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Abstract: Electrical and optical properties of graphene/silver nanoparticles hybrid suspensions
intended for use in inkjet printing technologies were studied. Few-layered graphene particles were
manufactured via a direct ultrasonic-assisted liquid-phase exfoliation route in water/surfactant
system, whereas silver nanoparticles were synthetized using a polyol process. Hybrid suspensions
for graphene/silver nanoparticles mixtures showed significant reduction in mean particle size while
electrical conductivity remained almost intact even after thorough centrifugation. Structuring effects
in mixed colloids were very pronounced as both electrical conductivity and optical transmission
showed maxima at 65 wt.% graphene. Suspensions with conductivities above 300 µSm/cm, much
higher than previously reported, were obtained, and resulted in the manufacturing of films with
less than 10% optical absorption throughout the visible region. These samples did not demonstrate
absorption peaks attributed to silver nanoparticles’ surface plasmon resonance, which is suitable for
transparent electrode applications. Suspension properties at optimal composition (65 wt.% graphene)
are very promising for printed electronics as well as transparent conductive coating applications. In
the paper, we establish that the optimal suspension composition matches that of the film; therefore,
more attention should be paid to carefully studying electrically conductive suspensions.

Keywords: graphene; silver nanoparticles; inkjet printing; transparent electrodes; electrical conduc-
tivity; optical absorption; centrifugation

1. Introduction

Electrically conductive suspensions are currently widely studied as a promising ma-
terial for printed and flexible electronics, especially for inkjet printing technologies [1].
Although metal micro- or nanoparticles are generally used, graphene has been attracting a
lot of attention as a promising material due to its excellent electrical and optical properties,
chemical stability, and potential commercial availability [2]. Nevertheless, graphene, being
a semimetal, shows a high level of local contact resistances that lead to increased sheet
resistance of graphene-based films and limits their potential applications in both transpar-
ent conducting coatings and contact tracks for printed circuits [3]. Additionally, most of
the studies are devoted to graphene oxide (GO) and reduced GO (RGO) [4,5] suspensions.
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However, it is almost impossible to achieve a sufficiently high degree of reduction to mini-
mize defects and oxygen-containing groups and provide high electrical conductivity of the
particles. Direct liquid-phase exfoliation is a route that, at the cost of decreased yield of few-
layered particles, does not lead to generation of defects in the graphene plane. Therefore,
choosing highly crystalline graphite, such as natural graphite or highly oriented pyrolytic
graphite (HOPG), enables one to obtain low-defect few-layered graphene particles directly
in the form of stabilized suspensions. Numerous studies report N-methyl-2-pyrrolidone
(NMP) [6,7] or dimethylformamide (DMF) [8] as preferable media for exfoliation. The
choice of an eco-friendly exfoliation medium should, however, be also taken into account;
therefore, water- or alcohol-based systems are much more preferable. Several studies report
water-surfactant systems as being suitable for high-yield exfoliation [9,10]; the choice of
surfactants is thoroughly treated in several studies as well [11,12].

On the other hand, silver nanoparticles (AgNPs) have extremely low electrical resis-
tance and sintering temperatures. Moreover, being metals, AgNPs do not suffer from high
local contact resistance. Their main drawbacks are deterioration in air and sulfur-containing
gases, as well as a relatively high price. Several techniques have been described to achieve
monodisperse spherical AgNPs, including cryosynthesis [13] and plasma-induced synthe-
sis [14]. Many applications require AgNPs of different morphologies, which is challenging
to achieve when the process is thermodynamically-controlled; therefore, chemical routes
that provide kinetic control of particle growth should also be considered. Soft chemical
methods, especially polyol synthesis, liquid-phase reduction of silver salts in polyhydroxyl
alcohols, are more promising and widely used due to the opportunity to achieve fine
control of the synthesis parameters so that spherical NPs [15], polyhedral AgNPs [16], or
silver nanowires (AgNWs) [17] can be obtained at high selectivity and high yield.

High electrical conductivity values required for inkjet printing applications can be
typically achieved only when dispersed particle concentrations are above the so-called
percolation threshold [18]; on the other hand, at this level of concentration (12–30 vol.%) the
viscosity of the system may limit applications as electrically conductive inks. Percolation
theory suggests that mixed morphology systems with both rod- and spherical or platelet-
shaped particles enable a significant reduction in percolation threshold concentration down
to below 1–2 vol.%, so the system remains sufficiently diluted and has low viscosity. A
certain amount of studies are devoted to the subject [19,20], and graphene/graphite-metal
nanorods-based colloids seem to be the most promising. Most studies report that the higher
the metal content is in a hybrid suspension, the higher the electrical conductivity; however,
most studies operated in a limited concentration range. Nonetheless, several theoretical
and experimental studies suggest that there should be an optimal component ratio in a
1D + 2D-morphology system [21–27].

Transparent conductive electrodes (TCE) widely used for photovoltaics [28], light-
emitting diodes [29], sensor screens [30], smart windows [31], and antistatic coatings [32]
seem to be particularly challenging as objects of flexible and printed electronics, as achieving
both high electrical conductivity and high transparency is challenging even for ink formu-
lations, let alone films. This happens because electrical conductivity increases with solid
phase concentration; so, however, does optical absorption; thus, relatively low percolation
thresholds are required from the suspension. Therefore, it is crucial to achieve an optimal
conductive phase concentration that provides sufficient conductivity and transparency at
the same time. Another important requirement for TCE applications is the maximization
of optical spectrum smoothness, that is, the absence of absorption peaks in the visual
region. Unfortunately, AgNPs are known for optical absorption peaks at 300–420 nm due
to surface plasmon resonance (SPR) [33], which needs to be suppressed for effective use
in TCE. There are several studies that addressed graphene-based nanoplatelets/metallic
nanorods hybrid systems for manufacturing TCE for electromagnetic shielding [34], elec-
tromagnetic shielding [35], optoelectronic devices [36], light-emitting diodes [37], solar
cell technologies [38–41], and display and various sensor devices [42–46]. Although much
effort has been made to achieve combinations of high conductivity and high transparency



Appl. Sci. 2023, 13, 1922 3 of 16

in films, little data is published on the properties of the suspensions themselves, as well as
on how the graphene/metal nanoparticle ratio affects the properties of suspensions and
films derived from them.

In the present paper, we report hybrid few-layered graphene/AgNP electrically con-
ductive suspensions in a mixed water-ethylene glycol (EG) system. Graphene suspen-
sions were prepared via direct ultrasonic-assisted liquid-phase exfoliation in a water-
surfactant system. AgNPs were manufactured via polyol synthesis in EG in the presence of
polyvinylpyrrolidone (PVP) as a surface-stabilizing agent. It is shown that after mixing and
ultrasonic treatment of the suspensions, AgNPs decorate the graphene surface. Particle
size distributions, electrical conductivity, and optical absorption in the visible region were
studied throughout the whole range of graphene:AgNP ratios (0–100 wt.%). In order to
obtain the inks potentially suitable for TCE applications, we used mild centrifugation to
separate large particles. Electrically conductive transparent suspensions showed a syner-
gistic effect of both optical absorption and electrical conductivity. Films obtained from the
suspensions were also characterized by optical and electrical resistance measurements.

2. Materials and Methods

Suspensions of few-layered graphene nanoparticles (FLG) were manufactured via
a previously described [47] direct ultrasonic-assisted liquid-phase exfoliation route in
deionized water with a fluorine-containing surfactant (Zonyl BA-L, Dupont, Wilmington,
DE, USA). Natural graphite (GSM-2 brand) was used as a precursor. Graphite was heat-
treated under vacuum at 2100 ◦C followed by high-temperature (2800 ◦C) treatment in a
Freon R22 atmosphere in order to obtain >99.9 wt.% purity. Ultrasonication time was 6 h in
all cases. A horn-type unit with acoustic power 200 W was used.

AgNPs were manufactured via polyol synthesis following the protocol described
in [48]. Synthesis temperature was kept at 170 ◦C. Silver nitrate (extra pure 99.9+%, Lenre-
activ, St. Petersburg, Russia), potassium bromide (99.9+%, Acros Organics, Geel, Belgium),
ethylene glycol (EG) (extra pure, Acros Organics, Geel, Belgium) were used as precursors,
whereas surface stabilizer polyvinylpyrrolidone (PVP) of low (Mw 8000, 99.995+% pure,
Acros Organics, Geel, Belgium) molecular weightwas used. The PVP:AgNO3 weight ratio
was kept at 5:2. Synthesis was carried out in air.

In order to obtain transparent conductive suspensions, an EBA 280 centrifuge (Hettich,
Beverly, MA, USA) was used, operating at cycles at 2000 rpm (whenever not specified,
total centrifugation time was 30 min). Before centrifugation, each suspension was treated
with ultrasound using a horn-type ultrasonication device (MEF391, Melfiz, Russia) for
10 min to ensure homogeneity of the probe, as was concluded from the stability of particle
size distributions in a series of probes. After each cycle, fugate was separated and, after
analysis, used for further treatment. The sediment was rinsed with acetone (99.5+%, Ecos-1,
Russia), dried at 100 ◦C and weighed (Ohaus Ohaus P224/E, Ohaus, Parsippany, NJ,
USA) in order to calculate and correct concentrations. Sufficiently centrifuged suspensions
were transparent and yellow in colour. Residual concentration was estimated by carefully
measuring the mass of the sediment. Hybrid suspensions were prepared by simple mixing
of graphene aqueous suspensions and AgNP suspension in EG followed by ultrasonication
for 15 min to ensure homogeneity and reduce agglomeration.

Particle-size distributions for un-centrifuged suspensions were measured via a laser
diffraction (ISO 13320:2020) technique using Microtrac MRB SYNC apparatus (Microtrac,
Osaka, Japan). For centrifuged suspensions, distributions were obtained via dynamic laser
scattering (Nanosizer, Malvern Pananalytical, Malvern, UK). Quartz cuvettes were used for
measurements (optical path length 10 mm).

Electrical conductivity measurements were performed with a SevenCompact conduc-
tometer equipped with InLab 710 glass/platinum electrodes (Mettler Toledo, Greifensee,
Switzerland); 20 mL aliquots of suspensions were used. Sheet resistance was estimated
via an IEC/TS 62607-2-1-2017-compatible 4-electrode method. We used copper electrodes
and a b2901a precision source/measure unit (Keysight, Santa Rosa, CA, USA). Films were
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drop-casted (F1-ClipTip GLP, Thermo Scientific, Waltham, MA, USA) on glass substrates,
and sintering was performed at 150 ◦C. Resistance was calculated from V-I curves (linear
region slope at 0 V).

Optical spectra were recorded using a Cary 60 UV-vis spectrometer (Agilent, Santa
Clara, CA, USA). All spectra were plotted for the 200–1100 nm range at 0.4 nm wavelength
resolution. All as-synthetized suspensions were diluted 100 times in order to decrease
absorption, while centrifuged suspensions were used as prepared. Quartz cuvettes were
used for measurements (optical path length 10 mm).

TEM images were taken using a HT7800 (Hitachi, Tokyo, Japan) unit operating at a
100 kV accelerating voltage. SEM images were obtained using TM4000 unit (Hitachi, Japan)
at 15 kV accelerating voltage.

3. Results and Discussion
3.1. Manufacturing of Graphene/AgNP Hybrid Suspensions

A step-by-step scheme for a hybrid manufacturing process is shown in Figure 1.
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Figure 1. Process scheme for hybrid FLG/AgNPs suspensions manufacturing.

Polyol synthesis is widely used to manufacture suspensions of AgNPs of pre-defined
morphologies [49–51], as suspensions can be readily formed into thin films suitable for
various TCE applications [52–56]. In our previous study [48], we established that synthesis
in EG at temperatures below 170 ◦C at a PVP/AgNO3 weight ratio above 3:2 g/g leads to
primarily silver nanowires (AgNWs) (Figure 2a,b); some smaller polyhedric and spherical
AgNPs (Figure 2c; see also smaller particles in Figure 2b) are also present in the mixture.
Such a complex suspension composition may seem detrimental, as usually efforts are made
to obtain morphologically-homogeneous products [57–59], but numerous studies suggest
that the percolation threshold is usually lower for composite systems of mixed particle
morphology, as both experimental and theoretical studies suggest [60–62].

Direct liquid-phase exfoliation is a well-established protocol for manufacturing low-
defect FLG at relatively low cost. Water-based suspensions of FLG can be effectively used
as both fillers for polymer-based composites and thin film technology. As can be seen from
Figure 2d, the technique described in detail in [47] provides very thin (2–3 layers) FLG with
a lateral size of ca. 1 µm.

TEM images of particles in hybrid FLG/AgNP suspensions show very pronounced
decoration of the FLG surface with smaller isometric silver particles. Although this dec-
oration must be purely noncovalent in nature, it may well serve to increase composite
connectivity while decreasing high FLG–FLG interparticle local contact resistances. The
observed decoration effect was achieved by simple collective ultrasonication of the mixed
suspension; therefore, no defects affecting π-electron system and charge carrier mobility
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should be introduced in the graphene plane. Analyzing electron microscopy data, one can
also notice that in hybrid suspensions almost all of the FLG particles are decorated with
AgNPs, which suggests a high homogeneity of the system.
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3.2. Influence of Centrifugation on Particle Size Distributions

As-obtained suspensions were opaque and non-transparent at any significant layer
thickness (>1 mm). Transparent electrically conductive suspensions are a prerequisite for
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successful TCE manufacturing; therefore, it is of the utmost importance to reduce optical
absorption while retaining most of the electrical conductivity (>100 µS/cm is usually a
desired level for suspensions for printing technologies [63]). Particle-size distribution
management is another major factor for electrically conductive suspensions intended for
either inkjet printing or spray coating as agglomerates, and large particles may cause
clogging of the nozzle; they may also have higher sintering temperatures, which may limit
their applications for polymer substrates.

Centrifugation proved to be effective for separation of large particles and agglomer-
ates [54,64,65] from FLG. In addition, it is also effective for increasing the average morpho-
logical homogeneity of particles in fugates [66], such as for separating FLG by the number
of layers [67].

As can be readily seen from data in Figure 3a,b, centrifugation allows a two- to
threefold reduction of mean particle size in AgNP suspensions. Symmetry of particle
size distribution remain almost intact. As for FLG suspensions, the initial distribution
is non-symmetrical, mean particle size being around 3–4 µm with a significant amount
of small particles and a broad distribution of larger particles and agglomerates present
(Figure 3c). After only mild centrifugation, particle size distribution becomes quite narrow
and highly symmetrical with mean particle size reducing to ca. 0.5 µm (Figure 3d) (it
generally varied in the range 0.5–1.5 µm from sample to sample). As for hybrid (mixed)
FLG/AgNP suspensions, in an un-centrifuged state (see representative distribution in
Figure 3e) they generally followed the distribution for FLG, as the particles are larger in
size, and a relative decrease in size should be expected to be slower, since flakes have an
increased coefficient of friction compared to rods and spheres [68].

After centrifugation, however, particle-size distribution does not resemble the sum of
both components (see Figure 3f); while the primary maximum is that of FLG, no peak at
ca. 0.3 µm attributed to AgNPs is observed. This fact is consistent with TEM observations
(see Figure 2e,f), and one could state that AgNPs primarily decorate the surface of FLG
with only excess smaller particles remaining freely suspended. The overall particle size
distributions were clearly bimodal for all of the studied FLG/AgNPs ratios; therefore, in
any case, although the peak attributed to FLG dominates the distribution, some AgNPs
are not linked to the FLG surface (through non-covalent interactions, apparently [69]).
This excess of AgNPs may lead to the increase in system connectivity in both suspensions
and films.

It should also be noted that the initial FLG suspension concentration was 6.0 mg/mL,
whereas for AgNPs it was 3.2 mg/mL. The average yield of the solid phase in centrifuged
suspensions was 7.8 wt.% for FLG and ca. 15 wt.% for AgNPs, leaving centrifuged suspen-
sions with bulk weight concentrations of 0.47 and 0.48 mg/mL, respectively (taking into
account a not obvious assumption that centrifugation of particles in hybrid suspensions
occurs independently). Nevertheless, as concentrations of the suspensions were relatively
close, we took relative FLG content (wt.%), calculated as simply proportional to the initial
FLG suspension weight in the mixture, to be the simple parameter to estimate the influence
of the suspension composition on its properties.

Data for mean particle-size distributions as a function of suspension composition
extracted from laser diffraction and dynamic laser scattering experiments are shown
in Figure 4.

It can be readily seen that, except for the pure AgNP suspension, mean particle
size matches that of FLG (2–4 µm) for all un-centrifuged suspensions. However, after
centrifugation mean particle size does not only reduce, but also shows some dependence
on suspension composition; at low FLG content it is close to that of pure AgNPs, which
dominate in weight particle-size distribution. Then, around 50 wt.% of FLG content overall
size matches that of FLG. At higher FLG concentrations (over 75 wt.%), mean particle size
drops steadily. Although further research is needed, this effect may be partially explained
by both a significant drop in liquid viscosity as the concentration of water in water/EG
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system increases, and increased average weight of AgNP-decorated FLG as compared to
pure FLG (see data for 100 wt.% FLG content).
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3.3. Non-Linear Concentration Effects of Optical Transparency and Electrical Conductivity

Initially we studied the influence of centrifugation and composition on suspension
stability (Figure 5). Data suggest that centrifugation, although it leads to a significant
decrease in suspension concentration (down to ca. 10 wt.% of the initial concentration),
does not significantly affect a suspension’s electrical conductivity. This was previously
found for aqueous suspensions of pure FLG [70]. The fact that even after a serious decrease
in concentration the electrical conductivity of suspensions remains almost intact may
suggest two statements:

• Percolation threshold in the system (suspensions) is achieved even at concentrations as
low as ca. 0.5 mg/mL (see Section 3.2); therefore, centrifugation does not significantly
affect the level of electrical conductivity;

• Individual nanoparticles are primarily responsible for charge carrier properties in the
suspensions; the influence of agglomerates and larger particles is not very pronounced.
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Although a low percolation threshold [71,72] and network-like structuring of solid
phase in suspensions [73] have been previously described for many, including graphene-
based, systems, the latter statement requires more careful evaluation.

Data from Figure 5 suggest that, whereas initial AgNPs and FLG suspensions had elec-
trical conductivity around 150 µS/cm and 100 µS/cm, respectively, the hybrid suspension
containing 65 wt.% of FLG showed conductivity of almost 400 µS/cm independently of
centrifugation. This non-linear concentration is obviously non-percolative in nature (overall
concentration remains almost the same, and a sharp maximum with respect to both compo-
nents concentration is observed); therefore, specific interactions between components in
hybrid suspension should be responsible for the observed behavior.

A high level of local contact resistances is a well-known problem limiting potential
electrical applications and achieving theoretical values of charge carrier properties for most
semimetals, which include graphite-based materials and graphene [74]. In this particular
case, the effect may be due to electrical bridging of FLG platelets through AgNPs, thus
drastically decreasing contact resistance.

The non-linear concentration effect is also evident from optical transmission data
(Figure 6). Optical spectra of centrifuged suspensions have two main features:

• Non-linear dependence of average transmission on suspension composition;
• Absence of the surface plasmon resonance (SPR) peak at 350–450 nm characteristic of

AgNPs [75,76] (the peak is not very pronounced even at high AgNP loadings due to
elevated overall optical absorption).
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Both of these feature specific mechanisms of carrier transport in the FLG/AgNP
system that affect both direct current electrical conductivity and optics (i.e., interaction with
a high-frequency electromagnetic field). Therefore, mixing and collectively ultrasonicating
FLG and AgNP suspensions proves sufficient to provide interactions strong enough to
significantly affect electrical and optical properties, as well as to reveal synergistic effects.

Figure 7 represents optical transmission data more clearly by showing suspensions’
transmission at the red edge (950 nm), commonly used 650 nm, and blue edge (350 nm) of
the visual region of the optical spectrum. It can be readily seen that throughout the whole
visual region the maximal transmission is observed for the hybrid suspension containing
65 wt.% of FLG.



Appl. Sci. 2023, 13, 1922 10 of 16

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 18 
 

 
Figure 6. Optical transmission spectra for hybrid FLG/AgNPs suspensions at different component 
ratios (see legend). 

Figure 7 represents optical transmission data more clearly by showing suspensions’ 
transmission at the red edge (950 nm), commonly used 650 nm, and blue edge (350 nm) 
of the visual region of the optical spectrum. It can be readily seen that throughout the 
whole visual region the maximal transmission is observed for the hybrid suspension con-
taining 65 wt.% of FLG. 

 
Figure 7. Optical transmission for FLG/AgNP-hybrid suspensions at different component ratios 
(wavelength—see legend). 

The fact that the concentration correlation is evidently non-linear, as well as that the 
position of its maximum coincides for both electrical conductivity and light transmission, 
strongly suggests that indeed there is a link between these properties in the obtained sus-
pensions, and that this should correlate with specific “network” and “bridging” struc-
tures, which obviously define charge carrier properties more significantly than only the 
concentration and morphology of the solid phase itself. Although this question deserves 
more careful evaluation, the effect is obvious, and both structural and bulk properties 
studies support this claim. 
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The fact that the concentration correlation is evidently non-linear, as well as that the
position of its maximum coincides for both electrical conductivity and light transmission,
strongly suggests that indeed there is a link between these properties in the obtained sus-
pensions, and that this should correlate with specific “network” and “bridging” structures,
which obviously define charge carrier properties more significantly than only the concen-
tration and morphology of the solid phase itself. Although this question deserves more
careful evaluation, the effect is obvious, and both structural and bulk properties studies
support this claim.

3.4. Electrical and Optical Properties of Graphene/AgNPs-Based Films

Hybrid suspensions manufactured in this work were used to obtain transparent
films on glass substrates. Although comparison of the results of numerous studies sug-
gest that the technology of film preparation greatly affects film properties, especially
for carbon [77,78], metallic nanoparticles [77] and their hybrids [79,80], we used sim-
ple drop-casting in order to ascertain the effect of composition on structure-dependent
properties formation.

Electrical properties were evaluated via analysis of the I-V curves measured using
direct current and a 4-probe technique. Typical V-I curves are shown in Figure 8. It can
be seen that all of the films behaved as linear resistors (as can be seen from the symmetric
linear shape of the curve around zero point), which is consistent with TCE and contact track
working conditions. It is noteworthy that concentration of the initial suspension seriously
affects both the slope of the V-I curve around 0 V and the range of linearity, which generally
tends to decrease at lower AgNP concentrations from ±6 V at 15 wt.% FLG down to less
than ±1 V at 85 wt.%

Although the range of linearity is a very important property for microelectronics, sheet
resistance is usually considered as a figure of merit for electrode-related applications [77–80].
In the current study, sheet resistance was estimated from resistance data defined as V-I
curve slope around 0 V. It can be seen from Figure 9 that the plot is quite complex. Minimal
resistance is seen for the pure AgNP film, which had poor optical properties. With an
increase in FLG content (pure FLG film had the highest sheet resistance), one can observe
a pronounced minimum once again around 65 wt.% of FLG content, which suggests that
quantitative effects of AgNPs bridging FLG particles in the optimal concentration range
hold true both in suspensions and in films.
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Figure 10 shows typical optical absorption spectra for different suspension compo-
sitions. Leaving aside the absolute values for transmission that may be attributed to
technological aspects of film manufacturing, one can see that at least several spectra (e.g.,
for 65, 85 wt.% FLG) have pronounced SPR absorption; in this case, however, the overall
absorption is significantly less than it is for pure AgNPs (0% FLG).
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Minimal absorption for hybrid suspensions (pure FLG was not considered) was
observed for 50 and 75 wt.% of FLG. It can be concluded that, although it is close to
the optimal value for suspensions (65 wt.%), interactions with light in hybrid thin films
probably have certain differences as compared to suspensions, at least as long as interactions
with an electromagnetic field are considered. Moreover, for films the SPR peak of AgNPs
can be distinguished in most spectra.

Both these effects may be attributed to two main reasons. First, sintering leads to an
increase in AgNP size and a subsequent change of optical properties. Second, interparticle
interactions and network structure are most probably not equal in suspensions and films.
Moreover, a simplistic film deposition technique can also affect the properties of the films;
therefore, more advanced deposition techniques, such as the Langmuir-Blodgett [71], or
spray-coating coupled with substrate pre-treatment, are suggested to test whether optimal
FLG concentration in hybrid suspensions coincides with that in films as far as optical
properties are examined.

Therefore, the question of the link between electrical and optical properties of hybrid
FLG/AgNP system both in films and suspensions clearly needs to be more carefully
examined; it is evident that there are specific interparticle interactions that provide non-
linear effects with maximum properties around 65 wt.% FLG content. Therefore, the
suspension composition and properties have a strong effect on the properties of thin films
intended for use as TCE.

4. Conclusions

In the present study, the effect of FLG surface decoration with AgNPs after as much as
collective ultrasonication was established. Particle-size distribution analysis suggests that
mean particle size in centrifuged suspensions is mostly controlled by FLG, and only the
smaller AgNPs remain freely suspended throughout the whole concentration range; there-
fore, simple collective ultrasonication provides both high homogeneity of the suspension
and FLG decoration with AgNPs.
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Hybrid FLG/AgNPs showed a pronounced synergistic effect of electrical conductivity
and optical transparency at 65 wt.% of FLG, which cannot be explained by percolation
and may be linked with bridging and structuring of the FLG–FLG interface through
AgNPs. Optimal suspensions showed conductivity above 350 µS/cm at over 90% optical
transparency in the visual region, which makes them a very promising ink material for
TCE applications. Reported results significantly exceed most of the published data.

Hybrid films showed promising properties for TCE applications (sheet resistance
below 1 KΩ/sq. at 90% transparency), although a straightforward drop-casting technique
of film deposition was used; more elaborate techniques should be used in future. Minimal
sheet resistance was observed at 65 wt.% of FLG; however, optical properties were higher
for films containing 50 and 75 wt.% FLG. While the question of film property optimization
requires further studies, it is evident that suspension properties define those of the films.
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