by transforming
the uncertainty design variables into equivalent deterministic and concomitant variables
and adding equality constraints in the optimization process of the dynamic discipline [30].
However, this approach changes the original control problem of the dynamic discipline,
and the optimization results in the literature show that the reliability indexes of the obtained
solutions do not reach the necessary reliability requirements.

In this paper, a crossrate-based MDSDO approach (C-MDSDO) is proposed, which
avoids the nesting of the reliability assessment loop and can stably obtain a solution that
meets the reliability requirements. C-MDSDO is a single-loop framework that consists
of a deterministic MDSDO stage and a reliability assessment stage. In each iteration,
the obtained solution from the deterministic MDSDO stage is evaluated in the reliability
assessment stage, and the shifting vector that guides the deterministic solution to meet the
reliability requirement is obtained according to the assessment result. Since the shifting
vector in reliability-based MDSDO must simultaneously consider the impact of uncertainty
on the design variables, the state variables, and the control variables, the traditional criteria
for the vector solution in the traditional SORA is not applicable. Therefore, a novel sub-
optimization problem is formulated. In the formulated problem, the uncertainty samples
of the design variables that satisfy the objective reliability index are employed as the
optimization object to obtain the inverse most probable point (iMPP)-based shifting vector,
which is employed to obtain the initial values of the physical design variables for the next
iteration. As a result of the proposed formulation, the difficulty associated with searching
the shifting vector due to the decoupling of state variables, control variables, and design
variables in the constraints is resolved. Furthermore, our method increases the vector
searching efficiency when multiple MPPs exist in highly nonlinear constraints. In the
proposed approach, the properties of the original dynamic discipline are maintained, and
the framework structure is simple. Several numerical and engineering cases were used
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to verify the effectiveness of the proposed approach. Moreover, the results from various
studies were used for comparison. The results demonstrate the effectiveness and reliability
of the proposed method.

The rest of this paper is organized as follows. In Section 2, the definition of the
reliability-based MDSDO problem in this paper is given. In Section 3, details of the
construction and the process used for the sub-optimization problem are described. In
addition, the algorithm flow of the proposed C-MDSDO is elaborated. In Section 4, several
case studies are presented that verify the effectiveness and reliability of the proposed
approach. The test results are discussed in Section 5, and conclusions are drawn.

2. Multidisciplinary Dynamic System Design Optimization and Uncertainty

In the design of a complex system, the coupling of static and dynamic disciplines is
almost unavoidable. MDSDO theory achieves the unification of two types of discipline
design optimization through decomposition and coordination. An MDSDO problem can
be expressed as the following mathematical expression:

d’xrzz)iﬁ(t) ¢(d, x(t)u(t),t)

subject to x — f(dx(t)u(t),t) =0 @
h(dx(t),u(t),t) =0
g(dx(t)u(t),t) >0

where ¢(-) is the optimization objective, x(-) is the state equation, h(-) is the equality
constraint, g(-) is the inequality constraint, d represents the design variable, x(t) represents
the state variable, and u(t) represents the control variable.

An MDSDO problem is commonly solved using the co-design framework in MDF,
which is a two-loop structure flow in which the outer loop is design variable optimization
and the inner loop is control optimization [31]. The flow chart of the co-design framework
is shown in Figure 1.
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Figure 1. The algorithm flow chart of MDSDO.

The outer loop of static discipline design optimization can be expressed as follows:
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mjn ¢* (dx(t),u(t),t)
subject to  g(d,x(t),u(t),t) >0

@

where the state variable x(t) and the control variable u(t) are derived from the inner loop.
The optimization problem of the inner loop is expressed in the following, where the
design variable d is provided by the outer loop.

min o(d,x(t),u(t),t)
x(t)u(t)
subject to x — f(dx(t),u(t)t) =0 (©)
h(d,x(t)u(t)t) =0
g(dx(t)u(t)t) >0

As mentioned in the introduction, the internal optimization problem expressed above
is also known as the OCP. The OCP is commonly solved by DT, which transforms the
infinite-dimensional original dynamic problem into a finite-dimensional NLP using discrete
variables on the time interval. Sequential quadratic programming (SQP) is employed to
solve the NLP as expressed below.

Mrfﬁu ¢(d, My, My)

subject to  &(d,My,M,) =0 4)
h(d,My,M,) =0
g(d, M, M,) >0

where M, represents the discrete state variable matrix, M;, represents the discrete control
variable matrix, and ¢ represents the discrete equation of state vectors.

Using the co-design framework, the problem of the traditional split sequential ap-
proach not being able to obtain a system-level optimal solution was solved by researchers.
However, as a result of uncertainty in manufacturing, certain physical design parameters
cannot reach an ideal value. Under such conditions, the performance of static disciplines
is affected, and the state trajectory of dynamic disciplines coupled with design variables
changes drastically. The continued application of the deterministic MDSDO solution may
lead to unexpected failures. Therefore, it is necessary to introduce reliability assessment to
evaluate a deterministic MDSDO solution and obtain a reliability-based MDSDO solution.

In this paper, a test case was employed to demonstrate the impact on the dynamic
discipline state trajectory when the design variables in the static discipline are subject to
uncertainty. The Monte Carlo sampling (MCS) technique was used to generate 10,000 MCS
samples that obeyed the random distribution of the design variables. These random
samples represented the value of the physical variable that could be taken when subject to
uncertainty. With the assistance of the known differential equation, the state trajectory of
each random sample was inverted. The trajectory of the deterministic MDSDO solution
and the trajectories of the corresponding uncertain samples are shown in Figure 2. First,
we randomly selected uncertainty samples with deviations of 10, 20, and 30, and their
corresponding state trajectories are shown in the figure. As can be observed from the
figure, the difference between the corresponding state trajectory and the deterministic state
trajectory gradually increases with an increase in deviation of the uncertainty sample. Then,
by employing the MCS technique to generate a large number of uncertainty samples, the
range of possible trajectories of the deterministic MDSDO design under the impact of the
uncertainty can be obtained. This variation range is shown by the green trajectory curves.

The constraint function in this case required the state variable to be no less than —0.4.
In Figure 2, there are a large number of green lines crossing the critical value of —0.4, which
means that there is a considerable probability of failure when the MDSDO solution is
affected by uncertainty. In practical applications, this MDSDO design is clearly not feasible.
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Figure 2. The influence of uncertainty on the system state trajectory. (a) Influence of the uncertainty
samples with deviations of 10, 20, and 30. (b) Influence of the MCS-based uncertainty samples.

This section introduces the definition of MDSDO and discusses the impact of uncer-
tainty on the MDSDO solution, which illustrates the necessity of introducing reliability
assessment. In the next section, the definition of the reliability-based MDSDO problem
solved in this paper is given, and the proposed C-MDSDO approach is described.

3. The Proposed C-MDSDO

There is no uniform definition of the reliability-based MDSDO problem. Hence, this
paper attempts to define the problem and propose the approach from the perspective of
practical applications. Under actual circumstances, uncertainty is inherent in both static
and dynamic disciplines. However, for the dynamic discipline with equality constraints,
considering the constraint to be constant makes the problem complicated or even unsolvable
in any case. As an attempt to introduce reliability into MDSDO, the control strategy of the
dynamic discipline is regarded as stable and reliable in this paper. At the same time, the
design variables of the static discipline suffer from uncertainty. In general, this paper aims
to obtain a generalized control strategy that satisfies the constraints of the system when the
uncertainty design variable exists.

The reliability-based MDSDO problem solved in this paper is expressed as the follow-
ing formula:

n(1ti)n © ¢(ud1x(t)ru(t)rt)
subjectto % — fugx(B)u(t)t) = 0 5)
h(ug,x(t)u(t),t) =0

Prob[g(ug,x(t),u(t),t) > 0] > O(p)

where uq represents the mean of the design variable, and f represents the objective of the
reliability index.

As shown in the formula, the design variables here are coupled in dynamic disciplines.
As discussed previously, the problem can be solved by discretizing the problem using DT
and performing the reliability assessment at each time point. However, the disadvantage
in efficiency is clear. Therefore, a sequential C-MDSDO approach is proposed to solve the
problem related to the efficiently of the above formula. C-MDSDO consists of a deterministic
MDSDO stage and a reliability assessment stage. A sub-optimization problem is constructed
to achieve the reliability assessment. In the following section, the overall algorithm flow is
presented, and then the constructed sub-optimization problem is described in detail.

3.1. Algorithm Flow of the Proposed Approach

In C-MDSDO, the available co-design algorithm is first employed to obtain a deter-
ministic solution, which is applied for the reliability assessment in the following stage. The
reliability assessment is based on a constructed sub-optimization problem, in which the



Appl. Sci. 2023,13, 1600

6 of 22

k=0

!_ ! | l Reliability assessment stage -
| M— _ — _ — | |4 (7).-d¢ | Sub-optimization :
: | Design variable I . "| problem solving loop |
[ | optimization | : |

: | 4 || : ‘ |
! | v | | I Shifting vector v, .
* MDSDO | : | ; I
! Stage | Optimal control | | | * :
| —— | k=k+1 !
| | i ' !
. Objective ¢ | . Design variable :
| Converge ; movement I
! ' - | I dra=di+V; :
' I
U (R N Lo =1 —_— s —

stochastic optimization algorithm is used to obtain the shifting vector. With the assistance
of the shifting vector, the constraints of the deterministic MDSDO problem are gradually
modified, and the constraints are used for the next iteration. When the objective and
reliability index converge, the solution to the MDSDO problem satisfying the reliability
index is obtained. This decoupled sequence framework effectively avoids nesting reliability
assessments in complex dynamic discipline optimization. The flowchart of C-MDSDO is
shown in Figure 3.

Initial design

Objective ¢ &
reliability index £

MCS-based failure
probability calculation

Y Output
dpxp (1), ug (1)

Converge

Figure 3. The algorithm flowchart of the proposed approach.

The details of each C-MDSDO step are as follows:

(a) Theboundary constraints of the design variables, state variables, and control variables
are established given the initial guesses;

(b) The co-design framework is employed to obtain the solution of deterministic MDSDO
of thestep k = 1;

() MCS population is established for calculating the failure probability based on the un-
certainty information of design variables. The state trajectories of the MCS population
are deduced based on the Runge-Kutta method and the control trajectories ug(t). The
failure probability is calculated for the state trajectory of the MCS population, and the
objective performance is calculated.

In this study, the MCS population number was set to 1e5, and the state trajectory
deduction method is described in Section 3.2. Figure 2 in the previous section shows the
deduction trajectory Xj(t) of a test case. In addition, the failure probability and reliability
index are calculated as shown in Formula (6).

p=2"(pf) 6
pf = num[g(dM,XZGA(t),u(t),t)EO] (6)
M
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where num[g(dp, Xp(t), u(t), t) > 0] represents the number of MCS populations that vio-
late the constraint.

(d) If the objective performance is convergence and the reliability index is satisfied, go to
g otherwise, gotoe;

(e) The design variables dy and control trajectories uy(t) in step k are substituted into
the formulated sub-optimization problem for reliability assessment, and the shifting
vector vy, is obtained;

(f)  The shifting vector is used to obtain the initial values of the design variables of the
next iteration k + 1 with dy 1 = dy + v¢. Go back to b;

(g) The algorithm is terminated, and the reliability-based MDSDO result is output.

This section describes the main framework of the proposed approach and elucidates
the relationship between the main problem and the sub-optimization problem. In the next
section, the formulation of the sub-optimization problem is described. On the basis of the
formulated sub-optimization problem, the problem-solving method of the shifting vector
is presented, which is employed to improve MDSDO reliability.

3.2. Reliability Assessment with the Formulated Sub-Optimization Problem
3.2.1. Accompanying Sample for the Formulated Sub-Optimization Problem

The SORA is a popular framework in the static discipline that can solve various
reliability-based optimization problems. MPP searching is the core part of the framework,
and it determines the calculation of the shifting vector, which is employed to help to
find a sufficiently reliable solution. In each iteration step, constraints are shifted with
the vector, and the feasible domain gradually shrinks until the reliability index meets the
objective requirement.

However, in an MDSDO problem (5), the constraint is usually coupled with the control
variable and the state variable. Although it is possible to obtain the i-MPP using the SORAs
at each time node through time discretization and calculate the shifting vector using a
certain criterion, this will undoubtedly consume a great deal of computational resources.
Therefore, in this paper, instead of searching for the i-MPP of the design variable solution,
random numbers of the accompanying sample R satisfying the objective reliability index
are generated, as shown in Figure 4, where the accompanying samples with the reliability
indexes p =1, B = 2, and B = 3 are shown with different colors.

0r

7 #=1R -+ [(3=3R
or © G=2R Design variable solution

6 4 2 0 2 4 6

Figure 4. The generation of the accompanying samples.
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The generation of the accompanying sample is expressed as in Formula (7):

find R

. _ @)
subject to.||Ug]| = Buy

where U represents the accompanying sample in the normal space, and f; is the objective
reliability index.

Since the accompanying samples are employed in the sub-optimization problem, ex-
cess accompanying samples will increase the burden of the optimization process. Therefore,
according to the dimension dim of the reliability-based MDSDO problem, Nump = 4dim
accompanying samples are employed as follows.

(@) According to the dimension dim of the design variable in the reliability-based MDSDO
problem, vectors for the accompanying sample generation are generated. In Formula
(8), the values of vector components are all random numbers, and the interval is
between 0 and 1;

011,912,913/ - - -, 01 dim
02,1,02,2,023,---,02 dim
Tr = [T1, 72,3, -, TNumg | = | 031,032,033, -, 03 dim (8)

ONumpg,1- ONumpg,2s ONumg 37 - - -  ONumpg,dim

(b)  According to the objective reliability index f,y; of the reliability-based MDSDO prob-
lem, the accompanying samples are obtained.

Tr
R=—R B, 9
||TRH ﬁoh] ( )

3.2.2. Formulated Sub-Optimization Problem and Problem-Solving Process

To avoid neglecting the influence of the objective function performance when optimiz-
ing the reliability index of the solution, the objective function performance is introduced
into the shifting vector search process to form the suggested sub-optimization problem, as
in Formula (10).

min ¢(di — Vi, Xgo (£) 0k (t),£) - Crate (Ry)
A%
subject to x — f(Rg — Vi, Xgo (t),ug(t),t) =0 (10)

diin < dg — vi < dipgax

where k represents the iteration step of the MDSDO stage, v; represents the shifting vector,
d; represents the design variable solution from the MDSDO stage, u(t) represents the
control strategy from the MDSDO stage, and X, (t) and xg, (t) are the deduction trajectories
obtained based on (dy — vi) and (R — vi), respectively. The deduction method is described
in the following. Cyqt is the index of the constraint violation and is denoted the “crossrate”.

Crate counts the number of constraint violations of the trajectory in the observation
point, which is deduced based on the accompanying samples R;. Therefore, to illustrate
the crossrate calculation method, the deduction process needs to be described.

In the traditional approach, the solution of the design variable d from the MDSDO
stage is directly used in the reliability assessment stage. The solution of the state and
control variable is processed under an ideal situation. However, in a practical situation, the
accompanying sample Ry represents the product with the limit reliability index, so that it is
on the verge of failure. Without additional calibration, the product Ry will apply the same
control strategy ui(t) as the ideal product. Therefore, in this paper, the control strategy
uy (t) that was designed on the basis of the deterministic situation is employed to deduce
the state trajectory.

Since the control strategy from the previous process and the equation of state are
known, the fourth-order Runge-Kutta method can be adopted for the deduction process of
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the accompanying samples. This method applies Formula (11) to obtain the scatter of the
state trajectory within the given time interval based on the known equation of state, the
initial state, and the given step size.

{ x(m+1) = x(m) + 4(q; +2q, + 295 + q,) (11)
x(0) = xp

where X is the initial state, x(m) are the discrete points at the time node m, and 1 is the
given step size. Other parameters are calculated as shown in Formula (12).

q; = f(t(m), x(

2

m) + 2 x(m) + &
q = f(t( )"’if( )+iql (12)
q; = f(t(m) + 7,x(m) + 39,
qy = f(t(m) + h,x(m) + hqy)

where f(-) represents the equation of state of the system and t(-) is the given time node.

At the beginning of trajectory deduction, each accompanying sample is substituted
into the original equation of state to obtain the corresponding initial state value. Then, the
deduction trajectory of each accompanying sample is obtained with the control strategy
uy(t) and the given discrete-time t(-) that are obtained in deterministic MDSDO. Once the
deduction trajectories of the accompanying samples are obtained, the calculation of the
crossrate Crqt, can be performed as follows.

Numg'
Numpg

Cmte(Rk) =1+ (13)
where nump represents the number of accompanying samples and Numpg' represents the
constraint violation number of the accompanying samples.

Thus, the composition of the sub-optimization problem, the deduction of the state
trajectory, the selection of the control trajectory, and the calculation of the crossrate are
presented. The complete algorithmic flow of the sub-optimization problem is described in
the following, and the flow chart of the proposed reliability assessment stage that contains
the sub-optimization problem-solving loop is shown in Figure 5.

(@) Ineach step k, the solution {dy,uy(t)} from the deterministic MDSDO is employed as
the initial condition of the sub-optimization problem;

(b) According to the uncertainty information, the accompanying samples Ry, that satisfy
the objective reliability index B;. are generated;

(¢) The random optimization algorithm is employed to solve the sub-optimization prob-
lem shown in Formula (10). Particle swarm optimization is employed in this paper;

(d) In each iteration, according to the control trajectory ui(t), the deduction trajectory
of the Ry — vy is obtained. The Cj,t and the performance of the objective function
in Formula (10) of each particle are calculated. The particle optimum and global
optimum are compared and updated, the particle position is updated, and the next
iteration is performed;

(e) The convergence condition of the sub-optimization problem is satisfied. The shifting
vector vy is output. Otherwise, the step-d iteration is continued;

(f) The sub-optimization loop is terminated, and the design dy in step k is shifted with
dj..1 = dy + vy, which is treated as the initial condition of the next deterministic MDSDO.
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Figure 5. The flow chart of the proposed reliability assessment loop.

This section attempts to define the reliability-based MDSDO problem studied in
this paper. For definition, the main structure of the C-MDSDO approach proposed in
this paper is first introduced, which consists of a deterministic MDSDO stage and a sub-
optimization-based reliability assessment stage. Then, the construction of the suggested
sub-optimization stage and the algorithm flow are presented. Moreover, the generation of
the accompanying samples, the deduction of the state trajectories, and the selection of the
control strategies are described. In the next section, several case studies are employed to
verify the effectiveness of the proposed C-MDSDO, and the result from a similar study is
introduced for comparison.

4. Test Example

Since there is little research on reliability-based MDSDO, it is difficult to use existing
results for comparison. In this paper, only the optimization results of the developed
algorithm can be utilized in the first case to demonstrate the advantages of the proposed C-
MDSDO. Moreover, two other cases were employed to further validate the effectiveness of
the proposed approach, one of which is a commonly employed OCP problem in which the
physical design variables are usually taken to be constant. The other case is an engineering
case of a three-degree-of-freedom robot arm with black-box equations of state.

4.1. Van Der Pol Oscillator

The Van Der Pol Oscillator [30] is a classical numerical case of optimal control with
two design variables [dj, d,], two state variables [x1, x2], and one control variable [u]. In
OCP, the design variables are usually taken to be constant values before further trajectory
optimization. In this paper, the design variables were also treated as optimization objects
and were attributed with uncertainty in order to verify the effectiveness of the proposed
approach. The mathematical expression of this case is shown in Formula (14). The original
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constraint was transformed into a reliability constraint, and the objective reliability index
was set as § = 3.

min ¢ = [[xF(t) + x4 (t) +u?(t)]dt

d,x(t),u(t)

subject to x1(t) = x1(t) (1 — x3(t)) — drdoxa(t) + u(t)
xo(t) = x1(t)
problg = — x1(£) — 04 > 0] < &(—p)
‘B = 3, d1 ~ N(ydl,0.0Z), dz ~ N(yd2,0.03)
d :[dl,dz], X :[xl,xz], t= [0,5]
dmin <d< dmux
Xmin < X < Xmax
Wyin < U < Upay

C—wu

(14)

The boundary condition of all the variables is listed in Table 1. In addition, the initial
and the final conditions of the state and control variables are listed in the same table. In

this case, only the initial condition of the state and control variables are given, with no
limitation for the final condition.

Table 1. The information of the design, state, and control variable of test 4.1.

Range
Variable . Initial Final
Max Min
[d1,da] (5, 5] [-5, 5] / /
[xll XZ] [2/ 2] [2/ _2] [O/ 1] /
[u] —-0.5 1.5 -0.5 /

To clearly illustrate the influence of uncertainty on the state trajectories, the optimized
deterministic state trajectory and the state trajectories affected by uncertainty are shown
in Figure 6 with different lines. On the basis of the uncertainty information of the design
variables, MCS was employed to generate 100,000 samples, and the corresponding state
trajectories were obtained using the trajectory deduction method, shown as green lines in
the figure. The blue lines with circlular labels are the deterministic state trajectories.

State x1

—©—MDSDO — RB-MCS

State x2

—6-MDSDO — RB-MCS|

1

2 3 4 5 0 1 2 3 4 5
Time t Time t

(@) (b)

Figure 6. The uncertainty influence on state trajectories under MDSDO. (a) State trajectories of x;.
(b) State trajectories of x5.

As shown in Figure 6, the design variables and control strategy obtained by determin-
istic MDSDO did not satisfy the reliability requirements in Formula (14), which required
the state variable x; to be larger than —0.4. Under the influence of uncertainty, the design
variable could not remain constant, which makes the change in state trajectories and the
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State x1

constraint unsatisfactory. With the same illustration method as in Figure 6, the optimization
result obtained by the proposed C-MDSDO approach is shown in Figure 7. The constraint
violations were significantly improved, and only a small number of obtained state trajecto-
ries violated the condition, as shown in Figure 7. Moreover, the comparison of the state
trajectories in Figure 8 shows that the proposed approach did not significantly change the
control strategy but made only minor adjustments based on the original strategy.

1

081

0.6

State x2

—©—8SR-MDSDO RB-MCS| —©—8SR-MDSDO RB-MCS

1

2 3 4 5 0 | 2 3 4 5
Time t Time t

(@) (b)

Figure 7. The uncertainty influence on state trajectories under C-MDSDO. (a) State trajectories of x;.
(b) State trajectories of x;.

04

(==

©
o

Control u

-—=-MDSDO ——SR-MDSDO

0 1 2 3 4 5
Time t

Figure 8. The comparison of control strategies between MDSDO and C-MDSDO.

To further demonstrate the advantages of the proposed method, the design variables
scheme, the objective function performance, and the failure probability are compared in
Table 2. Herein, the optimization result of the RB-MDSDO approach, which was proposed
in a previous study [30], is listed in the table. First, the proposed C-MDSDO method and the
RB-MDSDO method both reduced the probability of failure. However, since the objective
reliability index was 3 and the converted failure probability was approximately 0.27%, only
the result of the C-MDSDO approach was deemed to be satisfactory, with a probability of
0.03%. Moreover, the failure probabilities of the original deterministic MDSDO approach
and RB-MDSDO were 43.7% and 3.10%, respectively. Secondly, the performances of the
objective function of the C-MDSDO and RB-MDSDO approaches were almost the same.
Since the proposed approach has obvious advantages in terms of failure probability, it can
be considered more reliable.
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Table 2. The optimization result comparison between MDSDO and C-MDSDO.
Method Design Variable Objective Failure Probability
MDSDO [0.0657, 1.0266] 1.9693 43.7%
RB-MDSDO [30] [—0.008, 0.014] 1.9780 3.10%
C-MDSDO [—0.0101, 0.0039] 1.9781 0.03%

4.2. Glider Dynamic Soaring

This case is a modified optimization problem of the glider dynamic soaring. The
optimization objective is the maximum p, which is the fundamental parameter describing
the performance of a wind gradient profile for a given glider [32]. The mathematical
expression of the MDSDO problem for this case is shown in Formula (15), containing state
variables [x,y, h, V, v, ] and two control variables [Cy, p].

rgs
2mw?

max ¢=—p=—
w,x,y,z,V,'y,tp,CL,y
subject to x = Veos(y)sin(¢) + wVsin(y)
y = cos(7)
z = Vsin(7y)
V= —S% (Cp, + KC?)V? — gsin(vy) — wVsin(7y)cos(y)sin(y)
v = 5>2CLVeos(p) — ¥ (geos(7y) + wVsin(y)?sin(y))
- s . ;
Y= 6051(7) (g—mCLVszn(y) — wsm(')/)cos(lp))
g1() 2 0i= 1/2/3/4/5/6
L _ pS
fig —5 = zfjn—chVZ—sgo
X - [X,y,z, V/r)// l)b]IU = [CL’#]
Wiin < W < Wingx
Xinin < X < Xinax
Umin < U < Upax

(15)

where x, y are east and north positions, respectively; z is the altitude, V is the airspeed, ¢
is the air-relative flight path angle, ¢ is the heading angle measured clockwise from the
north, Cy, is the lift coefficient, and y is the glider bank angle. In addition, g; represents the
boundary conditions of state variables, w is the mean of wind gradient slope, Cp, is the
parasitic drag coefficient, L is the lift force, S is the windward area, and m is the mass.

In the OCP, the value of the parameter w is always constant and is calculated using
Formula (16).
Wx,max

htr

where Wy 4y is the maximum horizontal wind, and h4, is the transition altitude at which
the horizontal wind becomes constant.

In the practical situation, the parameter w obeys the normal distribution [32]. There-
fore, in reliability-based MDSDO research, this parameter is treated as the design variable
and obeys the normal distribution w ~ N(j,0.005). Moreover, the constraints of state
variables are also transformed into reliability constraints, and the objective reliability index
is IBObj =2.

The boundary conditions of all the variables are listed in Table 3. Furthermore, the
initial and the final condition of the state and control variables are listed in the same table.
Angle-related parameters were calculated using the radian system (rad). In addition, the
glider is required to return to the starting point within the specified time interval, and the
time endpoint condition is ¢¢ € [0, 30].

w= (16)
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Table 3. The information of the design, state, and control variable of test 4.2.

Range
Variable ; Initial Final
Max Min
[w] 0.15 0.05 / /
[—1000, —1000,
1000, 1000, 750, 350,
[X/y/Z/ V! 'Y/ lp] [ 1 31 1 57] _20/ 10/ _1'31/ [OI 0/ O/ // // /] [0/ 0/ 0/ // // /]
T —9.42]
[CL, p] [15,1.31] [—0.5, —1.31] / /

Employing the same MCS-based presentation method as in the previous case, the
state trajectories of deterministic MDSDO and the state trajectories of the design variables
subject to uncertainty are shown in Figure 9. In the 1e5 MCS samples, 4967 samples did not
satisfy all the constraints. Thus, the optimization result obtained using MDSDO did not

meet the reliability requirements.

200
<
o -400
8
“ 600
-800
-1000
—&—~MDSDO RB-MCS ——-MDSDO RB-MCS
-1200
-600
0 5 10 15 20 0 5 10 15 20
Time t Time t
(a) (b)
1000
800
600
N =
£ 400t £
7] 7
200 ¢
04 X
—6—MDSDO RB-MCS 50 —6—MDSDO ——RB-MCS
=200
0 5 10 15 20 0 5 10 15 20
Time t Time t
(o)
0.6 —amme ‘
04+
0.2 [,f;
o ‘-
L
=
w» 02
0.4
-0.6
—o—MDSDO 7RB-MCS‘ —o—MDSDO — RB-MCS
08 : ‘ : : -7 ‘ : : :
0 5 10 15 20 0 5 10 15 20
Time t Time t
(e) )

Figure 9. The uncertainty influence on state trajectories under MDSDO. (a) State trajectories of x.
(b) State trajectories of y. (c) State trajectories of z. (d) State trajectories of v. (e) State trajectories of -y.

(f) State trajectories of .
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The state trajectories of the C-MDSDO optimization result are shown in Figure 10. As
can be seen by comparing Figures 9 and 10, the trajectory violation situation is significantly
improved, especially in the trajectory of the state variable x and the state variable z. The
design variables scheme, the objective function performance, and the failure probability are
compared in Table 4. Comparing the results of the MDSDO and the C-MDSDO approach,
the failure probability dramatically decreased from 49.67% to 0.09%, which meets the
reliability requirement. Furthermore, the optimization objective value decreased from

—0.4461 to —0.9050.

600 100
400 |
200
> 0 > -100
2 -200 | 3
7 @ L
-400 + -200
-600
-300 1 ‘
-800
——SR-MDSDO ——RB-MCS ——SR-MDSDO ——RB-MCS
' ‘ : -400 ‘ ‘ :
0 5 10 15 0 5 10 15
Timet Time t
(a) (b)
600 r
400 r
N
2
& 200t
0
—6—SR-MDSDO ——RB-MCS —6—SR-MDSDO ——RB-MCS
-200 ‘ : : 0
0 5 10 15 0 5 10 15
Time t Timet
(c) (d)
2
3
& -
—6-SRMDSDO ___RB-MCS “©~SR-MDSDO __ RB-MCS
0 5 10 15 0 5 10 15
Time t Time t
(e) ®

Figure 10. The uncertainty influence on state trajectories under C-MDSDO. (a) State trajectories of x.
(b) State trajectories of y. (c) State trajectories of z. (d) State trajectories of v. (e) State trajectories of -y.

(f) State trajectories of .

As shown in Figure 11, the control strategy completely changed as a result of consid-
ering reliability, which made the glider turn back to the starting point in a shorter time,
whereas the control curves were not as smooth as for the original solution. Additionally,
as a result of the difference between the control strategy of the C-MDSDO and MDSDO
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approach, the trajectories of the state variables of the MDSDO method were different to
those obtained by the C-MDSDO method.

Table 4. The optimization result comparison for MDSDO and C-MDSDO.

Method Design Variable Objective Failure Probability
MDSDO 0.0637 —0.4461 49.67%
C-MDSDO 0.1293 —0.9050 0.09%
MDSDO
1 . ——T :
2 of ==mommmom T oo =
= -~ BN -
-E_l_\__/ \_‘__/’ \\ -
O Sl — — -Lift coefficient C, — — -Backangle |
0 5 10 15 20
Timet

SR-MDSDO

Controlu

o I_Liﬁ coefficient C. Back angle u‘ .

I N M n

0 2 4 6 8 10 12 14 16
Timet

Figure 11. The comparison of control strategies for MDSDO and C-MDSDO.

4.3. Robot Arm

This case is derived from a point-to-point control problem of a three-degree-of-freedom
robot arm [20], which contains six state variables [61, 0, 63, w1, w2, w3] and three control
variables [17, T2, T3]. The structural diagram of this robot arm is shown in Figure 12.

Figure 12. Structural diagram of the 3-DOF robot arm.
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In this paper, lengths of arms are treated as design variables d = [L;, L] for reliability-
based MDSDO. The reliability constraint requires that the probability of the error between
the actual final position of the robot arm and the target position is no more than 0.05 under
the influence of uncertainty, and the converted reliability index is B = 3. The mathematical
expression of this optimization case is given in Formula (17).

min =t
d,u(t) P=t

subject to  x = f(d, x(t), u(t),t)
Xp = [0, —-1.5,0,0,0, 0]
X fupspo = [1,-1.95,1,0,0,0]
prob[|X — Xupl| > 0.05] < ®(~p) 17)
B=3 L~ N(]/lLl,O.OO6), L, ~ N("LILI,O.O(W)
d= [Ll, Lz], X = [91,92,93,w1,w2,w3],u = [Tl,Tz,Tg,]
dmin < d < dmax
Xmin < X < Xpax
Upin < W < Upgy

where X represents the final position of the arm, and X,;; represents the objective position,
which is the final position of the deterministic MDSDO solution.

The boundary conditions of all the variables are listed in Table 5. In addition, the
initial and the final conditions of the state and control variables are listed in the same table.
Angle-related parameters were calculated using the radian system (rad). In addition, the
arm was required to reach the target point within the specified time interval, and the time
endpoint condition was 5 € [0,0.5].

Table 5. The information of the design, state, and control variable of test 4.3.

Range
Variable ; Initial Final
Max Min
[L1, L] [0.6,1.2] [0.3,0.8] / /
[2.97,5,2.86, [—-2.97, -5, —2.86, B B
61,602,063, w1, wa, ws] 5,5, 10] 5,5, 6] [0,-15,0,0,0,0] [1,-1.95,1,0,0,0]
(11, 12, 13 [7.5,7.5,7.5] [-7.5,—-7.5,-7.5] / /

In order to obtain the target position of the robot arm, it was necessary to convert
the relative angular coordinates in Table 5 into the coordinates in the Cartesian coordinate
system. The original arm length [0.5, 0.98] was substituted into the coordinate conversion
(18) to obtain the target end position X; . Furthermore, during reliability-based MDSDO,
the end position of the robot arm also needed to be converted and compared with X; 1
rather than directly using the relative angle xf,, .., = [1, —1.95,1].

{ Xix= Licos(61) + Lpcos(61 + 62) a8)
thy: Llsin(Gl) + LzSiVl(Gl + 92)

The same state trajectory presentation method was used here to demonstrate the effect
of uncertainty on the state trajectory of the robot arm in Figure 13. With the influence
of uncertainty, the angle of the final state of the robot arm varied greatly. Moreover, the
state variables [w1, wy, w3] represent the angular acceleration of the arm, which means that
the arm was not stationary at the endpoint under nondeterministic conditions. When the
end position was converted using Formula (18), approximately 30.8% of the MCS samples
indicated that the end position error was greater than the threshold, which demonstrates the
unreliability of the MDSDO solution and shows that reliability-based MDSDO is required.
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Figure 13. The uncertainty influence on state trajectories under MDSDO. (a) State trajectories of 0;.
(b) State trajectories of ;. (c) State trajectories of 03. (d) State trajectories of w. (e) State trajectories

of wy. (f) State trajectories of wj3.

As in the previous case, the trajectories of the state variables of the solution obtained
using the C-MDSDO approach are shown in Figure 14. The Figure 14 shows that the differ-
ences between the deduced state trajectories of each MCS sample are reduced. Moreover,
the control strategy of the C-MDSDO solution became easier to achieve in practice, as
shown in Figure 15. In contrast, the strategy from the original MDSDO solution exhibited
high levels of fluctuation, which means that the control performance of the controller was

exceptionally demanding.
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Figure 14. The uncertainty influence on state trajectories under C-MDSDO. (a) State trajectories of 0;.
(b) State trajectories of 5. (c) State trajectories of 03. (d) State trajectories of w. (e) State trajectories
of wy. (f) State trajectories of wj.

The design variables scheme, the objective function performance, and the failure
probability are compared in Table 6. Using Formula (18) to transform the coordinates
of the end position of the MCS random samples generated according to the solution
obtained by C-MDSDQO, only 0.13% of the sample end position errors were greater than the
threshold, while the probability of the original MDSDO solution was 30.08%. Moreover,
the performance of the objective function decreased from 0.4073 (MDSDO) to 0.3422 (C-
MDSDOQ). It is worth noting that the solution using the original MDSDO approach was
inferior to that of C-MDSDO, not only in terms of the performance of the objective function
but also in terms of the control strategy. The reason for this is that the reliability constraint
in this example is a range constraint, which causes the design region of C-MDSDO to
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increase in size as compared to that of the MDSDO condition. Another target point of the
robot arm was found in the feasible domain by C-MDSDO, which means the reliability
meets the objective reliability constraint.

MDSDO
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Figure 15. The comparison of control strategies for MDSDO and C-MDSDO.

Table 6. The optimization result comparison for MDSDO and C-MDSDO.

Method Design Variable Objective Failure Probability
MDSDO [0.3000, 0.8000] 0.4073 30.08%
C-MDSDO [0.4483, 0.7694] 0.3422 0.13%

4.4. Discussion

All the test results met the set reliability index; however, the performance of the
objective function was different. In Case 4.1, the performance value decreased slightly
from 1.9693 to 1.9781. In the other two cases, the variation was different, and this is related
to the characteristics of the optimization problem. In Case 4.2 and Case 4.3, the state
trajectories and control strategies of C-MDSDO were significantly different from those of
MDSDO, which causes a significant variation in the performance of the objective function.
Comparing the termination conditions of the three cases, we found that neither Case 4.2 nor
Case 4.3 had a specific termination time point as compared to Case 4.1. Therefore, in the last
two cases, the algorithm was able to obtain a solution that satisfied the reliability constraint
only by applying a more aggressive control strategy. However, as mentioned previously,
the range reliability constraint of Case 4.3 increased the size of the feasible domain of
C-MDSDO as compared to that of MDSDO, which improved the objective performance
but shortened the control time. It is worth mentioning that, in Case 4.1, the RB-MDSDO
method did not strictly meet the required reliability index, but C-MDSDO succeeded, as
compared with the limited available research. Moreover, the performance of the objective
function for C-MDSDO and RB-MDSDO was almost equal.

In order to test the robustness of the proposed approach, several repeated experiments
were performed for each case. In Table 7, the objective function and failure probability of
each case with multiple experiments are presented in the form of “mean =+ variance”. In
the table, the variance of the objective performance and failure probability is small for each
case, which indicates that the proposed approach converges stably to the same solution in
repeated experiments. The data in the table demonstrate that the proposed approach can
consistently obtain the design that meets the reliability requirement.
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Table 7. Repeated experiment results of cases (number of experiments = 30).

Method

Case 4.1 Case 4.2 Case 4.3

Objective performance
Failure probability

1.9781 + 1.0259 x 108 —0.9050 + 1.3696 x 1032 0.3422 + 3.9248 x 10~°
0.0329% =+ 5.3498 x 10~°% 0.0937% =+ 7.6118 x 10~10% 0.1339% =+ 1.6242 x 10~%%

References

5. Conclusions

In this paper, the C-MDSDO method is proposed to solve the reliability-based MDSDO
problem. Several cases were employed to test the effectiveness of the proposed method, and
the results from relevant studies were also used for comparison. From the test results, the
proposed method was shown to be efficient and reliable. Specifically, in the numerical case,
i.e., Case 4.1, when compared with the RB-MDSDO approach, the optimization results of C-
MDSDO were more reliable, while the performances of the objective function were similar.
In the engineering cases, i.e., Case 4.2 and Case 4.3, faster control strategies were obtained
to meet the reliability constraint functions, but the performance of the objective function
and the smoothness of the control strategy degraded. In addition, the state trajectories of
the optimization objects changed significantly as compared with the MDSDO solution.

In summary, the main contributions of this paper are as follows: (1) an improved
sequential approach, C-MDSDO, is proposed to solve the problem of the unexpected failure
of the MDSDO solution due to design variable uncertainty; (2) an optimization problem
was designed based on the crossrate of the objective reliability index sample to rapidly
obtain the shifting vector, which is employed to shift the solution into the reliability domain.

In addition, the approach proposed in this paper is only applicable to cases in which
the differential equation of the dynamic discipline is known. For cases in which the
differential equation information is unknown, the surrogate model technique is required
to form the black-box-based approach. In future research, the influence of uncertainty on
the control strategy needs to be further investigated to enhance the generalizability of the
reliability-based MDSDO theory.
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