
Citation: Gan, J.; Zhang, L.; Chen, H.;

Bai, L.; Zhang, X.; Yang, L.; Zhang, Y.

Underground Garage Patrol Based on

Road Marking Recognition by Keras

and Tensorflow. Appl. Sci. 2023, 13,

2385. https://doi.org/10.3390/

app13042385

Academic Editors: Xiaojie Su,

Ligang Wu and Weiran Yao

Received: 30 November 2022

Revised: 6 February 2023

Accepted: 7 February 2023

Published: 13 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Underground Garage Patrol Based on Road Marking
Recognition by Keras and Tensorflow
Jianwen Gan 1, Longqing Zhang 2 , Hongming Chen 3 , Liping Bai 1,*, Xinwei Zhang 2, Lei Yang 2

and Yanghong Zhang 2

1 Department of Computer Science, Macau University of Science and Technology, Taipa, Macau, China
2 Department of Computer Science, Guangdong University of Science and Technology,

Dongguan 523070, China
3 Key Laboratory of Oceanographic Big Data Mining & Application of Zhejiang Province,

Zhejiang Ocean University, Zhoushan 316022, China
* Correspondence: lipbai@must.edu.mo

Abstract: The purpose of this study was to design an unmanned patrol service in combination with
artificial intelligence technology to solve the problem of underground vehicle patrol. This design
used the Raspberry Pi development board, L298N driver chip, Raspberry Pi camera, and other
major hardware equipment to transform the remote control car. This design used Python as the
programming language. By writing Python code, the car could be driven under the control of the
computer keyboard and the camera was turned on for data collection. The Keras neural network
library was used to quickly build a neural network model, the collected data was used to train the
model, and the model was finally generated. The model was placed in the TensorFlow system for
processing, and the car could travel in a preset track for unmanned driving.

Keywords: Keras neural network; TensorFlow; autopilot

1. Introduction

The overall plot ratio of urban residential quarters and actual population density is
large. Developing ground parking in the city or building multistorey parking garages on
the ground are not the best solutions for urban construction. Therefore, the construction of
underground garages has become a trend for future development.

The safety of underground garages has not been paid enough attention, resulting in a
high incidence of cases that occur in underground garages. The reasons for this include
insufficient security equipment and factors such as inadequate management [1].

The topic of this study was mainly the design of an automatic driving patrol for
underground garages, using the deep learning network to detect and identify preset roads,
build a neural network model through the neural network library, and use the collected data
to train the model. Finally, the model was generated and then processed using TensorFlow.
The car could travel in a preset orbit to achieve unmanned garage patrol. At the same time,
driving around the world is also a trend. The world’s major technology companies are using
artificial intelligence and driverless technology to develop unmanned vehicles with various
functions, which not only saves considerable labor costs but also make people’s lives more
convenient and comfortable [2]. Unmanned driving mainly senses and recognizes the
environment around the vehicle through on-board sensors and controls driving through
the on-board computer.

2. Related Work

There are numerous road recognition research methods available today, the most
common of which are in-vehicle vision systems and LIDAR (laser radar). LIDAR is not
the preferred sensor for this task due to its high manufacturing costs and complicated

Appl. Sci. 2023, 13, 2385. https://doi.org/10.3390/app13042385 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13042385
https://doi.org/10.3390/app13042385
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3991-7604
https://orcid.org/0000-0003-0966-8608
https://doi.org/10.3390/app13042385
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13042385?type=check_update&version=1


Appl. Sci. 2023, 13, 2385 2 of 12

usage process. The focus of this paper was on image-based lane line and road marking
detection algorithms. The edges, geometry, and texture of road markings are the most
visible features in road marking detection, and they serve as the foundation for vehicle
localization and navigation.

Traditional road marker detection methods are limited to a few scenarios. To detect
lane lines, Mammeri et al. used MSER (maximum stable external region) and the progres-
sive probabilistic Hough transform [3]. This method, however, is prone to being obstructed
by obstacles and vehicles. To detect and fit straight lines, Huang et al. used an inverse
perspective transform and feature voting mechanism [4]. The Kalman filter is one of the
algorithms that is used to optimize and track lane line positions. However, the proposed
method employs straight-line fitting for all lane lines, resulting in significant localization
errors [5]. Niu et al. proposed a two-stage lane line detection method that extracted small
line segments using a modified Hough transform (HT) and modeled the lanes using curve
fitting to improve robustness [6]. It was difficult to detect and fit complex lanes at road
intersections and ramps using this method.

Convolutional neural networks have demonstrated remarkable performance in picture
classification and lane recognition as artificial intelligence has advanced. An end-to-end
trainable network for lane line and road marker categorization in adverse weather situations
was proposed by Lee et al. [7]. Neven et al. divided the segmentation task into two
branches, lane detection and lane embedding, treating the lane detection problem as an
instance segmentation problem [8]. Liang et al. suggested a CNN architecture with a novel
prediction layer and scalable module called LineNet to produce high accuracy maps [9].
However, because their dataset based accuracy on GPS signals, the total inaccuracy was
around 31.3 cm. Chen et al. proposed an alternative CNN mechanism for lane marker
detection based on extracting lane marker features and used extended convolution to
reduce the complexity of the algorithm, which primarily included semantic segmentation
and post-processing [10]. All of the methods listed above provide good lane detection
performance, but the majority of them are only intended for lane line detection and have
high computational power requirements. The goal of this project was to propose an
artificial intelligence-based unmanned patrol service that does not require a lot of arithmetic
power [11]. Further, we combined the lightweight and convenient features of Raspberry Pi
processors to create a cheap and convenient intelligent patrol solution for underground
garages that can implement real-time road marking tasks on embedded systems and
provide auxiliary information for more advanced autonomous driving.

The neural network in this design used Keras, an open-source neural network library
written in Python. It can run on TensorFlow, Microsoft Cognitive Toolkit, Theano, or
PlaidML. Users can build deep neural networks with Keras to quickly experiment with
their own ideas and guesses [12]. At the same time, the modularity and scalability of Keras
is easy for users to use. Keras contains many implementations of commonly used neural
network building blocks, such as activation functions, optimizations, and a set of tools that
make it easier to work with image and text data.

After the collected data were used to train the model, TensorFlow was used for
processing. The predecessor of TensorFlow was DistBelief. DistBelief’s function was to
build a neural network-distributed learning and interaction system at various scales, also
known as the “first-generation machine learning system.” This project was developed and
maintained by Google’s artificial intelligence team, Google Brain. In November 2015, the
development of the “Second Generation Machine Learning System,” named TensorFlow
and based on DistBelief, was completed and the code was open source [13]. TensorFlow has
multiple projects, including TensorFlow Hub, TensorFlow Lite, and TensorFlow Research
Cloud, and various application interfaces. TensorFlow is a symbolic math system based on
data flow programming and an open-source software library with a multi-level structure
that can be deployed on a variety of servers [14], PC terminals, and web pages and supports
high-performance numerical computing, machine learning, and various perceptions and
languages of understanding the task.



Appl. Sci. 2023, 13, 2385 3 of 12

3. Hardware Construction
3.1. Raspberry Pi Camera Module

The camera is an important driving system for driverless driving. It is equivalent to the
“eye” of a driverless car. It can acquire targets such as signal lights, road lines, pedestrians,
etc., send the data to the visual processing part, and then use the processed results.

The Raspberry Pi camera module can be used to capture high-definition video as
well as still photos. The camera consists of a small circuit board that is connected to the
Raspberry Pi’s Camera Serial Interface (CSI) bus connector via a flexible ribbon cable. The
camera’s image sensor has a native resolution of 5 megapixels and has a fixed focal length
lens [15]. The camera software supports full-resolution still images with video resolutions
of 1080p30 and 720p60. It can be used to take snapshots and as a home security camera.

The camera board is connected to the Raspberry Pi via a 15-pin cable. Only two
connectors need to be connected, and the cable needs to be mounted to the camera board
and the Raspberry Pi.

If not installed properly, the camera will not work. For the camera board, the blue
mark at the end of the cable should be facing away from the board. In the Raspberry Pi
section, the blue mark should be facing the direction of the network interface.

3.2. L298N Driver Chip

The L298N (Manufactured in Shenzhen, China by Jin Dapeng) is a driver IC that is
an integrated monolithic circuit in a 15-pin Multiwatt. It is a bidirectional motor driver
with a built-in L298 dual H-bridge motor driver that accepts standard TTL logic levels to
drive inductive loads such as relays, solenoids, DC, and stepper motors [16]. Each of these
H-bridges can provide 2 A of current, the power supply voltage range is 2.5–48 V, and the
logic part is powered by 5 V, accepting 5 V TTL levels. Two enable inputs are provided to
enable or disable the device independently of the input signal. The emitters of the lower
transistors of each bridge are connected together and the corresponding external terminals
can be used to connect the external sense resistors [17]. Additional power input is provided
so that the logic operates at a lower voltage.

This design used the DuPont line to connect the front wheel motor of the car body
to OUT3 and OUT4 of the L298N module, and the rear wheel motor of the car body was
connected to OUT1 and OUT2 of the L298N module. Then, the IN control pin of the L298N
module and the connection of the Raspberry Pi board were used [18].

The drive connection of the driver chip is shown in Table 1. When the signal of the
enable terminal was 0, the motor was in a free stop state. When the enable signal was 1,
if IN1 and IN2 were 00 or 11, the motor was in the braking state and the motor stopped
rotating. If IN1 was 0 and IN2 was 1, motor A rotated clockwise; if IN1 was 1 and IN2 was
0, motor A rotated counterclockwise.

Table 1. Driver chip driver.

ENA IN1 IN2 The State of DC Motor A

0 X X Stop
1 0 0 Brake
1 0 1 Rotate Clockwise
1 1 0 Rotate Counterclockwise
1 1 1 Brake

3.3. Raspberry Pi

Raspberry Pi is an ARM-based microcomputer motherboard with an SD/MicroSD
card as the memory hard disk. There are 1/2/4 USB ports and a 10/100 Ethernet interface
around the card motherboard, which can connect the keyboard, mouse, and network cable.
At the same time, it has a TV output interface for video analog signals and an HDMI
high-definition video output interface. All of the above components are integrated on a
motherboard that is only slightly larger than a credit card. With all the basic functions of



Appl. Sci. 2023, 13, 2385 4 of 12

a PC, only the TV and keyboard need to be turned on. It can perform functions such as
spreadsheets, word processing, playing games, playing HD videos, and more.

3.4. Data Collection and Processing

The steering sensor generated a steering signal while the smart car was in motion, and
the main control chip obtained that steering signal for output display. Instead of a single
high level or low level trigger, the steering port outputted a period of around 2 s PWM
waveform. We built a PWM detection algorithm to achieve steering signal acquisition
because [19], at this time, we were unable to determine the level of the GPIO port to
determine whether the automobile was turning. This detection algorithm is was named
Algorithm 1.

Algorithm 1: Algorithm for turn signal detection method

Input: IO
Output: flag

weight <- function (IO = 0;count < sizeof(IO);count++)
{
Step1: Count = 1

Count = 1; Flag = 0
SendMassage(flag)

Setp2: IO = 1
Count = 0; flag = 1;
First_flag = ON
SendMassge(flag)

End

4. Software Design and Neural Network Training
4.1. Network Training

The neural network consists of individual neurons. In simple terms, each neuron
performs some simple operations on the input to obtain the output [20]. Training a network
adjusts the parameters in the network so that the output is close to the expected output of
the learning sample.

A common neural network consists of an input layer, a hidden layer, and an output
layer. Each layer consists of a number of neurons. The neurons of the input/output layer
usually store only one value and do not perform operations themselves. The neurons of
the hidden layer will operate on the input and pass the output to the next layer [21].

Figure 1 shows a diagram of the three-layer neural network’s structure. The raw input
information on the left is called the input layer, the neuron on the right is called the output
layer (the output layer has only one neuron in the image), and the middle is called the
hidden layer. The input layer receives input information, the hidden layer processes the
input information, and the output layer outputs the processed information.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 15 
 

 
Figure 1. Three-layer neural network structure. 

In this study, we created a neural network with three hidden layers containing ten 
neurons based on the 14 input attributes. The constructed neural network is shown in 
Figure 2. 

 
Figure 2. The neural network model constructed in this system. 

The prediction model worked as follows. 
Step 1. Input signals are X1, X2, X3, X4, X5, …, X14 
Step 2. The connection weights from the input layer to the hidden layer are Wkj, where 

k denotes the number of neurons and j denotes the number of hidden layer neurons. For 
example, W14 represents the connection weight between the first neuron and the fourth 
node of the hidden layer. 

4.2. Neurons 
A neuron is a node of a neural network. Each neuron model has input, computational 

processing, and output capabilities. In the neuron network model shown in Figure 3, x1 
and x2 are the input vectors. Weights are given when entering the input layer, and several 
input vectors are given several weights, such as x1w1 and x2w2. When the node z is reached, 
x1w1 and x2w2 are operated by the activation function g(z) [17], and finally the result a is 
output, and the operation of one neuron node is completed. 

 
Figure 3. Neuron node model diagram. 

4.3. Convolutional Neural Network 

Figure 1. Three-layer neural network structure.



Appl. Sci. 2023, 13, 2385 5 of 12

In this study, we created a neural network with three hidden layers containing ten
neurons based on the 14 input attributes. The constructed neural network is shown in
Figure 2.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 15 
 

 
Figure 1. Three-layer neural network structure. 

In this study, we created a neural network with three hidden layers containing ten 
neurons based on the 14 input attributes. The constructed neural network is shown in 
Figure 2. 

 
Figure 2. The neural network model constructed in this system. 

The prediction model worked as follows. 
Step 1. Input signals are X1, X2, X3, X4, X5, …, X14 
Step 2. The connection weights from the input layer to the hidden layer are Wkj, where 

k denotes the number of neurons and j denotes the number of hidden layer neurons. For 
example, W14 represents the connection weight between the first neuron and the fourth 
node of the hidden layer. 

4.2. Neurons 
A neuron is a node of a neural network. Each neuron model has input, computational 

processing, and output capabilities. In the neuron network model shown in Figure 3, x1 
and x2 are the input vectors. Weights are given when entering the input layer, and several 
input vectors are given several weights, such as x1w1 and x2w2. When the node z is reached, 
x1w1 and x2w2 are operated by the activation function g(z) [17], and finally the result a is 
output, and the operation of one neuron node is completed. 

 
Figure 3. Neuron node model diagram. 

4.3. Convolutional Neural Network 

Figure 2. The neural network model constructed in this system.

The prediction model worked as follows.
Step 1. Input signals are X1, X2, X3, X4, X5, . . . , X14
Step 2. The connection weights from the input layer to the hidden layer are Wkj, where

k denotes the number of neurons and j denotes the number of hidden layer neurons. For
example, W14 represents the connection weight between the first neuron and the fourth
node of the hidden layer.

4.2. Neurons

A neuron is a node of a neural network. Each neuron model has input, computational
processing, and output capabilities. In the neuron network model shown in Figure 3, x1
and x2 are the input vectors. Weights are given when entering the input layer, and several
input vectors are given several weights, such as x1w1 and x2w2. When the node z is reached,
x1w1 and x2w2 are operated by the activation function g(z) [17], and finally the result a is
output, and the operation of one neuron node is completed.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 15 
 

 
Figure 1. Three-layer neural network structure. 

In this study, we created a neural network with three hidden layers containing ten 
neurons based on the 14 input attributes. The constructed neural network is shown in 
Figure 2. 

 
Figure 2. The neural network model constructed in this system. 

The prediction model worked as follows. 
Step 1. Input signals are X1, X2, X3, X4, X5, …, X14 
Step 2. The connection weights from the input layer to the hidden layer are Wkj, where 

k denotes the number of neurons and j denotes the number of hidden layer neurons. For 
example, W14 represents the connection weight between the first neuron and the fourth 
node of the hidden layer. 

4.2. Neurons 
A neuron is a node of a neural network. Each neuron model has input, computational 

processing, and output capabilities. In the neuron network model shown in Figure 3, x1 
and x2 are the input vectors. Weights are given when entering the input layer, and several 
input vectors are given several weights, such as x1w1 and x2w2. When the node z is reached, 
x1w1 and x2w2 are operated by the activation function g(z) [17], and finally the result a is 
output, and the operation of one neuron node is completed. 

 
Figure 3. Neuron node model diagram. 

4.3. Convolutional Neural Network 

Figure 3. Neuron node model diagram.

4.3. Convolutional Neural Network

In deep learning, a convolutional neural network (CNN) is a type of deep neural
network that is most commonly used to analyze visual images [22]. Convolutional networks
are inspired by biological processes because the pattern of connections between neurons is
similar to the organization of the animal’s visual cortex [23]. Individual cortical neurons
respond to stimuli only in restricted areas known as the receptive field. The receptive
fields of different neurons partially overlap, enabling them to cover the entire field of
view. Because artificial neural networks based on multi-layer supervised learning have
good fault tolerance, adaptability, and weight sharing, they are widely used in image
and video recognition, image classification, medical image analysis, and natural language
processing [24].

In Figure 4 below, CONV is the convolution calculation layer, RELU is the excitation
layer and an activation function, POOL is the pooling layer, and FC is the fully connected
layer. Using the convolutional neural network model [25], the vehicle image was input into
the neural network as a training set and the neural network parameters were corrected
by multiple trainings [26]. Finally, a neural network model that could recognize the car
picture was obtained.



Appl. Sci. 2023, 13, 2385 6 of 12

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 15 
 

In deep learning, a convolutional neural network (CNN) is a type of deep neural net-
work that is most commonly used to analyze visual images [22]. Convolutional networks 
are inspired by biological processes because the pattern of connections between neurons 
is similar to the organization of the animal’s visual cortex [23]. Individual cortical neurons 
respond to stimuli only in restricted areas known as the receptive field. The receptive 
fields of different neurons partially overlap, enabling them to cover the entire field of 
view. Because artificial neural networks based on multi-layer supervised learning have 
good fault tolerance, adaptability, and weight sharing, they are widely used in image and 
video recognition, image classification, medical image analysis, and natural language pro-
cessing [24]. 

In Figure 4 below, CONV is the convolution calculation layer, RELU is the excitation 
layer and an activation function, POOL is the pooling layer, and FC is the fully connected 
layer. Using the convolutional neural network model [25], the vehicle image was input 
into the neural network as a training set and the neural network parameters were cor-
rected by multiple trainings [26]. Finally, a neural network model that could recognize the 
car picture was obtained. 

CONV: Extracts the local features of each image 
RELU: An activation function that converges quickly and requires a simple gradient 
POOL: Compresses the image and takes the average or maximum value of a region. 
FC: Combines all calculation results to find the final answer 

 
Figure 4. Convolutional neural network training process. 

4.4. Capture Images 
This design established a connection with the Raspberry Pi through the computer, 

established a wireless link with the Raspberry Pi through the computer’s VNC client, and 
then logged into the Raspberry Pi through the VNC client [27]. The data collection pro-
gram (drive module and shooting module) was started in the Raspberry Pi. The keyboard 
was used to control the trolley on a predetermined track, and the predetermined track 
was repeatedly passed in a remote manner. Different commands were sent to the Rasp-
berry Pi through the keyboard, and the Raspberry Pi output different levels of the control 
L298N motor to realize the travel of the unmanned smart car. Additionally, the camera 
was turned on during the journey to collect data captured during the trip. During this 
time, the thread was set, the direction key mark was recorded, and the mark was com-
bined with the name of the picture to reset the name of the picture [28]. The pyGame 
module was used to detect the computer keyboard, control the movement of the car body 
through the computer keyboard, and set different keys for different control commands. 
The format method was used to name the image and place the key first in the name. Press 
a, turn left, mark 0; press d, turn right, mark 1; press w, forward to mark 2; press s, back, 
mark 3; press k, stop, marked as 4. The marked key was saved to the image and the cor-
responding direction was marked. 

Figure 4. Convolutional neural network training process.

CONV: Extracts the local features of each image.
RELU: An activation function that converges quickly and requires a simple gradient.
POOL: Compresses the image and takes the average or maximum value of a region.
FC: Combines all calculation results to find the final answer.

4.4. Capture Images

This design established a connection with the Raspberry Pi through the computer,
established a wireless link with the Raspberry Pi through the computer’s VNC client, and
then logged into the Raspberry Pi through the VNC client [27]. The data collection program
(drive module and shooting module) was started in the Raspberry Pi. The keyboard was
used to control the trolley on a predetermined track, and the predetermined track was
repeatedly passed in a remote manner. Different commands were sent to the Raspberry Pi
through the keyboard, and the Raspberry Pi output different levels of the control L298N
motor to realize the travel of the unmanned smart car. Additionally, the camera was turned
on during the journey to collect data captured during the trip. During this time, the thread
was set, the direction key mark was recorded, and the mark was combined with the name of
the picture to reset the name of the picture [28]. The pyGame module was used to detect the
computer keyboard, control the movement of the car body through the computer keyboard,
and set different keys for different control commands. The format method was used to
name the image and place the key first in the name. Press a, turn left, mark 0; press d, turn
right, mark 1; press w, forward to mark 2; press s, back, mark 3; press k, stop, marked as 4.
The marked key was saved to the image and the corresponding direction was marked.

After collecting data many times, the data on the Raspberry Pi was transmitted to
the computer because the Raspberry Pi has limited processing power, and the computing
power of the computer was used to process the data. The data were run by preprocessing
module program on the computer, the collected data were re-integrated, the name of the
picture was first processed, the direction key mark of the picture was separated, the NumPy
module was used to convert the data format from JPG to NPZ, and the direction markers
of the image were stacked for subsequent data processing.

4.5. Data Processing

The data image was collected multiple times as a color image. For lane line detection,
too much redundant or repeated information was included, and the image processing
workload needed to be reduced using gradation processing [29]. Color is one of the factors
that distinguish the lane. For color, there are different encoding methods, of which RGB,
YUV, etc. are common. Since the color of the lane is different from the surrounding
environment, we set thresholds for RGB and separated the useful information [29].



Appl. Sci. 2023, 13, 2385 7 of 12

After the original image was processed by gradation, its gray dynamic range was
small, and the gray level of the image could be improved by the transformation function.
The transformation function is expressed as:

s = T(r) =
∫ r

0
Pr(ω)dω (1)

where T (r) represents the gray level and satisfies the condition 0 ≤ T(r) ≤ 1, which is the
probability density function of the continuous random variable.

The histogram equalization image enhancement principle adopted in this section
can be expressed as the uniform distribution of the original image histogram cumulative
distribution, which can increase the dynamic range of the image gray value and improve the
image contrast, so that the specific information is highlighted. The histogram of grayscale
reflects the probability of occurrence of each gray value of the image, so that the total
number of gray levels of the image is L and the number of pixels whose gray value is k is
nk. Then, the frequency is used instead of the probability value to be expressed as:

Pr(rk) =
nk
n
(0 ≤ rk ≤ 1) (2)

For the probability that the gray value is k and n is the sum of the number of image
pixels, the discrete form of the transformation function of Equation (2) can be expressed as:

sk = T(rk) =
k

∑
j=0

nj

n
=

k

∑
j=0

Pr
(
rj
)

(3)

In order to enhance the image contrast, the image transformation function was used to
perform grayscale mapping to improve the visual effect of the image. The processed image
is shown in Figure 5.

g(x, y) =


f1
t1

f (x, y) 0 ≤ f (x, y) ≤ t1
f2− f1
t2−t1

[ f (x, y)− t1] + f1 t1 ≤ f (x, y) ≤ t2
(L−1)− f2
(L−1)−t2

[ f (x, y)− t2] + f2 t2 ≤ f (x, y) ≤ (L − 1)

(4)

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 15 
 

After collecting data many times, the data on the Raspberry Pi was transmitted to the 
computer because the Raspberry Pi has limited processing power, and the computing 
power of the computer was used to process the data. The data were run by preprocessing 
module program on the computer, the collected data were re-integrated, the name of the 
picture was first processed, the direction key mark of the picture was separated, the 
NumPy module was used to convert the data format from JPG to NPZ, and the direction 
markers of the image were stacked for subsequent data processing. 

4.5. Data Processing 
The data image was collected multiple times as a color image. For lane line detection, 

too much redundant or repeated information was included, and the image processing 
workload needed to be reduced using gradation processing [29]. Color is one of the factors 
that distinguish the lane. For color, there are different encoding methods, of which RGB, 
YUV, etc. are common. Since the color of the lane is different from the surrounding envi-
ronment, we set thresholds for RGB and separated the useful information [29]. 

After the original image was processed by gradation, its gray dynamic range was 
small, and the gray level of the image could be improved by the transformation function. 
The transformation function is expressed as: 

0
( ) ( )

r

rs T P dω ω= = r
 

(1)

where T (r) represents the gray level and satisfies the condition 0 ≤ T(r) ≤ 1, which is the 
probability density function of the continuous random variable. 

The histogram equalization image enhancement principle adopted in this section can 
be expressed as the uniform distribution of the original image histogram cumulative dis-
tribution, which can increase the dynamic range of the image gray value and improve the 
image contrast, so that the specific information is highlighted. The histogram of grayscale 
reflects the probability of occurrence of each gray value of the image, so that the total 
number of gray levels of the image is L and the number of pixels whose gray value is k is 
nk. Then, the frequency is used instead of the probability value to be expressed as: 

( ) ( )0 1k
r k k

nP
n

= ≤ ≤r r
 

(2)

For the probability that the gray value is k and n is the sum of the number of image 
pixels, the discrete form of the transformation function of Equation (2) can be expressed 
as: 

( ) ( )
0 0

r r
k k

j
k k r j

j j

n
s T P

n= =

= = = 
 

(3)

In order to enhance the image contrast, the image transformation function was used 
to perform grayscale mapping to improve the visual effect of the image. The processed 
image is shown in Figure 5. 

Figure 5. Processed image. Figure 5. Processed image.

In Equation (4), f (x, y) is the gray value of the original pixel, g(x, y) is the function
of the gray value of the pixel after stretching, and points (t1, f 1) and (t2, f 2) are the two
inflection points of the pixel segmentation [28]. If different combinations of t1, t2, t3, and t4
are used, different stretching treatment effects will be obtained. The programmed image is
shown in Figure 6.

4.6. Edge Detection

Edge detection is also a means of detecting lanes. Taking the grayscale image as an
example, the grayscale value of each pixel is in the interval [0, 255], and the color of the
lane is usually quite different from that of the road surface. We used the color change of the
road surface to detect the lane [30].



Appl. Sci. 2023, 13, 2385 8 of 12

The Canny edge detector is one of the edge detection methods. The general process of
the Canny edge detector is as follows:

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 15 
 

[ ]

[ ]

1
1

1

2 1
1 1 1 2

2 1

2
2 2 2

2

( , ) 0 ( , )

( , ) ( , ) ( , )

( 1) ( , ) ( , ) ( 1)
( 1)

f f x y f x y t
t
f fg x y f x y t f t f x y t
t t
L f f x y t f t f x y L
L t


≤ ≤


 −= − + ≤ ≤ −
 − − − + ≤ ≤ −

− −  

(4)

In Equation (4), f(x, y) is the gray value of the original pixel, g(x, y) is the function of 
the gray value of the pixel after stretching, and points (t1, f1) and (t2, f2) are the two in-
flection points of the pixel segmentation [28]. If different combinations of t1, t2, t3, and t4 
are used, different stretching treatment effects will be obtained. The programmed image 
is shown in Figure 6. 

  

Figure 6. The programmed image. 

4.6. Edge Detection 
Edge detection is also a means of detecting lanes. Taking the grayscale image as an 

example, the grayscale value of each pixel is in the interval [0, 255], and the color of the 
lane is usually quite different from that of the road surface. We used the color change of 
the road surface to detect the lane [30]. 

The Canny edge detector is one of the edge detection methods. The general process 
of the Canny edge detector is as follows: 

Filter out any noise. The Gaussian filter is used for this purpose. An example of a 
Gaussian kernel of size = 5 that might be used is shown below: 

2 4 5 4 2
4 9 12 9 4

1K 5 12 15 12 5
159

4 9 12 9 4
2 4 5 4 2

 
 
 
 =
 
 
    

(5)

Find the intensity gradient of the image. For this, we followed a procedure analogous 
to Sobel: 

Apply a pair of convolution masks (in X and Y) directions: 

x

1 0 1
G 2 0 2

1 0 1

− + 
 = − + 
 − + 

y

1 2 1
G 0 0 0

1 2 1

− − − 
 =  
 + + +   

(6)

Find the gradient strength and direction with: 

2 2
x yG G G= +

 
(7)

arctan y

x

G
G

θ
 

=  
   

(8)

Figure 6. The programmed image.

Filter out any noise. The Gaussian filter is used for this purpose. An example of a
Gaussian kernel of size = 5 that might be used is shown below:

K =
1

159


2 4 5 4 2
4 9 12 9 4
5 12 15 12 5
4 9 12 9 4
2 4 5 4 2

 (5)

Find the intensity gradient of the image. For this, we followed a procedure analogous
to Sobel:

Apply a pair of convolution masks (in X and Y) directions:

Gx =

 −1 0 +1
−2 0 +2
−1 0 +1

Gy =

−1 −2 −1
0 0 0
+1 +2 +1

 (6)

Find the gradient strength and direction with:

G =
√

G2
x + G2

y (7)

θ = arctan
(

Gy

Gx

)
(8)

The direction is rounded to one of four possible angles (namely 0, 45, 90, or 135).
Non-maximum suppression is applied. This removes pixels that are not considered to be
part of an edge. Hence, only thin lines (candidate edges) will remain.

Hysteresis: The final step. Canny uses two thresholds (upper and lower):
If a pixel gradient is higher than the upper threshold, the pixel is accepted as an edge.
If a pixel gradient value is below the lower threshold, then it is rejected.
If the pixel gradient is between the two thresholds, then it will be accepted only if it is

connected to a pixel that is above the upper threshold.
Canny recommended an upper: lower ratio between 2:1 and 3:1.

4.7. Convolutional Neural Network

A convolutional neural network is able to extract the characteristics of each picture,
and when it has enough features, it can make relatively accurate judgments. The steps
to construct a convolutional neural network are: construct a sequential neural network
model, add a convolution kernel, add the Dropout() method to prevent overfitting, perform
compression processing, return a one-dimensional array, and finally perform full join
processing [31].



Appl. Sci. 2023, 13, 2385 9 of 12

5. Training and Evaluation Models

Following sample processing of the data gathered by the smart cart, 70% of the photos
produced were used as the training set and 30% were used as the test set. The neural
network algorithm from Section 4 was then used for training prediction.

In this research, the learning rate of the model was increased and then decreased
during the training process. In the first five epochs, the learning rate increased from 0
to 0.03 and then decreased at a rate of 0.0002/epoch. To optimize the gradient descent,
the momentum optimization algorithm was used, with the momentum coefficient set
to 0.8. During the patrol, the intelligent patrol car photographed the road markings.
The convolutional neural network extracted features from each image, and a reasonably
accurate judgment could be made once enough features were obtained. Constructing the
convolutional neural network consisted of the following steps: building a sequential neural
network model, adding a convolutional kernel, adding a Dropout method to randomly
discard neural network units to prevent overfitting followed by a compression process to
return a one-dimensional array, using the elu activation function in the experiment, and
finally, a fully-connected process was obtained.

During the training of the neural network model, the parameters of the training model
were first imported, including the preset model, learning rate, number of training, training
set, and validation set data. The results of each training were kept using checkpoints, the
training results were detected using early stop, the patience value was set to 4, the verbose
value was set to 1, and the training was stopped when the model reached the optimal
solution to prevent overfitting. Figure 7 illustrates the excellent accuracy of lane recognition
in this experiment, which had an accuracy of 86.02%. To avoid overfitting, the training
was stopped when the model reached the optimal solution. To avoid memory usage, the
compiled neural network model was compiled using the fit generator block to read the
data into memory. The VNC trained the neural network model program in the background
and sent the generated model to the Raspberry Pi tensor flow system for processing after
the operation. For unmanned patrol, the car could be driven on a pre-defined track.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 15 
 

 

Figure 7. Accuracy Curve 

Performance Metrics 
This work introduced the confusion matrix for the classification of curve detection in 

order to better explain the validity of the model chosen. The confusion matrix, sometimes 
referred to as the error matrix, is a matrix used to assess the classifier’s classification accu-
racy. According to the intersection of the samples’ true categories and classifier prediction 
categories, samples can be divided into four groups for classification: true positive (TP), 
false positive (FP), true negative (TN), and false-negative (FN). The relevant samples are 
represented by TP, FP, TN, and FN. Classification models are typically assessed using 
characteristics such as accuracy, precision, recall, F1 value, and others. Table 2 displays 
the classification findings’ confusion matrix. 

Table 2. Confusion matrix of the classification. 

Actual Predicted Positive Predicted Negative 
Positive TP FN 

Negative FP TN 

Where TP is the proportion of samples with both positive actual and anticipated cat-
egories; FN represents the number of samples where the true category and forecasted cat-
egory are both positive; FP is the proportion of samples where the anticipated category is 
positive but the actual category is negative; N = TP + FP + FN + TN is the total number of 
samples; and TN represents the number of samples where both the actual and projected 
categories are negative. 

In this study, 920 images with positive and negative sample labels from the smart 
car’s dataset were used to learn and validate lane recognition. According to the confusion 
matrix above, the accuracy, precision, and recall could be defined.  

Accuracy is the correct proportion of all predictions and is defined as: 

FNFPTNTP
TNTPAccuracy

+++
+=

 
(9)

Precision is correctly predicted as the proportion of positive that is all positive and is 
defined as: 

FPTP
TPPrecision
+

=
 

(10)

Figure 7. Accuracy Curve.

Performance Metrics

This work introduced the confusion matrix for the classification of curve detection in
order to better explain the validity of the model chosen. The confusion matrix, sometimes
referred to as the error matrix, is a matrix used to assess the classifier’s classification accu-
racy. According to the intersection of the samples’ true categories and classifier prediction
categories, samples can be divided into four groups for classification: true positive (TP),
false positive (FP), true negative (TN), and false-negative (FN). The relevant samples are



Appl. Sci. 2023, 13, 2385 10 of 12

represented by TP, FP, TN, and FN. Classification models are typically assessed using
characteristics such as accuracy, precision, recall, F1 value, and others. Table 2 displays the
classification findings’ confusion matrix.

Table 2. Confusion matrix of the classification.

Actual Predicted Positive Predicted Negative

Positive TP FN
Negative FP TN

Where TP is the proportion of samples with both positive actual and anticipated
categories; FN represents the number of samples where the true category and forecasted
category are both positive; FP is the proportion of samples where the anticipated category
is positive but the actual category is negative; N = TP + FP + FN + TN is the total number
of samples; and TN represents the number of samples where both the actual and projected
categories are negative.

In this study, 920 images with positive and negative sample labels from the smart car’s
dataset were used to learn and validate lane recognition. According to the confusion matrix
above, the accuracy, precision, and recall could be defined.

Accuracy is the correct proportion of all predictions and is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Precision is correctly predicted as the proportion of positive that is all positive and is
defined as:

Precision =
TP

TP + FP
(10)

Recall is correctly predicted as the proportion of positive that is all practically positive
and is defined as:

Recall =
TP

TP + FN
(11)

Another typical metric is the F-measure, which is the weighted average of precision
and recall and is defined as:

1
Fβ

=
1

1 + β2 ·
(

1
P
+

β2

R

)
(12)

The simplified formula is:

Fβ =

(
1 + β2)× P × R
(β2 × P) + R

(13)

In the formula, β > 0 indicates the relative importance of recall to precision. When
β = 1, which is the standard F1 score, recall and precision are considered equally important.
Furthermore, β > 1 indicates more emphasis on recall, whereas β < 1 indicates more
emphasis on precision. In our research, the value for β was 1. The F1 score combined the
results of precision and recall. In this project, the average recall rate of lanes was 87.11% and
the average precision was 89.12% when calculation of the aforementioned index formulas
was also taken into account.

6. Result

The purpose of this design was to design an unmanned patrol service in combination
with artificial intelligence technology to solve the problem of underground vehicle patrol.
This design used the Raspberry Pi development board, L298N driver chip, Raspberry Pi
camera, and other major hardware equipment to transform the remote control car. This



Appl. Sci. 2023, 13, 2385 11 of 12

design used Python as the programming language. By writing Python code, the car could
be driven under the control of the computer keyboard and the camera was turned on
for data collection. The Keras neural network library was used to quickly build a neural
network model, the collected data was used to train the model, and finally, the model was
generated. The model was placed in the TensorFlow system for processing, and the car
could travel in a preset track for unmanned driving.

Author Contributions: J.G., L.Z. and H.C. contributed equally to this work. Methodology, H.C.;
Investigation, L.Y.; Resources, X.Z.; Data curation, J.G. and Y.Z.; Writing–original draft, L.Z.; Writing—
review & editing, L.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was financially supported by Guangdong General University Young In-
novative Talents (Project No. 2022KQNCX115), in part by Guangdong University of Science and
Technology Quality Engineering (Project No. GKZLGC2022255), Special Projects in Key Areas for
General Universities in Guangdong Province (No. 2021ZDZX1077), General Universities in Guang-
dong Province (No. 2021ZDZX1077), in part by National key research and development program of
China, grant No. 2021YFF0700203, Natural Science Foundation of Guangdong Province of China
(Grant No. 2020A1515010784), Guangdong General University Special Project in Key Areas (No.
2021ZDZX1077), Innovation and Improve School Project from Guangdong University of Science and
Technology (No. GKY-2019CQYJ-3), and College Students Innovation Training Program held by
Guangdong University of Science and Technology (No. 1711034, 1711080, and 1711088).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
1. Chang, J.Z. Training Neural Networks to Pilot Autonomous Vehicles: Scaled Self-Driving Car. 2018. Available online:

https://digitalcommons.bard.edu/senproj_s2018/402 (accessed on 29 November 2022).
2. Balakrishnan, S.; Tsourdos, A.; White, B.A. Advances in Missile Guidance, Control, and Estimation; CRC Press: Boca Raton, FL, USA,

2016; Volume 47.
3. Mammeri, A.; Boukerche, A.; Tang, Z. A real-time lane marking localization, tracking and communication system. Comput.

Commun. 2016, 73, 132–143. [CrossRef]
4. Huang, Y.; Li, Y.; Hu, X.; Ci, W. Lane Detection Based on Inverse Perspective Transformation and Kalman Filter. KSII Trans.

Internet Inf. Syst. 2018, 12, 643–661. [CrossRef]
5. Bura, H.; Lin, N.; Kumar, N.; Malekar, S.; Nagaraj, S.; Liu, K. An edge based smart parking solution using camera networks and

deep learning. In Proceedings of the 2018 IEEE International Conference on Cognitive Computing (ICCC), San Francisco, CA,
USA, 2–7 July 2018.

6. Niu, J.; Lu, J.; Xu, M.; Lv, P.; Zhao, X. Robust Lane Detection using Two-stage Feature Extraction with Curve Fitting. Pattern
Recognit. 2016, 59, 225–233. [CrossRef]

7. Lee, S.; Kim, J.; Yoon, J.S.; Shin, S.; Bailo, O.; Kim, N.; Lee, T.-H.; Hong, H.S.; Han, S.-H.; Kweon, I.S. VPGNet: Vanishing Point
Guided Network for Lane and Road Marking Detection and Recognition. In Proceedings of the IEEE International Conference on
Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1965–1973. [CrossRef]

8. Neven, D.; De Brabandere, B.; Georgoulis, S.; Proesmans, M.; Van Gool, L. Towards End-to-End Lane Detection: An Instance
Segmentation Approach. In Proceedings of the IEEE Intelligent Vehicles Symposium, Rio de Janeiro, Brazil, 8–13 July 2018;
pp. 286–291.

9. Liang, D.; Guo, Y.; Zhang, S.; Zhang, S.-H.; Hall, P.; Zhang, M.; Hu, S. LineNet: A zoomable CNN for crowdsourced high
definition maps modeling in urban environments. arXiv 2018, arXiv:1807.05696.

10. Heimberger, M.; Horgan, J.; Hughes, C.; McDonald, J.; Yogamani, S. Computer vision in automated parking systems: Design,
implementation and challenges. Image Vis. Comput. 2017, 68, 88–101. [CrossRef]

11. Cheng, J.R.; Xu, R.M.; Tang, X.Y.; Sheng, V.S.; Cai, C. An abnormal network flow feature sequence prediction approach for DDoS
attacks detection in big data environment. Comput. Mater. Contin. 2018, 55, 95–119.

12. Liu, Q.; Xiang, X.; Qin, J.; Tan, Y.; Tan, J.; Luo, Y. Coverless steganography based on image retrieval of DenseNet features and
DWT sequence mapping. Knowl.-Based Syst. 2020, 192, 105375. [CrossRef]

13. Ma, W.; Qin, J.; Xiang, X.; Tan, Y.; Luo, Y.; Xiong, N.N. Adaptive Median Filtering Algorithm Based on Divide and Conquer and
Its Application in CAPTCHA Recognition. Comput. Mater. Continue 2019, 58, 665–677. [CrossRef]

https://digitalcommons.bard.edu/senproj_s2018/402
http://doi.org/10.1016/j.comcom.2015.08.010
http://doi.org/10.3837/tiis.2018.02.006
http://doi.org/10.1016/j.patcog.2015.12.010
http://doi.org/10.1109/iccv.2017.215
http://doi.org/10.1016/j.imavis.2017.07.002
http://doi.org/10.1016/j.knosys.2019.105375
http://doi.org/10.32604/cmc.2019.05683


Appl. Sci. 2023, 13, 2385 12 of 12

14. Pan, L.; Qin, J.; Chen, H.; Xiang, X.; Li, C.; Chen, R. Image Augmentation-Based Food Recognition with Convolutional Neural
Networks. Comput. Mater. Contin. 2019, 59, 297–313. [CrossRef]

15. Sitawarin, C.; Bhagoji, A.N.; Mosenia, A.; Chiang, M.; Mittal, P. Deceiving autonomous cars with toxic signs. arXiv 2018,
arXiv:1802.06430.

16. Zhang, L.; Bai, L.; Zhang, X.; Zhang, Y.; Sun, F.; Chen, C. Comparative Variance and Multiple Imputation Used for Missing Values
in Land Price DataSet. Comput. Mater. Contin. 2019, 61, 1175–1187. [CrossRef]

17. Song, Q.; Yan, Z.; Tan, R. DeepMTD: Moving Target Defense for Deep Visual Sensing against Adversarial Examples. ACM Trans.
Sens. Netw. 2021, 18, 1–32. [CrossRef]

18. Wang, Y.; Chai, S.; Nguyen, H.D. Unscented Kalman Filter trained neural network control design for ship autopilot with
experimental and numerical approaches. Appl. Ocean Res. 2019, 85, 162–172. [CrossRef]

19. Zhang, L.; Bai, L.; Zhang, X.; Zhang, Y.; Yang, L.; Yan, X. Cultivated Land Monitoring System Based on Dynamic Wake-Up UAV
and Wireless of Distributed Storage. Comput. Mater. Contin. 2019, 61, 817–828. [CrossRef]

20. Islam, M.; Chowdhury, M.; Li, H.; Hu, H. Vision-Based Navigation of Autonomous Vehicles in Roadway Environments with
Unexpected Hazards. Transp. Res. Rec. J. Transp. Res. Board 2019, 2673, 494–507. [CrossRef]

21. Zhou, Z.; Qin, J.; Xiang, X.; Tan, Y.; Liu, Q.; Xiong, N.N. News Text Topic Clustering Optimized Method Based on TF-IDF
Algorithm on Spark. Comput. Mater. Contin. 2020, 62, 217–231. [CrossRef]

22. Mamidala, R.S.; Uthkota, U.; Shankar, M.B.; Antony, A.J.; Narasimhadhan, A.V. Dynamic Approach for Lane Detection using
Google Street View and CNN. arXiv 2019, arXiv:1909.00798. [CrossRef]

23. Zhou, H.; Li, W.; Zhu, Y.; Zhang, Y.; Zhang, Y.; Yu, B.; Zhang, L.; Liu, C. Deepbillboard: Systematic physical-world testing of
autonomous driving systems. arXiv 2018, arXiv:1812.10812.

24. Feng, Y.; Yan, X. Support Vector Machine Based Lane-Changing Behavior Recognition and Lateral Trajectory Prediction. Comput
Intell Neurosci 2022, 2022, 3632333. [CrossRef]

25. Haji, A.; Shah, P.; Bijoor, S. Self Driving RC Car using Behavioral Cloning. arXiv 2019, arXiv:1910.06734.
26. Jiang, J.; Wang, C.; Chattopadhyay, S.; Zhang, W. Road Context-Aware Intrusion Detection System for Autonomous Cars. In

Information and Communications Security: 21st International Conference, ICICS 2019, Beijing, China, December 15–17, 2019, Revised
Selected Papers 21; Springer International Publishing: Berlin/Heidelberg, Germany, 2020.

27. Luo, C.; Yu, L.; Yan, J.; Li, Z.; Ren, P.; Bai, X.; Yang, E.; Liu, Y. Autonomous detection of damage to multiple steel surfaces from
360◦ panoramas using deep neural networks. Comput. Civ. Infrastruct. Eng. 2021, 36, 1585–1599. [CrossRef]

28. Luo, Y.; Qin, J.; Xiang, X.; Tan, Y.; Liu, Q.; Xiang, L. Coverless real-time image information hiding based on image block matching
and dense convolutional network. J. Real-Time Image Process. 2019, 17, 125–135. [CrossRef]

29. Harrington, K.; Zenk, S.N.; Van Horn, L.; Giurini, L.; Mahakala, N.; Kershaw, K.N. The Use of Food Images and Crowdsourcing
to Capture Real-time Eating Behaviors: Acceptability and Usability Study. JMIR Form Res. 2021, 5, e27512. [CrossRef] [PubMed]

30. Sutton, T.M.; Lutz, C. Attentional capture for emotional words and images: The importance of valence and arousal. Can. J. Exp.
Psychol. 2019, 73, 47–54. [CrossRef]

31. Messerschmidt, V.; Bailey, Z.; Baek, K.I.; Bryant, R.; Li, R.; Hsiai, T.K.; Lee, J. Light-sheet Fluorescence Microscopy to Capture
4-Dimensional Images of the Effects of Modulating Shear Stress on the Developing Zebrafish Heart. J. Vis. Exp. 2018, e57763.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.32604/cmc.2019.04097
http://doi.org/10.32604/cmc.2019.06075
http://doi.org/10.1145/3469032
http://doi.org/10.1016/j.apor.2019.01.030
http://doi.org/10.32604/cmc.2019.06062
http://doi.org/10.1177/0361198119855606
http://doi.org/10.32604/cmc.2020.06431
http://doi.org/10.1109/tencon.2019.8929655
http://doi.org/10.1155/2022/3632333
http://doi.org/10.1111/mice.12686
http://doi.org/10.1007/s11554-019-00917-3
http://doi.org/10.2196/27512
http://www.ncbi.nlm.nih.gov/pubmed/34860666
http://doi.org/10.1037/cep0000154
http://doi.org/10.3791/57763

	Introduction 
	Related Work 
	Hardware Construction 
	Raspberry Pi Camera Module 
	L298N Driver Chip 
	Raspberry Pi 
	Data Collection and Processing 

	Software Design and Neural Network Training 
	Network Training 
	Neurons 
	Convolutional Neural Network 
	Capture Images 
	Data Processing 
	Edge Detection 
	Convolutional Neural Network 

	Training and Evaluation Models 
	Result 
	References

