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Abstract: With the widespread availability and pervasiveness of artificial intelligence (AI) in many
application areas across the globe, the role of crowdsourcing has seen an upsurge in terms of impor-
tance for scaling up data-driven algorithms in rapid cycles through a relatively low-cost distributed
workforce or even on a volunteer basis. However, there is a lack of systematic and empirical ex-
amination of the interplay among the processes and activities combining crowd-machine hybrid
interaction. To uncover the enduring aspects characterizing the human-centered AI design space
when involving ensembles of crowds and algorithms and their symbiotic relations and requirements,
a Computer-Supported Cooperative Work (CSCW) lens strongly rooted in the taxonomic tradition of
conceptual scheme development is taken with the aim of aggregating and characterizing some of
the main component entities in the burgeoning domain of hybrid crowd-AI centered systems. The
goal of this article is thus to propose a theoretically grounded and empirically validated analytical
framework for the study of crowd-machine interaction and its environment. Based on a scoping
review and several cross-sectional analyses of research studies comprising hybrid forms of human
interaction with AI systems and applications at a crowd scale, the available literature was distilled and
incorporated into a unifying framework comprised of taxonomic units distributed across integration
dimensions that range from the original time and space axes in which every collaborative activity
take place to the main attributes that constitute a hybrid intelligence architecture. The upshot is
that when turning to the challenges that are inherent in tasks requiring massive participation, novel
properties can be obtained for a set of potential scenarios that go beyond the single experience of a
human interacting with the technology to comprise a vast set of massive machine-crowd interactions.

Keywords: conceptual framework; crowd-machine hybrid interaction; design implications; hybrid
intelligence; survey; taxonomy

1. Introduction and Context

Crowd-centered design is far from a trivial undertaking, and this is even more challeng-
ing when trying to implement hybrid intelligence models incorporating human cognition
into algorithmic-crowdsourcing workflows [1]. In fact, crowd-algorithm interaction has
recently reached a certain level of maturity, and a vast range of crowd-powered algorithms
have successfully been applied in areas like medical image segmentation [2] and games with
a purpose (GWAP) [3]. In these instances, crowds of untrained (non-expert) online workers
have proved to provide similar results in terms of detection accuracy when compared to
other groups such as domain knowledge experts, medical students, and experienced crowd
workers. Further investigations in this burgeoning domain have also shown that the use of
crowd-algorithm hybrids can outperform crowd-only techniques in accomplishing tasks

Appl. Sci. 2023, 13, 2198. https://doi.org/10.3390/app13042198 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13042198
https://doi.org/10.3390/app13042198
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2736-3835
https://orcid.org/0000-0003-4082-4138
https://orcid.org/0000-0003-2987-4732
https://orcid.org/0000-0002-8900-3464
https://orcid.org/0000-0002-0850-9755
https://doi.org/10.3390/app13042198
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13042198?type=check_update&version=2


Appl. Sci. 2023, 13, 2198 2 of 25

like examining protein interactions and chemical reactions that are very common in the field
of network biology [4]. Nonetheless, the taxonomic rationale behind the mass interaction
efforts between crowds and machines as an integrated and complex socio-technical system
is not completely understood, and there is a need to find novel ways of characterizing
this body of work in its whole range. To mitigate this brittleness, a review of the main
activities and contexts in which such crowd-AI ensembles have been investigated was
carried out to develop a taxonomic scheme as comprehensive as possible to capture the
nuances that are unique in comparison with other types of interactions between humans
and computational systems.

For more than three decades, taxonomy development has been seen as a crucial part of
socio-technical research within the field of CSCW [5]. To some extent, taxonomies provide
a useful guide and theoretical foundation for assessing technological developments due to
their capability to organize complex concepts and knowledge structures into understand-
able formats [6]. By going back in the course of time, one may find several taxonomic
approaches that formed the basis for the understanding of the task types that are currently
present in many crowdsourcing systems. For a review of prior taxonomic proposals, the
reader is referred to Harris and co-authors [7]. In retrospect, McGrath [8] proposed a cir-
cumplex model of group tasks intended to characterize their nature (e.g., decision-making)
into four quadrants that reflect the processes involved in their execution (i.e., generate,
choose, negotiate, and execute). When moving even further back in history, Shaw [9]
asserted the importance of aspects like task difficulty and intrinsic interest which are seen
as foundational in several conceptual frameworks proposed to characterize the broader
crowdsourcing phenomena (e.g., [10,11]). According to some authors, Johansen’s [12]
time-space matrix is a landmark in the field of CSCW and inspired the development of
descriptive models such as the Model of Coordinated Action (MoCA) [13], which frames
each collaborative work arrangement on a continuum of synchronicity (synchronous vs.
asynchronous), physical distribution, scale (i.e., number of participants), number of com-
munities of practice involved, nascence and planned permanence of coordinated actions,
and turnover. More recently, Renyi and colleagues [14] executed a set of data collection
and processing procedures involving structured interviews in order to create a taxonomic
scheme covering the components related to the collaboration technology support in home
care work, while other authors have devoted most of their efforts to the design of inno-
vative taxonomic interfaces [15]. In addition, there is now an emerging body of research
documenting the different levels of hybrid intelligence in human-algorithm interactions.

From a more generic view, the concept of hybrid intelligence has been defined as
the “combination of human and machine intelligence, augmenting human intellect and
capabilities instead of replacing them and achieving goals that were unreachable by either
humans or machines” [16]. Stemming from this definition, experiments have shown that
the time is now appropriate to develop a new taxonomic proposal that can be used for
planning and assessing activities among humans (crowds) and algorithms in a hybrid
mode. To the best of the authors’ knowledge, no other previous work has specifically
focused on crowd-AI interaction, although there are some research works addressing
the particularities of hybrid human-AI intelligence at a taxonomic level. For example,
Pescetelli [17] stressed the role of algorithms as assistants, peers, facilitators, and system-
level operators. On the other hand, Dellermann and associates [18] characterized the design
space of hybrid intelligence systems and recalled the importance of the task itself and its
characteristics as a central aspect of collaboration among humans and machines. In the
same vein, Dubey et al. [19] proposed a taxonomy of human-AI teaming comprised of
task properties, trust-related aspects, teaming characteristics (e.g., shared awareness), and
the learning paradigm involved. However, these taxonomies have hitherto not yet fully
explored the particularities of hybrid crowd-AI systems and their use cases in real-world
applications. Through a qualitative inspection of conceptual frameworks, artifacts, case
studies, and empirical results comprising some type of human-AI hybrid interaction at a
massive scale, this article’s contribution lies in systematically structuring a set of attributes
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and characteristics into an integrated taxonomy that arises as a continuum of co-evolving
crowd-algorithmic partnerships intended to solve complex problems that neither humans
nor machines can solve separately.

The article is set out as follows. After a discussion of background work in Section 2, a
description of the methodological steps follows until the development of a taxonomy for
hybrid crowd-AI systems is provided in Section 3. The resulting taxonomic framework is
then presented and discussed in detail in Section 4, while Section 5 is concerned with the
validation of the taxonomy proposed. Finally, possible extensions of this work are suggested
in the Section 6 by looking toward the future of hybrid systems from a socio-technical view
of human-centered systems design.

2. Background and Scope

The point of departure for building the taxonomy presented in this article was the
existing work found on the intersectional space between human-computer interaction (HCI)
and AI from a crowdsourcing perspective. Although the coining of the term ‘crowdsourcing’
took place in the mid-2000s, some may argue that its origin is rooted in the seminal
work of the physicist and astronomer Denison Olmsted, who used news media as a
crowdsourcing strategy for obtaining accurate observations on the Leonid meteor shower
that was witnessed across the United States in 1833 [20]. What is interesting to note is
that the sequential steps and general techniques used by Olmsted about nineteen decades
ago constitute the basis for most of the current crowdsourcing applications. Aligned with
this goal, a variety of taxonomies and conceptual frameworks have been developed to
better characterize the way as information technology (IT)-enabled crowdsourcing operates.
Among the known classifications of crowdsourcing activities, Corney and co-authors [21]
were some of the first to frame this phenomenon from a taxonomic point of view by
incorporating the nature of the crowd, the payment mechanisms or lack thereof, and
the type of task into an integrated framework. In line with this, Rouse [22] proposed a
taxonomy that comprises the different forms of intrinsic and extrinsic motivation that can
lead to a successful crowdsourcing experience (e.g., social status, altruistic behavior, and
personal achievement). This taxonomic proposal also addresses a set of aspects that are
specific to the nature of the crowdsourcing task being undertaken by encompassing the
expertise and complexity that are directly or indirectly involved in such initiatives. On
the basis of insights from the history of group support systems, one would notice similar
points to McGrath’s [8] task circumplex taxons taking into consideration the different
task types that can be executed by individuals in a group structure, which may include
decision-making, idea generation and information gathering to name just a few examples.

To an extent, this research strand led to the proliferation of several taxonomies incor-
porating task-related elements (e.g., [23–30]). Consistent with the task properties discussed
in most of these studies, a cursory look at the literature reveals certain commonalities
related to crowd attributes (e.g., reputation), requester features (e.g., incentivization), and
platform facilities such as aggregation and payment mechanisms [29]. Other research
works have focused specifically on internal forms of crowdsourcing [31] or even on the use
of crowdsourcing as a taxonomy development strategy by itself [32]. On a more generic
level, Modaresnezhad and colleagues [10] made a clear distinction between the IT-enabled
crowdsourcing requirements in business and non-business contexts by basing their pro-
posal on the four collective intelligence “genes” proposed by Malone et al. [23]. However,
these taxonomies fail to fully account for the hybrid nature of crowd-AI interaction and
thus are unable to capture the variety of interactions and relations that occur when using a
hybrid intelligence system.

During the last few years, the advances in the development of AI technologies have
been silently leveraging the capacity of a large pool of crowd workers worldwide who
provide data on a daily basis and thus contribute to the improvement of several models
on a scale that had never been seen before. In fact, this intertwinement of algorithms
with crowdsourcing workflows brought important advantages in a multiplicity of set-
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tings. Prior work has employed these principles and proved to be effective in detecting
accessibility problems on public surfaces (e.g., sidewalks) through the use of street-level
imagery [33]. In the same vein, Zhang and associates [34] proposed a system for identifying
urban infrastructure damages, such as fallen street signs, when AI-based solutions fail
to recognize them. These architectures have also been applied in the context of video
object segmentation [35], cultural heritage damage identification [36], endoscopic image
annotation [37], and historical portrait identification [38]. In addition, weaving together
crowd- and AI-powered techniques has also resulted in positive outcomes in real-time and
remote on-demand assistance [39]. In the literature, there are also examples of sensing
systems embedded in real-world environments (e.g., domestic spaces) that resort to built-in
cameras and crowdsourcing interfaces for dynamic image labeling [40]. That is, crowd-AI
hybrid systems are now able to engage humans and machines through a massively collabo-
rative joint action that spans research fields and temporal and geographical boundaries [41].
Drawing from previous studies on the characterization of hybrid intelligence systems from
a taxonomic viewpoint [18], the work conducted herein expands upon what has been
previously investigated by examining the many facets of crowd-machine hybrid systems
and thus identifying key thematic elements derived from the literature.

3. Methodological Approach

Drawing on a literature review of extant studies on human-AI interaction with a crowd-
in-the-loop, this article outlines a particular set of arrangements in which the research on
this burgeoning area can inform the development of future hybrid intelligence systems
while contributing to understanding the socio-technical practices that require humans
and machines working together towards a common goal. To this end, this work takes a
human-centered AI approach [42] guided by the evidence-based taxonomy development
method proposed by Nickerson and colleagues [6], as depicted in Figure 1. Synoptically,
the practice of taxonomic classification can be described as a full-fledged endeavor in
fields like astrophysics [43] and genetics [44] that usually consists of a formal semantic
model with empirically or conceptually derived dimensions and characteristics that are
exhaustive and mutually exclusive by nature [6]. At their structural level, taxonomies may
have hierarchical or non-hierarchical configurations [45] and be constantly subjected to
updating revisions [15]. Building on these methodological elements, the present study
draws on the HCI body of literature to create a taxonomy of crowd-AI hybrids and thus aid
researchers, practitioners, and anyone concerned with the understanding and development
of these technologies. With this in mind, a step forward is made by distilling a variety and
breadth of conceptual units from studies that seek to address the complementary way in
which human crowds interact with AI systems. Essentially, this study sheds light on the
socio-technical dimensions of crowd-AI integration by acknowledging that both social and
technical aspects must be taken into account to understand the functioning of a hybrid
system as a whole.

In this study, a novel set of heuristics and theoretical aspects are proposed as a founda-
tional structure for future research based on a scoping review that follows the guidelines
of evidence-based practice [46]. From a methodological perspective, this approach seeks
to systematically categorize research into a classification scheme that is then used as a
foundation for taxonomy construction and validation. To operationalize the taxonomic
process, a phenetic approach [47] was used throughout a set of iterative cycles until the
ending conditions were met. To this end, this article explores the vast space covered by the
literature on hybrid crowd-AI systems grounded in case studies, ethnographic fieldwork,
conceptual frameworks, surveys, semi-structured interviews, experimental work, mixed
methods, and technical artifacts (e.g., algorithms). The taxonomy-building process followed
the formal definition of Nickerson et al. [6] to create a taxonomy T with “a set of n dimen-
sions Di (i = 1, . . . , n), each consisting of ki (ki ≥ 2) mutually exclusive and collectively
exhaustive characteristics Cij (j = 1, . . . , ki) such that each object under consideration has
one and only one Cij for each Di, or T = {Di, i = 1, . . . ,n|Di = {Cij, j = 1, . . . , ki; ki ≥ 2}}”.
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It is worth noting that the guidelines provided by Nickerson and associates [6] represent
one of the most well-established methodological approaches for taxonomy development
in the field of information systems (IS), as reported in a recent literature review [48]. In
this vein, these guidelines were systematically applied in an effort to make the proposed
taxonomy clear, concise, robust, comprehensive, explanatory, and extendible as nearly as
possible to attend to the conditions advocated by Gerber [49] when addressing the creation
of classification artifacts.
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The first phase of taxonomy development consisted of a descriptive literature analy-
sis [50] to identify rationales for the use of crowd-AI hybrids. This was followed by a sys-
tematic examination of the insights extracted and further categorized into a literature clas-
sification scheme. In fact, this empirical-to-conceptual methodological approach has been a
common procedure for data collection in the taxonomy-building activity (e.g., [51–53]), in-
volving a set of systematic processes that range from a literature search to data filtering and
classification. For taxonomic validation, a conventional approach for corpus construction
was used as previously described in [54]. Essentially, the sample used in this study is an
expanded version of that used in [41]. This was achieved by following a living systematic
review protocol [55], where the search strategy is maintained and updated in a continuous
manner as new studies become available. For the purpose of this review, a simplistic
Boolean query formulation was applied using the following sequence of terms:

((“crowd*-AI” OR “AI-crowd*” OR “crowd*-machine” OR “machine-crowd*” OR “crowd*-computing”) AND (“interact*”))

This study expanded upon a previous corpus to accommodate a new set of possible
settings in which crowd-AI interaction occurs. This was done due to two main reasons.
First, a more recent picture of the state-of-the-art in this domain was needed. To this end,
only papers published in the last five years (2018–2022) as of 17 December 2022 were
inspected. Second, most of the studies considered for taxonomy validation in [41] com-
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prised human-AI interaction at an individual level, while here, the focus is on evaluating
arrangements involving crowds mixed with AI. The present work is also more restrictive in
terms of peer-reviewed studies since this contribution only considered journal articles and
conference papers. From a systematic search for publications indexed by the Dimensions
database, which contains records from diverse digital libraries such as ACM Digital Library,
IEEE Xplore, SpringerLink, and Science Direct with large coverage when compared to
Web of Science and Scopus [56], content types such as adjunct/companion proceedings,
panels, tutorials, book reviews, correspondence articles, introductions to special issues,
doctoral colloquiums and student research competitions, keynote talks, commentaries, and
course summaries were disregarded to ensure high-quality results. The search returned
593 publication records. After initial scrutiny of the titles and abstracts, along with the
removal of papers that did not meet the inclusion criteria, a total of 138 studies were
selected for further appraisal. To be eligible for inclusion, studies had to describe original
research from primary or secondary literature addressing the broader domain of human-
centered AI with a focus on crowd-AI interaction. As can be perceived from Figure 1,
this selection resulted in 25 research studies published in English-written, peer-reviewed
manuscripts (see Appendix A for details). The final set of papers chosen provided a reliable
source of information for testing the taxonomic proposal since they presented a diverse set
of scenarios.

As an integral part of the iterative taxonomy development process proposed in [6], the
meta-characteristic of the taxonomy was determined to be its focus on functional properties
and attributes of hybrid crowd-AI systems. Through a socio-technical lens grounded on the
foundational aspects of crowd computation [57] and its embodiment in hybrid human-AI
systems [58], the definition of this meta-characteristic allowed to frame and guide the
taxonomy development process until the subjective ending conditions previously mentioned
at the level of robustness, comprehensiveness, conciseness, extendibility, and explanatory
nature of the taxonomy were fulfilled. Following the taxonomic work of Landolt and
co-authors [59] on the use of deep neural networks in natural language processing (NLP)
applications, this contribution also tried to meet objective ending conditions to ensure that
each dimension and characteristic within the dimension were exclusive and no new charac-
teristics or dimensions were added in the final iteration. Therefore, the original dimensions
of the taxonomic proposal were validated within a literature matrix in order to verify
whether these dimensions and characteristics are present in the final sample of studies
addressing crowd-machine hybrid interaction. To some degree, the empirical validation of
the taxonomy proposed here is inspired by the work of Straus [60], who took McGrath’s [8]
group task circumplex as the object of evaluation.

4. ‘Inside the Matrix’: In Pursuit of a Taxonomy for Hybrid Crowd-AI Interaction

The availability of crowdsourcing platforms has led many organizations to adopt
them as continuous and highly available sources of data upon which the paradigm of
open innovation [61] is founded and continues to develop. On its most generic level, these
solutions are leveraged by a 24/7 digital workforce and represent a problem-solving and
innovation-driven approach able to shorten the entire product lifecycle [62]. As novel
AI-infused products and features become more and more prevalent and integral to many
everyday life pursuits, the need to incorporate hybrid intelligence in highly complex and
volatile scenarios (e.g., early warning and prompt response) become even more evident
since the complementarity [63] and adaptivity [64] of human and AI-based systems co-
evolving over time “as coequal partners” [65] can be of particular value to suppress each
other’s failures. In this vein, crowdsourcing has been applied to executing tasks such
as obtaining ground-truth human labels [66], gathering ratings for data to be used in
supervised machine learning [67], or even managing portfolio information [68]. In general
terms, Kittur and associates [57] reported that crowd intelligence could be particularly
useful in supervising, training, or even supplementing automation, while AI techniques
can make the crowd more accurate while augmenting human capabilities and interactions
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through machine intelligence. This constitutes the point of departure for the proposal of a
taxonomic framework for crowd-AI interaction, whose dimensions are shown in Figure 2
and briefly described in the following subsections.
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in which crowd-AI interaction occurs within the interplay between human and machine intelligence.

From a taxonomy-building methodological standpoint, the taxonomic design ap-
proach was largely inspired by the Work System Theory as depicted by Alter [69] and
further explored by Venumuddala and Kamath [70], who conducted an ethnographic work
grounded on a set of observations retrieved in an AI research laboratory. In addition, some
elements from the Activity Theory [71] inspired model for assessing CSCW in distributed
settings [72] were also introduced. As a result, a previous human-centered AI frame-
work [41] was revised and extended to highlight the importance of agency and control,
explainability, fairness, common ground, and situational awareness in the design space of
hybrid crowd-AI systems.

4.1. Temporal and Spatial Axes of Crowd-AI Systems

Crowdsourcing can be seen as a gateway to obtain reliable solutions to problems of
varying levels of difficulty when there is an urgent need for quick and prompt action or
even when the development of a game, big-scale application, software module, sketch, etc.,
is required without the strict rigidity to be situated physically close [73]. At the interaction
level, hybrid crowd-AI systems can be able to support real-time crowdsourcing activities
involving chatting and live tracking services, and also those occurring asynchronously, such
as post-match soccer video analysis. In framing this discussion within the time-space matrix
originally described in the context of groupware applications [12], this article concentrates
on the spatio-temporal patterns of human-AI partnerships at a crowd scale. Thus, one
can argue that the notion of space has been reshaped to incorporate the provision of
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localization and navigation information into crowdsourcing settings as a way of exploring
the full potential of local-and-remote on-demand real-time response in tasks like road data
acquisition [74] and local news reporting [75]. That is, crowd workers can be physically or
virtually distributed in a dispersed or co-located manner or even “synchronize in both time
and physical space” [76]. As some scholars noted, the level of engagement in both paid
and non-profit crowdsourcing communities can also be evaluated, taking into account the
daily-devoted time of participants, periodicity of interactions, and activity duration [77]. In
this regard, the contribution time and availability of the crowd constitute key information
sources in crowd-AI hybrid settings.

4.2. Crowd-Machine Hybrid Task Execution and Delegation

The rapid progress of AI-based technology has led to novel ways of motivating
humans to delegate tasks to AI for further fulfillment. Bouwer [78] proposed a four-
quadrant taxonomic model for AI-based task delegation and stressed the importance of
emotional/affective states as key deterministic factors for task delegation. In line with this,
Lubars and Tan [79] mentioned the relevance of trust, motivation, difficulty, and risk as
influential determinants of human-AI delegation decisions. In particular, trust and reliance
assume a special significance in terms of delegation preferences. The strategic line behind
most of the tasks that are commonly crowdsourced in current digital labor platforms is
still grounded in microtask design settings [80], although some recent attention has been
given to macrotasking activities (e.g., creative work) which involve crowd-powered tools
designed to support computer-hard tasks that need specialized expertise and thus cannot
be executed by AI algorithms in an effective manner [81]. By focusing on the task properties
and attributes in crowdsourcing, Nakatsu and co-workers [27] introduced a taxonomy that
classifies the structure (well-structured vs. unstructured) and level of interdependence
(independent vs. interdependent) together with a third binary dimension involving the
degree of commitment (low vs. high) required to accomplish a task.

Going back to the levels of complexity that may be present in crowdsourcing tasks,
Hosseini et al. [29] briefly divided them into two main categories: simple and complex.
Using this rationale, microtasks have been largely described as being simple for crowd
workers to perform well and easily in the sense that they involve a lesser degree of context
dependence [82]. Furthermore, these self-contained tasks are usually short by nature and
take little time to finish. Zulfiqar and co-authors [83] go even further by underlining that
microtasks do not require specialized skills, which enable any worker to contribute in
a rapid and cognitive effortless manner. Extrapolating to more complex crowdsourcing
processes, many forms of advanced crowd work have emerged throughout the years, and
there is now a renewed focus on task assignment optimization involving algorithmically-
supported teams of crowd workers acting collaboratively [84,85]. While the possibilities
for optimization are manifold across a number of different task scenarios, robust forms of
hybrid crowd-machine task allocation and delegation are needed to yield accurate results
and reliable outcomes not only for crowd workers acting at the individual level but also in
terms of team composition and related performance.

4.3. Contextual Factors and Situational Characteristics in Crowd-Computing Arrangements

Any crowd-machine hybrid interaction has its own contextual characteristics and
specificities. Dwelling on this issue, one may wish to claim that crowdsourcing settings are
highly context-dependent and situational information is particularly critical to achieving
successful interactions in a crowd-AI working environment since a crowd can be affected by
contextual factors such as geo-location, temporal availability, and surrounding devices [86].
Considering the context from which a crowd worker is interacting with an intelligent system
can help to personalize the way the actions are developed and thus improve processes, such
as task assignment [87] while providing resources and contextually relevant information
tailored to the needs of each individual based on content usage behaviors [42] and other
forms of context extraction. This involves a set of environmental, social, and cultural
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contexts [88] that come with fundamental challenges for hybrid algorithmic-crowdsourcing
applications in terms of infrastructural support for achieving efficient and accurate context
detection and interpretation. When designing a crowd-AI hybrid system, user-generated
inputs must be handled adequately in order to filter the relevant information and better
adapt the interaction elements and styles to each particular case [89]. In hindsight, this
is also somewhat related to the notions of explainability and trust in AI systems [90]
since the trustworthy nature of these interactions will be affected by the quality of the
contextual information provided and the degree to which a user perceives the AI system
they are interacting with as useful for aiding their activities. In such scenarios, aspects
like satisfaction shape the internal states of the actors [72] and can constrain the general
performance of the crowd-AI partnerships if the system does not meet the expectations of
the users.

4.4. Deconstructing the Crowd Behavior Continuum in Hybrid Crowd-Machine
Supported Environments

To some extent, both paid and non-paid forms of crowdsourcing have served as
“Petri dishes” for many behavioral studies involving experimental work [91]. A crowd
can differ in terms of attention level, size, emotional state, motivation and preferences,
and expertise/skills, among many other characteristics [86]. In this vein, Robert and
Romero [92] found a considerable impact of diversity and crowd size on performance
outcomes while testing the registered users of a WikiProject Film community. As such,
online crowd behaviors are volatile by nature and vary given the contextual factors and
situational complexity of the work, along with the surrounding environment of its members.
Neale and co-authors [72] briefly explained the importance of context for creating a common
ground which can be understood as the shared awareness among actors in their joint
activities, including their mutual knowledge. That is, sustaining an appropriate shared
understanding can constitute a critical success factor for achieving a successful interaction
when designing intelligent systems [93]. This also applies to the range of crowd work
activities that involve self-organized behaviors and transient identities [94], which imply a
reinforced need for effective quality control mechanisms (e.g., gold standard questions) in
crowd-AI settings [40]. Furthermore, some crowds are arbitrary, while others are socially
networked or organized into teams that coalesce and dissolve in response to an open call
for solutions where the nature of the task being crowdsourced is largely dependent on
collective actions instead of individual effort only. In some specific cases, these tasks are non-
decomposable and involve a shared context, mutual dependencies, changing requirements,
and expert skills [95,96]. In this vein, some prior research has revealed the presence of “a
rich network of collaboration” [97] through which the crowd constituents are connected
and interact in a social manner, although there are many concerns about the bias introduced
by these social ties. Seen from a human-machine teaming perspective, imbalanced crowd
engagement [98], conflict management [99], and lack of common ground [100] are also key
aspects that must be taken into account in such arrangements.

4.5. Hybrid Intelligence Systems at a Crowd Scale: An Infrastructural Viewpoint

As AI-infused systems thrive and expand, crowdsourcing platforms continue to play
an active role in aggregating inputs that are used by companies and other requesters around
the globe toward the ultimate goal of enabling algorithms with the ability to cope with com-
plex problems that neither humans nor machines can solve alone [101]. However, designing
for AI with a crowd-in-the-loop includes a set of infrastructure-level elements such as data
objects, software elements, and functions that together must provide effective support
for actions like assigning tasks, stating rewards, setting time periods, providing feedback,
evaluating crowd workers, selecting the best submissions, and aggregating results [102].
To realize the full potential of these systems, online algorithms can be incorporated into
task assignment optimization processes for different types of problems involving simple
(decomposable), complex (non-decomposable), and well-structured tasks [85]. By show-
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ing reasonable results in terms of effectiveness, some algorithms have been proposed to
organize teams of crowd workers as cooperative units able to perform joint activities and
accomplish tasks of varying complexity [95,96,103]. From an infrastructural perspective
fitted into the taxonomy proposed in this article, the contribution of this study builds
on Kamar’s [104] work to stress the importance of combining both human and machine
capabilities in a co-evolving synergistic way.

Taken together, crowd and machine intelligence can offer a lot of opportunities for
predicting future events while improving large-scale decision-making since online algo-
rithms can learn from crowd behavior using different integration and coupling levels.
In many settings, hybrid intelligence systems can help to draw novel conclusions by in-
terpreting complex patterns in highly dynamic scenarios. In line with this, many have
studied novel forms of incorporating explainable AI approaches, such as gamification [105],
for enhancing human perceptions and interpretations of algorithmic decisions in a more
transparent and understandable manner. Due to their scalability, crowd-AI architectures
can constitute an effective instrument for handling complexity, and thus more research
is needed to explore how to best develop hybrid crowd-AI-centered systems taking into
account the requirements and personal needs of each crowd worker. In particular, this
domain raises some questions about the use of AI to enhance the quality of crowdsourcing
outputs through high-quality training data [67] and related interaction experiences, as
seen from a human-centered design perspective [106]. To summarize, crowd-powered
systems can present a wide variety of opportunities to train algorithms “in situ” [107] while
providing learning mechanisms and configuration features for customizing the levels of
automation over time.

4.6. ‘Rebuilding from the Ruins’: Hybrid Crowd-Artificial Intelligence and Its Social-Ethica Caveats

There is a clarion call for an investigation on the ethical, privacy, and trust aspects
of human-AI interaction from several causes. For instance, Amershi and colleagues [88]
raised a set of concerns related to the need to avoid social biases and detrimental behav-
iors. To tackle those issues, it is necessary to dive deep into the harms provided by AI
decisions in a contextualized way to ensure fairness, transparency, and accountability in
such interactions [108]. This can be realized by materializing human agency and other
strategies that can provide more control over machine behaviors [109–111]. From diversity
to inclusiveness—and subsequently justice—there is still a long way until these goals are
accomplished within the dynamic frame of human-AI interaction and hybrid intelligence
augmentation. To address these shortcomings, system developers can play a critical role by
considering the potential effects of AI-infused tools on user experiences.

Extrapolating to the crowdsourcing settings, Daniel and co-workers [112] reported
a concern with the ethical conditions, terms, and standards aligned with the compliance
towards regulations and laws that are sometimes overlooked in such arrangements. When
considering crowd work regulation, aspects of intellectual property, privacy, and confi-
dentiality in terms of participant identities constitute pivotal points [113]. A look into
previous works (e.g., [114]) shows multiple concerns regarding worker rights, ambiguous
task descriptions, acknowledgment of crowd contributions, licensing and consent, low
wages, and unjustified rejected work. Such ethical and legal issues are even more expressive
in the context of hybrid crowd-AI systems where there are not only online experiments
and other human intelligence tasks (HITs) running on crowdsourcing platforms but also
machine-in-the-loop processes within the entire hybrid workflow. In a particular setting,
strategies like shared decision-making and informed consent can be particularly helpful
to mitigate the threats of bad conduct and malicious work if based on a governance strat-
egy where the guidelines, rules, actions, and policies are socially organized by the crowd
itself [115]. In this vein, the potential impacts of the aforementioned socio-ethical concerns
surrounding crowd-powered hybrid intelligence systems must be further elucidated and
investigated from several lenses to draw a realistic picture of the current situation.
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5. Validation and Assessment of the Proposed Taxonomy

This study proposes a taxonomic framework aimed at accommodating a diverse set of
infrastructurally supported crowd-algorithm interactions that occur in a certain time and
space within two separate orders of intelligence, which, therefore, can be combined in a hy-
brid model architecture. The interactions occurring in this hybrid space have a set of unique
contextual and situational aspects and must be guided by ethical guidelines, rules, and
principles in order to combine crowd and machine workflows effectively and transparently.
To validate the proposed taxonomy and demonstrate its utility, this contribution examined
the applicability of the taxonomy in a total of twenty-five studies presenting some type of
crowd-machine interaction. This is in line with the need for a methodologically rigorous
inspection of the possible effects of hybrid intelligence in practical settings. For instance,
substantial literature on human-AI interaction has developed quickly across different ar-
eas [116], but few attempts have been made to gather evidence about this intersectional
space at a crowd scale and thus understand the uses and limitations of hybrid crowd-AI
systems from a socio-technical design viewpoint. The results of the taxonomy-based review
are provided in Figure 3, accompanied by an example of a scheme used to explain the ratio-
nale behind the taxonomic classification (Figure 4). Further details regarding the 14 journal
articles and 11 conference papers selected for taxonomy-based literature analysis are given
in Tables A1 and A2 in the Appendix A. In order to determine whether each category of
the taxonomy was either present or absent, the following levels were considered:
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Fully addressed: The manuscript clearly emphasizes the specific elements underlying
the taxonomic category by addressing one or more of its unique attributes, with a potential
experiment, solution, or case study demonstrating applicability. For instance, Mohanty and
co-authors [38] make explicit reference to the contextual information (e.g., biographical
details) provided to the user about each portrait in Photo Sleuth, a crowd-AI-enabled face
recognition platform where a crowd of both expert and non-expert volunteers can tag a
picture using this supplementary piece of contextual data to aid the decision process.

Not addressed: The work does not directly address any of the aspects that are inherent
to the category under consideration.

Partially addressed: The study provides details that can be used to address the par-
ticular taxonomic category, even if not explicitly mentioned in the manuscript. By way
of example, Kobayashi et al. [117] do not directly provide details about the contextual
information required in the natural disaster response setting used for demonstrating the
proposed method, but the situational awareness and subsequent timely information re-
quired to manage the rapidly evolving scenarios toward well-informed and up-to-date
decision-making are implicitly stated.

On the basis of insights from previous analytical work, this taxonomically grounded
literature review process has been adopted in areas like business intelligence and ana-
lytics [118] as a way of iteratively developing and refining taxonomic dimensions and
characteristics while pinpointing areas requiring further investigation.

As can be seen from Figure 3, the taxonomy presented in this article is far from
comprehensive enough to accommodate all types of possible scenarios involving crowd-AI
interaction. Instead, the goal is to facilitate a cohesive understanding as a basis for further
scrutiny of crowd-computing hybrids in real-world applicative contexts. Note that there are
some categories that can co-exist, taking into account the specificity of each situation or use
case. As such, the first taxonomic unit contains the spatio-temporal elements (T1) that frame
crowd-AI interaction in relation to the original time-space matrix proposed by Johansen [12].
In brief terms, this classification model categorizes interactions as follows: same place/time,
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different places/same time, same place/different times, or different places/different times.
To a broad extent, crowd-AI interactions can occur in asynchronous or real-time settings
where the individuals that constitute the crowd can be physically and virtually co-located
or geographically dispersed (remote). In addition, the worker location and task duration
time [11] were also considered, as the latter is intimately connected to the time frame or
limit that is set to complete a task. In the example provided in Figure 4, a nearly real-time
on-demand crowd-powered system is proposed to collect responses from crowd workers
that can be at any location but need to be available to provide contributions in real-time due
to the quickly changing contextual requirements underlying the type of tasks performed.
Looking at the results of the taxonomy-based literature review in detail, a total of 84%
(n = 21) of included papers have reported temporal and/or spatial aspects of crowd activity.
As a brief example, Chan and colleagues [119] introduced a mixed-initiative system with
an annotation time of 1 min per paper on average in analogy matching tasks. In terms
of real-time crowd-AI settings, some primary studies (e.g., [36,39,40,98,120]) presented
synchronous interactions between crowd members, although most of the crowdsourcing
systems relied on an asynchronous model.

Consistent with the previous literature, the most addressed taxonomic unit is related
to task design, assignment, and execution (T2), with a total of 25 primary studies. In
crowdsourcing experiments, task design is seen as a cornerstone to achieving the goals of
a project or campaign since the characteristics and configuration of crowdsourced tasks
influence the general outcomes obtained from the crowd [91]. In general, different types of
tasks were found in the selected sample. As mentioned before, tasks differ both in terms
of attributes, complexity, and granularity [11]. For instance, Scalpel-CD [121] generates
label inspection microtasks in a dynamic way, while Evorus [39] focuses on classification
tasks in the form of voting. A slightly different task specification is employed in Photo
Sleuth [38], where crowd workers are invited to perform person identification/recognition
tasks that are therefore augmented with visual tags to allow portrait seeking. Moreover,
CollabLearn [36] is based on crowd query tasks where human processing is needed to
highlight damaged areas from cultural heritage imagery. A somewhat related body of
work (e.g., [34]) has sought to support the execution of crowd-in-the-loop interactive image
labeling tasks with the ultimate goal of enhancing AI-powered damage scene assessment
algorithms. All in all, the task-related aspects discussed in the growing literature on the
interplay between crowdsourcing and AI systems have been playing an indispensable
role in explaining complex relationships among crowd inputs and further integration into
hybrid workflows.

Extrapolating to the ethical principles and standards in crowd-AI settings (T3), the
review only identified nine papers (36%) that explicitly discuss ethical behaviors from
a requester-, crowd- or even AI-centered standpoint. Despite the recognized need for
fair payment and long-term career building in online crowd work platforms [122], this
study shows that the ethical concerns underlying the interaction-centric crowd-AI activity
are often overlooked from a practical perspective, despite some examples of strategies
presented in the crowdsourcing literature such as ensuring fair compensation by paying
crowd workers in conformity with the complexity of the task being performed [123].
Based on the findings from the chosen sample, Palmer and co-authors [124] provide one
of the few examples of studies calling attention to possible unethical actions associated
with the disclosure of sensitive information from images and videos. In a similar way,
only 20% of primary studies (n = 5) fully describe machine and human (crowd) agency,
governance practices, or control (oversight) (T4), although extensive research has been
conducted about the potential risks and unintentional harms associated with the lack of an
effective governance strategy able to regulate algorithmic actions [125]. In this regard, trust
building [126,127] appears among the most critical factors affecting technology acceptance
when considering human-AI interaction at a massive scale.

One enduring taxonomic unit that has been largely addressed since the very beginning
of the field of CSCW is concerned with the contextual and situational information (T5) that
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is then used to support awareness about the environment in which the interaction takes
place. This includes what goes on in the environment, who is available, who leaves, and
how individuals “remain sensitive to the conduct of others so that an event or action, which
may have some passing significance, can be displayed to each other without it necessarily
gaining interactional or sequential import” [128]. If the entire sample is considered, 48%
of studies (n = 12) mentioned some kind of contextual or situational issues. For instance,
Huang et al. [39] proposed a crowd-machine hybrid system where the conversation context
is used to provide response candidates using recorded facets and previous chat conversa-
tion logs. In particular, the task-specific contextual data is captured with the help of the
crowd (by using chat logs) to improve the quality of responses based on current and past
conversations. Moreover, Park and associates [129] used self-adapting mechanisms based
on reinforcement learning (RL) and contextual features extracted to increase crowdsourcing
participation over time, while Guo and co-workers [40] considered the lack of context as a
determining factor for failure in smart environments.

Turning to the role of infrastructural support (T6) in interactive human-AI practices
at a crowd level, the review disclosed a total of 20 studies (80%) where infrastructure or
the characteristics of a crowd-computing platform are reported. In CSCW, the concept
of ‘infrastructure’ and its ecological nature [130] has developed over the years to charac-
terize socio-technical assemblages “that underpins and enables action, engagement, and
awareness” [131]. On the basis of their research review, Hosseini and colleagues [29] gave
a detailed description of the features that are commonly found in crowdsourcing platforms.
In line with this, Santos and co-authors [102] stressed that a crowdsourcing system must
provide functions and components able to support workflows involving actions such as
task assignment, pre-selecting crowd workers, stating rewards, and selecting contribu-
tions. From payment mechanisms to result aggregation, a crowd-computing platform
must combine crowd-, requester-, task- and platform-related information and facilities
(i.e., infrastructural elements) that act in unison to carry out tasks in accordance with the
different requirements. From an infrastructural perspective, Huang and associates [39]
described the conversational worker interface used for chatting and real-time response
modeling along with the automatic response voting and generating algorithms deployed
to operate in a continuous manner as the conversation continues. Using a crowd-AI hybrid
intelligence lens, the results showed a total of 14 studies addressing algorithmic reasoning,
inference, explainability, and interpretability (T7). For instance, human-AI decision-making
processes are complex by nature, and AI-infused systems require a certain level of explain-
ability [132] and interpretability [133] to provide insights about the algorithmic actions
taken during the AI-enabled experience. However, several studies agree that these explana-
tions must manifestly be comprehensible, transparent, and actionable (i.e., how humans
use or find the explanations useful) to ensure traceability and trust in AI-advised crowd
decision-making [134]. Moreover, incorporating reasoning capabilities into hybrid intel-
ligence systems at a massive scale can provide support for better decisions since RL and
related algorithms can learn from crowd behavior [104] while offering a lot of possibilities
to improve decision-making at a large scale.

This points to the notions of scalability and adaptability (T8) and their importance in
highly dynamic and unpredictable environments. Due to their flexibility, hybrid crowd-
algorithm methods represent a means of handling complexity and gathering high-quality
training data. From the entire sample, 17 studies (68%) addressed scalability and/or crowd-
AI adaptability. As an example, Anjum et al. [135] stressed the value of scalable image
annotation, while Trouille and co-authors [136] have drawn attention to scalable application
programming interfaces with the ability to quickly configure a citizen science campaign. A
further focus of the taxonomic-based review presented here is on the learning and training
processes (T9) behind the current AI models. In crowd-machine settings, humans may
“feed” the algorithm to act in situ in an automatic fashion based on data inputs that can work
as training samples [137]. On this point, 96% of included studies (n = 24) addressed aspects
related to this taxonomic unit. For instance, Kaspar and colleagues [35] proposed a crowd-
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AI hybrid workflow in which the training data is generated through video segmentation.
Further expanding the scope, a related important question is how to train the crowd
itself when an AI output is used [117]. Accordingly, Zhang and associates [36,120] call
for more research into aspects like AI bias mitigation and the detection of imperfect or
biased inputs from the crowd as factors that may compromise the system’s reliability. A
look at the work conducted by Huang et al. [39] denotes that the machine learning model
that works behind the conversational assistant proposed is fed with training data from
past up/down votes given by crowd workers. This continuous learning approach allows
optimization of the entire automatic voting process based on the assessment of the quality
of the human responses.

Stemming from the literature of social and behavioral sciences, the extraction of
behavior features from crowd activity (T10) has been particularly relevant to unravel
the complexities of crowdsourcing practice and improving the synergistic interaction
between humans (crowds) and algorithms. However, the results from this scoping review
show that only 40 percent of the literature sample (n = 10) focused on aspects of crowd
activity from a behavioral standpoint. Building on the collective intelligence genome [23],
the understanding of what, why, who, how, and the circumstances under which such
interaction takes place can be enhanced through the behavioral analysis of traces of past
activity [138,139]. In hybrid crowd-algorithm interactive settings, user activity tracking
involving keystroke, eye tracking, time duration, and mouse click recording (e.g., window
resizing) can contribute to the cognitive, physical, and perceptual augmentation of the
crowd with practical implications for improving task assignment, performance estimation,
and worker pre-selection and/or recommendation based on reliability measures [140–143].
From a behavioral point of view, identifying active workers can play a critical role in systems
such as Evorus [39] since the model strongly depends on human inputs, while capturing
crowd members’ meta-information is important to personalize the experience to the user
in more intelligent ways. Although the development of AI systems supported by online
interfaces able to log user actions has a great capacity to conduct behavior analysis [144],
recent research works (e.g., [145]) have shown that there are a lot of resources required to
realize the effective capture of these behavioral traces from an infrastructural lens.

A closely related line of investigation involves the quality control mechanisms (T11)
that are used in crowdsourcing systems to reduce the occurrence of inaccuracies and biased
inputs provided by malicious (or poorly motivated) crowd workers. Empirically, this
work shows that there were only five papers (20%) that did not explicitly report strategies
for ensuring quality control and modeling crowd bias. In general terms, quality control
strategies for detecting low-quality work can vary from input and output agreement
to majority voting/consensus, ground truth (e.g., gold standard questions), contributor
evaluation, expert review, real-time support, or even fine-grained behavioral traces [146].
Yet, as pointed out by Daniel and co-authors [112] and further developed by Jin et al. [86],
a quality assessment process can be performed computationally (e.g., task execution log
analysis), collaboratively (e.g., peer review), or even individually (e.g., qualification test).
Regarding the latter, worker pre-selection has been used by requesters as a common
approach to filter unqualified workers by taking into consideration factors like reputation
and credentials. In the example of the scenario shown in Figure 4, the system has a high
error tolerance for imperfect automated actions from voting algorithms and chatbots since
the oversight is done by the (human) crowd.

Throughout the last decades, several scholars have stressed the importance of moti-
vational factors (T12) as a quality assurance determinant and also a catalyst for sustained
participation in crowdsourcing [147]. Briefly, the taxonomy-based review identified 20
primary studies (80%) addressing motivation and incentive mechanisms regarding the
use of algorithmic systems powered by crowdsourcing techniques. This includes extrin-
sic incentives (e.g., immediate payoffs) and also intrinsic (hedonic) motives like inherent
satisfaction and entertainment [112]. For example, Evorus [39] provides a continuously up-
dated scoreboard that displays the reward points given to each crowd worker according to
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his/her performance on a particular task, where the value is automatically converted into a
monetary bonus. As Truong et al. [148] have noted, crowdsourcing contests are also consid-
ered intuitive ways for incentivizing crowd workers and are frequently used in macrotask
crowdsourcing for solving problems with an elevated degree of complexity [81,149]. In
general terms, the incentives reported in the literature range from monetary rewards to
gifts and gamification strategies [112]. Concerning the former, the review presented here
also provides a summary of the primary studies from the sample that presented experi-
mental work based on monetary rewards. As Table 1 depicts, 60% of the papers included
in the taxonomy-based literature review (n = 15) have reported paid experiments in remote
settings. For paid crowdsourcing experiments where the crowd had to execute the whole
experiment remotely, this part of the analysis considered the time allotted, pre-selection
mechanism(s), crowd size, platform(s) used, and reward in terms of cost per HIT in US
Dollars ($). This is in line with previous studies (e.g., [91]) reporting aspects related to the
several stages of experimental design in crowdsourcing settings.

Table 1. Methodological remarks extracted from primary studies reporting paid crowdsourcing
experiments conducted remotely.

ID Experimental Settings Pre-Selection
Mechanism(s)

Cost per HIT and
Platform(s) Time Allotted

P1 5-month-long deployment and testing
with real users (n = 80 crowd workers) -

$0.142 (Phase-1 deployment);
$0.211 (Control Phase);
MTurk; Hangoutsbot

~10 min (per
conversation)

P2

Ensemble method combining multiple
results on individual frame

segmentations and crowd-based
propagated segmentation results

(n = 70 crowd workers)

-
$0.90 (Segmentation);

$0.15 (Scribble);
MTurk

142.6 s (per frame
segmentation); 2.5 s (per

method scribbles)

P3
4-week testing (n = 17 participants),

with an unspecified number of
crowd workers

>95% assignment approval
rate; Gold standard question

sensor instances

~$10/hour ($0.02 for each task
performed on MTurk)

~3 s (per labeled
question sensor

instance)

P5
Classification of potential studies for a
systematic literature review (n = 147

crowd workers)

>70% overall accuracy; Worker
screening based on two

test questions

$10/hour;
MTurk -

P6

Purpose-mechanism annotation
analogical search (n = 3 crowd workers

per document), with an unspecified
number of crowd workers

>=95% acceptance rate;
Training step based on a gold
standard example before the

task execution

$30/hour (Upwork-worker 1);
$20/hour (Upwork-worker 2);
$10/hour ($0.70 for each task

performed on MTurk)

1.3 min (per document
annotation); 4 min

(overall task
completion)

P9

Contextual bandit algorithm and agent
deployment powered by AI-based

request strategies for visual question
answering, with an unspecified

number of crowd workers

Training step using examples
and a qualifying task

$12/hour;
MTurk -

P13

Performance evaluation of a crowd-AI
hybrid framework through real-world

datasets (n = 3 crowd workers per
image in a crowd query) with an

unspecified number of crowd workers

>95% overall task approval
rate; >=1000 HITs completed

$0.20 for each worker
per-image annotation;

Labelme; MTurk
-

P14

A method for AI worker evaluation
that uses a “divide-and-conquer”

strategy for dynamic task assignment
with an unspecified number of

crowd workers

No strategies were deployed
to target malicious workers

240$ for 2 h of labor;
MTurk -

P16

Evaluation of hybrid
crowd-algorithmic workflows for
image annotation based on time
completion and quality, with an

unspecified number of crowd workers

>92% approval rate; >500 HITs
completed

$9/hour ($0.20 for each task
performed on MTurk)

80 s (per HIT
completion)
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Table 1. Cont.

ID Experimental Settings Pre-Selection
Mechanism(s)

Cost per HIT and
Platform(s) Time Allotted

P17

Evaluation of crowd responses and
computational performance in

identifying damages from urban
infrastructure imagery data (n = 2 to
5 crowd workers per query), with an

unspecified number of crowd workers

>95% overall task approval
rate; >=1000 HITs completed

$0.05 for each worker per
image classification;

MTurk

0.0227 (average time
taken to accomplish

each streaming urban
monitoring task using a
hybrid crowd-AI model)

P18

Evaluation of model performance to
re-query or not crowdsourced

initializations for bounding-box
annotations (n = 26 crowd workers

located in the United States)

A gold standard for
identifying inattentive

workers; Annotators with
more than 15% incorrect

annotations were disregarded

~$12/hour ($0.06 for each
bounding-box annotation);

MTurk
-

P19

Randomized online experiments
comparing the performance of a

computer vision model and a crowd of
15,016 individuals in tasks related to

the detection of authentic vs. deepfake
videos (n = 5524 participants:

Experiment 1; n = 9492 participants:
Experiment 2)

-

$7.28/hour plus bonus
payments of 20% to the top

participants; Experiment
hosted on an external website

(i.e., Detect Fakes);
304 participants recruited

from Prolific

15 min (per task
completion)

P20

Performance evaluation of a dynamic
optimal neural architecture searching

framework that leverages
crowdsourcing for handling disaster

damage assessment problems with an
unspecified number of crowd workers

>95% overall task approval
rate; >=1000 HITs completed

$0.20 for each crowd worker
per-image labeling;

MTurk

0.0198 s (average time
with varying crowd

query frequency);
0.0201 s (average time
with varying numbers

of crowd workers)

P21

Evaluation of a hybrid framework
combining expert and crowd

intelligence with explainable AI for
misinformation detection

(n = 3 crowd workers per HIT plus
5 experts), with an unspecified number

of crowd workers

>=95% task acceptance rate
Unspecified amount above the

minimum requirement on
MTurk ($0.01 per assignment)

61 s (average time of
task completion); 21.4 h

(total waiting time to
collect and aggregate

contributions from
crowd

workers)

P25

Development of a crowd-AI system for
optimizing smart urban sensing

applications (n = 3 to 7 crowd workers
per task), with an unspecified number

of crowd workers

>95% overall task approval
rate; >=1000 HITs completed

$0.05 for each crowd worker
per image classification;

MTurk
-

Regarding the filtering mechanisms used for early pre-selection of crowd workers, the
review of the literature showed five studies where the HIT acceptance rate was set to more
than 95%. Moreover, this contribution also identified four studies where the number of
tasks completed by a potential crowd worker had to be at least 1000. From this scoping
review, a total of five experiments involved some type of ground truth in the form of
a gold standard or test question. The selected sample also contained cases in which no
pre-selection strategies were applied, while one of the experiments disregarded crowd
workers with more than 15 percent of incorrect answers. It is also worth noting that one of
the primary studies contained workers located in the United States only. Taken all together,
the utilization of these pre-selection techniques can be useful to specify the characteristics
of potential contributors improve the likelihood that only skilled, high performing, and/or
trustworthy crowd workers are allowed to participate. When considering the platforms
used to recruit participants, the results show a clear preference for the use of MTurk
(n = 14). Although some tasks were paid up to $0.20, some workers only received $0.05
per task performed. Going back to the payment imbalances and unfair compensation that
challenge ethical norms in crowdsourcing marketplaces [150,151], a lens into the literature
has revealed that there is an increasing awareness of the crowd worker’s conditions and that
the monetary compensation must be set in a fair manner when adopting crowdsourcing
for tasks such as data collection and analysis. Overall, this study also revealed different
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average times of HIT completion in accordance with the complexity and requirements of
each task, while a remarkable number of primary studies (n = 10) did not mention the total
number of crowd workers involved in the experiment. Nonetheless, some studies involve
both crowd workers and experts in their experimental settings, with a crowd size ranging
from 2 to 7 crowd workers per task and a maximum size of 147 paid online workers in a
single experiment.

6. Concluding Discussion and Challenges Ahead

Owing to the difficulty in handling problems of increasing complexity involving
noisy and complex data streams, hybrid crowd-machine interactive workflows have been
implemented to efficiently scale training data and parameter models in order to produce
insights and support decision-making processes in a way that was not possible using
conventional methods. In various problem domains, new patterns can be identified from
complex decision rules for further verification in a human-in-the-loop basis encapsulated
in crowd-AI systems and architectures able to support tasks like content regulation and
medical diagnosis. Considering the latter, machine learning skills are now increasingly
crowdsourced in the form of contests or competitions running on predictive modeling
and analytics services where both monetary and non-monetary incentives are used to
aggregate crowd knowledge and thus help to better streamline the early detection and
treatment processes that are critical in healthcare settings. However, building trust in
crowd-machine interaction while making AI more efficient and adaptable are among the
prevalent challenges in crowdsourcing and are usually seen as hindering factors for the
successful adoption and use of these systems in practice.

In this study, an initial taxonomy of crowd-AI hybrid interaction was proposed as
a guiding framework for system developers, public and private health professionals,
scientists, and other stakeholders worldwide interested in this emerging area. Despite
the contribution towards a comprehensive scheme to explain how crowd-machine hybrid
interaction has been addressed in various scenarios presented in the literature, this article
constitutes only one piece of a much larger puzzle. In other words, the information obtained
from work presented here is considered a basis for further expansions and testing scenarios
in real-world contexts in the form of continuous observation of the co-evolving relations
between humans and algorithms with the goal of informing the design of intelligent
systems adequately and cohesively. Framing a territory in constant expansion like crowd-
AI hybrids is a challenging task. Overall, the taxonomy-based review found a gap in terms
of understanding, both empirically and conceptually, the role of ethical principles and
perceived fairness in building and deploying AI responsibly and with adequate governance
strategies. This study also shows that more experimentation and additional investigative
steps will be needed to cope with inconsistent records from crowd workers. Moreover,
there are also a number of directions for future work that should be beneficial to extend in
the near future for new types of research practices involving crowd-computing hybrids
so that scientific institutions, companies, and the general public can all benefit from the
knowledge generated from this convergence and therefore better respond to the volatile
nature and changing demands of the current environments.
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Appendix A

Table A1. List of primary studies included in the taxonomic validation process.

ID Author(s) Year Title

P1 Huang et al. 2018 Evorus: A crowd-powered conversational assistant built to automate itself over time

P2 Kaspar et al. 2018 Crowd-guided ensembles: How can we choreograph crowd workers for video
segmentation?

P3 Guo et al. 2018 Crowd-AI camera sensing in the real world

P4 Nushi et al. 2018 Towards accountable AI: Hybrid human-machine analyses for characterizing
system failure

P5 Krivosheev et al. 2018 Combining crowd and machines for multi-predicate item screening

P6 Chan et al. 2018 SOLVENT: A mixed initiative system for finding analogies between research papers

P7 Yang et al. 2019 Scalpel-CD: Leveraging crowdsourcing and deep probabilistic modeling for
debugging noisy training data

P8 Trouille et al. 2019 Citizen science frontiers: Efficiency, engagement, and serendipitous discovery with
human-machine systems

P9 Park et al. 2019 AI-based request augmentation to increase crowdsourcing participation

P10 Kittur et al. 2019 Scaling up analogical innovation with crowds and AI

P11 Mohanty et al. 2020 Photo Sleuth: Identifying historical portraits with face recognition and
crowdsourced human expertise

P12 Zhang et al. 2020 Crowd-assisted disaster scene assessment with human-AI interactive attention

P13 Zhang et al. 2021 CollabLearn: An uncertainty-aware crowd-AI collaboration system for cultural
heritage damage assessment

P14 Kobayashi et al. 2021 Human+AI crowd task assignment considering result quality requirements

P15 Palmer et al. 2021 Citizen science, computing, and conservation: How can “Crowd AI” change the
way we tackle large-scale ecological challenges?

P16 Anjum et al. 2021 Exploring the use of deep learning with crowdsourcing to annotate images

P17 Zhang et al. 2021 StreamCollab: A streaming crowd-AI collaborative system to smart urban
infrastructure monitoring in social sensing

P18 Lemmer et al. 2021 Crowdsourcing more effective initializations for single-target trackers through
automatic re-querying

P19 Groh et al. 2022 Deepfake detection by human crowds, machines, and machine-informed crowds

P20 Zhang et al. 2022 On streaming disaster damage assessment in social sensing: A crowd-driven
dynamic neural architecture searching approach

P21 Kou et al. 2022 Crowd, expert & AI: A human-AI interactive approach towards natural language
explanation based COVID-19 misinformation detection

P22 Guo et al. 2022 CrowdHMT: Crowd intelligence with the deep fusion of human, machine, and IoT

P23 Wang et al. 2022 Graph optimized data offloading for crowd-AI hybrid urban tracking in intelligent
transportation systems

P24 Gal et al. 2022 A new workflow for human-AI collaboration in citizen science

P25 Zhang et al. 2022 CrowdOptim: A crowd-driven neural network hyperparameter optimization
approach to AI-based smart urban sensing
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Table A2. Distribution of publications per venue.

Conference Proceedings

AAAI Conference on Artificial Intelligence
AAAI Conference on Human Computation and Crowdsourcing (4)

ACM Conference on Human Factors in Computing Systems (3)
ACM Conference on Information Technology for Social Good

ACM Web Conference
International Joint Conference on Artificial Intelligence

Journal/Transactions

ACM Transactions on Interactive Intelligent Systems
Human Computation (2)

IEEE Internet of Things Journal
IEEE Transactions on Computational Social Systems

IEEE Transactions on Intelligent Transportation Systems
Knowledge-Based Systems

Proceedings of the ACM on Human-Computer Interaction (3)
Proceedings of the ACM on Interactive, Mobile, Wearable, and Ubiquitous Technologies

Proceedings of the National Academy of Sciences (3)
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