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Abstract: Being able to stably grasp with generalization is one of the distinguished capabilities for
building a generic grasping system for robots. In this work, we propose a stable grasping method
for four-pin parallel grippers within a reinforcement learning framework. First, a reinforcement
learning problem is constructed on the basis of the improved four-pin gripper. Then, the learning
policy and the reward function are constructed in consideration of the knowledge of environmental
constraint and form closure. Finally, the effectiveness of the designed grasping method is validated
in a simulated environment, and the results demonstrate that a safe and stable grasp can be planned
for given 2.5D objects.
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1. Introduction

Robotic manipulation is still a challenging task for the robotics community [1,2]. In
recent years, progress in grasp detection has in some way improved the generalization of
robotic grasping systems, enabling a wider application of such systems in pick-and-place
tasks. For example, Mahler et al. reported on a picking system that is capable of grasping a
diverse range of objects with a rate of more than 300 mean picks per hour [3]. Zeng et al.
proposed a similar robotic pick-and-place system to grasp and recognize known and novel
objects without the need to train for novel objects [4].

In addition to pick-and-place tasks, there is also a need for post-grasp manipulations [5,6].
Compared with pick-and-place tasks, the latter requires the object to be grasped in a known
pose so that further actions can be performed with the object. For example, Paolini et al.
proposed a data-driven statistical framework for post-grasp manipulation that enables
robots to place, drop and insert [7]. Andrychowicz et al. implemented a reinforcement
learning policy that can learn object reorientation on a physical shadow dexterous hand [8].
Cruciani et al. reported an in-hand manipulation benchmark to evaluate the planning and
control of such systems [9].

To achieve the aforementioned manipulation tasks, a robotic hand or gripper is a
prerequisite, and its design issue should be focused on. The design of robotic hands or
grippers has developed immensely over the last few decades [10], evolving in the following
aspects: (1) the number of fingers has extended from 2 to 3 [11], 4 [12] or 5 [13], (2) the
actuation type has changed from fully actuated [14] to underactuated [15], (3) the material
has varied from rigid [16] to soft [17], and (4) the task type has transformed from repetitive
tasks to flexible tasks. In general, the developments benefit from the advancements in
high-performance MCU, MEMS and materials. However, in real applications, a trade-off
should still be considered between stability and flexibility. Four-pin grippers are usually
treated as a compromise since they can achieve stable grasping of objects and adapt to
changes, which makes them perfect for flexible industrial applications.

To guarantee stable post-grasp manipulation, several grasp quality evaluation concepts
have been proposed [18]. Among them, form closure and force closure are commonly used
when the object model is explicitly given. Considering the realization of these two concepts,
force closure can be achieved by any two-pin gripper or two-fingered robotic hand, and
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form closure can be achieved by at least seven-pin grippers or seven-fingered robotic
hands. Although relocalizing the object to a desired pose using the former concept could
be damaged by external disturbance forces caused by the environment, the former still
seems to be a sensible solution for robotic hardware, since it is neither easy to plan seven
contact points on an object nor feasible to design a seven-pin gripper or a seven-fingered
hand. However, the latter concept would be more competitive with regard to confining the
form closure problem to a plane and considering force closure in the orthogonal direction,
thus enabling 2.5D grasping using four pins or fingers [12].

In previous work, a series of four-pin parallel grippers was designed to achieve 2.5D
form closure grasping [5,12,19]. Combined with the form closure grasping algorithm, the
grasping points can be planned for regular 2.5D objects in a clean experiment set-up.
However, in the real grasping process, modeling of the uncertainty between the object, the
robot and the environment is manageable, leading to failure when the geometry of the
object or the gripper pins is not identical to the CAD models that are used to construct the
environmental constraints.

In this work, our motivation is summarized as follows: (a) form closure grasping
has practical value for post-grasp manipulation, (b) the synthetic form closure grasping
method suffers from poor efficiency and unmodeled uncertainties, and (c) previous work
can benefit from deep learning and reinforcement learning by encoding the state of the
object into the autoencoder and the grasping strategy into the policy network.

Therefore we propose a four-pin form closure grasping method within the reinforce-
ment learning framework. This method provides an end-to-end solution to achieve form
closure grasps for vision-based robotic grasping systems. The contributions of this work
are summarized as follows:

1. An improved parallel four-pin gripper design is presented. The four-pin gripper
extends the parameter space of the previous designs, thus enabling more feasible
configurations to be achieved.

2. A reinforcement learning (RL)-based robotic grasping scheme is presented. This
scheme provides an end-to-end solution for scenarios where a grasp with a stronger
closure is preferred.

3. An environmental constraint-based reward function for reinforcement learning is
presented. This function provides a continuous score to evaluate the grasp quality
rather than a binary value.

To the best of our knowledge, this is the first time that the form closure grasping for a
four-pin gripper has been considered in an end-to-end framework with an environmental
constraint-based reward function.

The remainder of this paper is organized as follows. In Section 2, the grasping problem
is defined. In Section 3, the learning policy is described. Specifically, the environmental
constraint-based reward function is discussed. In Section 4, experiments to verify the
effectiveness of the proposed method are presented, while Section 5 contains the conclusions
and plans for future work.

2. Problem Formulation

In this section, the gripper and the closure grasps are introduced. The formulations for
expressing the form closure grasp as a reinforcement learning problem are also presented.

2.1. The Four-Pin Gripper

To achieve a planar form closure for an object, at least four contact points around the
object should be provided. A four-pin gripper is a perfect fit to achieve form closure with a
planar object. In the real world, although there are no planar objects, the four-pin gripper is
still practical, since there are many column-like objects whose cross-sections are identical.
With a four-pin gripper, we can still achieve form closure in the plane and, at the same time,
force closure in the orthogonal direction along the column axis.
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In industrial applications, the pneumatically driven four-pin gripper has demonstrated
its value through its compact design and ease of control. Furthermore, to facilitate more
flexible grasping configurations, motor-driven four-pin grippers have been suggested. The
goal of this idea is to achieve the highest number of possible grasping configurations with
the lowest number of actuators.

In [12], two versions of four-pin grippers were proposed, and the configuration space
was greatly extended through the version upgrade. In this work, we present an improved
design of the four-pin gripper on the basis of the CASIA V2 gripper, as shown in Figure 1.
The gripper consists of four DC motors controlling four pins in a coupled manner: (1) the
pins are grouped into left palm pins and right palm pins, (2) one palm motor controls the
distance between two pins in one group with a gear mechanism, and (3) two center motors
control the distance and relative pose between two groups of pins with a rack mechanism.
The improvements of this design can be summarized as follows:

• The transmission of racks is replaced by belts to eliminate the backlash caused by racks.
• The connecting parts of the fingers are reinforced to resist any deformation during

power grasping.

controller board

pins

palm motor
palm motor

transmission mechanism

Figure 1. Illustration of the four-pin gripper.

2.2. Form Closure Grasps

Force closure and form closure are two concepts for describing the status of an object
being constrained and therefore immobilized by force or form, or more precisely consid-
ering the forces or not. As mentioned in Section 1, we prefer form closure since it may
provide “stronger” closure than force closure. A form closure grasp is a type of grasping
strategy that aims to achieve form closure by robotic hands or grippers.

We may express the planar form closure grasp for the four-pin gripper with the
following notations. Let G ∈ Rn×k be the grasp matrix of the robotic gripper, where n = 3
is the number of dimensions for the planar case and k = 4 is the number of gripper pins
(and the number of contact points on the object). For each contact point, if there always
exists a non-negative coefficient xi, i = 1, 2, 3, 4 such that ∑k

i=1 Gixi = − fext holds for
all fext ∈ Rn, where Gi is the ith column of G, and fext is the external force and torque
applied on the object, then the gripper configuration corresponding to G is defined as a
form closure grasp.

In practice, it is not possible to check if a given G corresponds to a form closure with
the above equation. Trinklea et al. proposed a first-order form closure test by constructing
the above equation as a linear program (LP) [20]. However, it still remains a challenge to
construct a G that corresponds to form closure (rather than just determining whether it is one or
not). Among many of the related works, the environmental constraint-based method receives
attention [12,19] since it not only extracts the form closure configurations but also provides
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a grasp quality score to evaluate how “strong” this form closure is regarding breaking. In
this work, we utilize the environmental constraint-based method to find the optimal form
closure grasps. This method is used to construct the reward function as a priori knowledge.

2.3. The Learning Pipeline

Reinforcement learning has been used to build universal grasping systems in many
recent papers. However, most of these works have focused on the generalization of the
types of objects to be grasped, rather than ensuring a closure grasp that confines the pose
of the object during the whole manipulation process. Deep convolutional neural networks
have been leveraged to find the best edges on the object that are suitable for force closure
grasps or power grasps.

In this work, we aim to implement a deep reinforcement learning method to construct
a grasping system that is capable of grasping the object to a closed grasp status. Our focus
is not only on grasping novel objects but also on grasping them firmly. While there are
some similar works [21–23] in this direction, they only offered a sparse reward function,
thus making it inefficient to learn such knowledge in the robotic grasping system.

To address this issue, we focus on improving the reward function. Utilizing our
knowledge of form closure, we define a grasp quality score function to evaluate how far a
grasp is from a good closure grasp.

The whole process of our proposed method is illustrated in Figure 2. We hoped to
implement an end-to-end solution, and therefore we used the image IM as our input. The
output was a set of manipulator and gripper actions {τ1, τ2, · · · , τ6, p1, p2, q, r}, assuming
we were using a six-axis manipulator.

Owing to the high dimensionality of the image space, we believe that the mapping
from the input image to the robot action can be learned through the learning framework.

Image
observation

auto
encoder

𝜃, 𝑞, , 𝑟 𝑝1, 𝑝2

proximal policy optimization

actor

critic

environment

agent

𝑝2

𝑝1

𝑞

𝑓3 𝑓4

𝑓1𝑓2

𝑥

𝑦

𝑂

𝑟

advantage
action

Figure 2. Full pipeline for training the four-pin gripper for form closure.

3. Method

In this section, we introduce the learning policy used in our grasping process.
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3.1. Agent and Environment of the Learning Framework

To adapt to the reinforcement learning policy, we regarded the four-pin gripper as the
agent and the interaction between the gripper and the object as the environment.

The gripper used in this work is depicted in Figure 3. Let {G} be a fixed frame attached
to the gripper, {W} be the world frame fixed in the workspace and {B} be a fixed frame
attached to the center of mass (CoM) of the object.

𝑝2
𝑓3

𝑓4

𝑓1

𝑓2

𝑞

𝑝1

𝑝2

𝑝1

𝑞

𝑓3 𝑓4

𝑓1𝑓2

𝑥

𝑦

𝑂

𝑟

(a) (b)

{𝑊}
{𝐵}

𝑥

𝑦

𝑧
{𝐺}

Figure 3. Illustration of the four-pin gripper and the grasping model. (a) The gripper pins and the
object to grasp. (b) The 2D view of the gripper parameters p1, p2, q and r.

The positions of the four pins on the gripper are represented by the coordinates of the
end points of the pins as fi = [xi, yi, zi]

>, i = 1, 2, 3, 4. We then define p1 as the distance
between f1 and f2, p2 as the distance between f3 and f4, q as the distance between f1 f2
and f3 f4 and r as the distance between the middle lines of f1 f2 and f3 f4. In this way,
we obtained a bidirectional mapping between the Cartesian space of the pins and the
parameter space of the gripper:

Π : { f1, f2, f3, f4} ↔ {p1, p2, q, r}. (1)

Meanwhile, the configuration cobj of a 3D rigid body can be described by the element
in SE(3) = R3 × SO. Such an element can be parameterized by six numbers (x, y, z, θ, φ, γ),
where (x, y, z) ∈ R3 quantifies the position of the CoM of {B} relative to {W} and (θ, φ, γ)
represents the Euler angles of the object pose by defining a mapping g : (θ, φ, γ) ∈ R3 →
R3×3.

Without loss of generality, we assumed that most of the objects had finite stable
states Si, i = 1, 2, · · · , Q at which they could stay still even after applying a disturbance
wrench, where Q is the number of stable states that is dependent on the geometry and mass
distribution of the object. We may express the configuration of an object as follows:

cobj(Si) = cobj

(
x, y, zSi , θSi , φSi , γ

)
= cobj(x, y, γ|Si), i = 1, 2, · · · , Q (2)

where zSi , θSi and φSi are invariable values determined by Si. Using Equation (2), we
may confine the number of parameters to describe the pose of a 3D object from 6 to 3,
when the stable state is given. Following this approach, we may construct the environ-
mental constraints for the four-pin grasping problem, which will be discussed in detail in
Section 3.3.1.
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3.2. Learning Policy Selection

Proximal policy optimization (PPO) [24] is one of the reinforcement learning policies
that has achieved encouraging results in recent years. This policy utilizes the stochastic
gradient descent (SGD) algorithm to find the optimal solution to the objective function.
The clipping mechanism and mini batch trick are introduced to improve the effectiveness
of the update process.

The idea of PPO is to learn a good policy from a good start and then improve the
policy step by step with the clipping mechanism, which limits the maximum and minimum
of the input to a set range. This can be seen as a conservative policy, but with better a priori
knowledge, this policy can achieve good performance since it never runs too far away from
the current good results.

To construct the loss function of the actor, the following equation was adopted:

L( s, a, θo, θn ) = (3)

min(rAπθn (s, a), clip(r, 1− ε, 1 + ε)Aπθn (s, a)),

where

r =
πθo (a | s)
πθn(a | s)

(4)

is the important weight.
In the above equations, s and a represent the state and action of the agent, respectively,

θo and θn represent the old and new policies, respectively, and Aπθn is the advantage
function measuring how much a certain action a is a good or bad decision, given a certain
state s using the new policy θn.

In our case, we knew adequate information about the robotic grasping system (i.e., the
model of the manipulator and the gripper, the environmental constraint-based algorithm
for achieving form closure grasps and the image processing algorithms for extracting the
contours of the objects). This means that we had good a priori knowledge of the learning
problem. What we could benefit from thanks to the reinforcement learning framework is
that it offers an end-to-end solution to integrate all of our knowledge into the system and the
input image. Algorithm 1 shows the method used to train the PPO network. The original
steps that required many computational resources could be replaced in this framework.

Algorithm 1 Training policy of the actor and critic networks.

Require: total episodes ntotal, initial policy parameters θ0
Ensure: trained models

1: Build actor;
2: Build critic;
3: if previous_run_exists then
4: Load previous run weights W and episode count n;
5: else
6: Initialize run weights W and episode count n = 0;
7: end if
8: while n < ntotal do
9: Collect buffer of observations, actions and rewards by running policy πk = π(θk) in

the environment;
10: Compute rewards R̂t using critic and reward function Rt;
11: Compute advantage estimates as Ât = R̂t − Rt;
12: Update actor using observations, advantages and actions;
13: Update critic using observations and rewards;
14: end while
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3.3. Reward Function Design

As mentioned in the previous sections, to make the proposed method learn effectively,
we constructed our reward function on the basis of a grasp quality score (GQS) function.
Different from the existing works, the GQS function in this paper is continuous so that
our agent will always learn something from every grasping attempt instead of obtaining a
reward of zero in most cases, especially in the initial steps.

In this paper, the reward function is constructed as follows:

R =


fGQS(IM,p1,p2,q,r) ∀ fi ∈ ∂O

−
4

∑
i=1

li ∃ fi /∈ ∂O
(5)

where ∂O is the contour of the object and ∀ fi ∈ ∂O indicates that all the pins of the gripper
touch the surface of the object, while li is the minimal distance between the pins (that is not
on the surface of the object) and the surface of the object. The GQS function takes the image
IM and the gripper parameters as input and always outputs a positive value depending on
the closure grasp that the contact points achieve. If a form closure grasp is achieved, then
fGQS > 1. If not, then fGQS ∈ [0, 1]. When one or more of the gripper pins does not touch
the surface of the object, there is no way to achieve any form closure grasp. However, we
still offer a negative value to the learning agent to make it understand that the pins should
always find their positions on the object.

3.3.1. Grasping Point Planning

When a subject interacts with an object, they form several environmental constraints in
their configuration space. These constraints are usually detected and considered in obstacle
avoidance algorithms, but they may help to design specific manipulation strategies in
various cases. The utilization of environmental constraints is inspired by humans and can
be observed in daily lives. For instance, when one tries to grasp a cup, he or she may rotate
the cup on the table, moving the handle toward him or her and then grasping the handle.

In previous works, we found that several environmental constraints exist in four-pin
grasping tasks. To visualize the constraints, we formulated the problem as follows.

Following the notations defined in Section 2, we defined the gripper parameter q as a
function of the object pose cobj and the rest of the gripper parameters {p1, p2, r} as

q( x, γ|Si ) = (6){
min q|cobj = (x, y∗, γ), (p1, p2, r) = (p∗1 , p∗2 , r∗)

}
where the notations with ∗ mean that these values are adjusted to obtain the minimum of q.

As shown in Figure 4, and following Equation (2), we depicted a typical environmental
constraint region in the configuration space of objects, where we used a four-pin gripper
to grasp an object with a square cross-section. In this figure, the parameters to describe
the pose of the object x and γ were selected as the axes to show how the changes in these
values would affect the value of the gripper parameter q.

There were many peaks and valleys in this region, the latter of which in fact corre-
sponded to form closure grasp configurations according to [5]. One may also find that
different valleys had different depths, which indicates how hard it is to break the form
closure grasp if enough external forces are applied.

The environmental constraints provide a powerful toolkit to not only find the form
closure configurations but also evaluate the quality of these candidates. In this work, we
integrated the environmental constraints with the GQS function. Given a set of gripper
parameters and a certain object configuration, if these values corresponded to a global
minimum (“the deepest valley”), then we assigned a large score to the reward function. If
the values corresponded to a sub-minimum, then we assigned a smaller positive score to
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the reward function. Otherwise, the GQS would not apply, and a negative value would be
assigned based on the sum of the distances between the pins and the object’s surface.

𝛾

𝑥

𝑞

Figure 4. Illustration of the constraint region formed when the four-pin gripper grasps an object with
a square cross-section.

3.3.2. Continuous Reward Construction

As mentioned in the above section, we aimed to construct a continuous reward. When
there are any gripper pins that do not touch the surface of the object (∃ fi /∈ ∂O), the
continuity of the function is guaranteed by the continuity of the distance function. When
all of the pins touch the surface of the object, this does not always hold, since the valleys
are separately distributed in the configuration space. To achieve continuity for ∀ fi ∈ ∂O,
we constructed a function Γ : (x, γ, q) ∈ R3 → R that mapped the local minima to a value
in the range of (0, ∞), where the global minimum always corresponds to the largest value.
The rest of the local minima were mapped to a value in the range of (0, 1] based on the ratio

of
qsub
q∗

.

The GQSs of three example objects are shown in Figure 5. As we expected, when all
the gripper pins touched the surface of the object, it received a positive reward. Otherwise,
the reward function returned a negative reward based on the distances between the pins
and the surface of the object.

(a) (b) (c)
Figure 5. Example of rewards from the GQS function for different cases. (a) Some of the pins are on
the surface of the object. Reward: −0.017. (b) None of the pins are on the surface of the object. Reward:
−0.048. (c) All of the pins are on the surface of the object, but form closure is not achieved. Reward: 0.25.

4. Experimental Validation and Discussion
4.1. Experimental Set-Up

In this section, we first validate the design of the gripper and then test the proposed
method in a robot simulation environment.
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To validate the design of the gripper, we fixed the gripper onto the table, manually set
the object to be grasped to a form closure state and applied a random disturbance force to
see if the object would escape from the form closure state.

To test the proposed method, we used Webots as our simulator due to its good perfor-
mance, friendly interface and easy-to-use scripting system. With the help of URDF2Webots
(https://github.com/cyberbotics/urdf2webots accessed on 13 February 2023), we could
easily import the CAD model of the gripper illustrated in Figure 3 to the Webots simulator
with minor revisions to the coordinate frames. A UR5e robotic manipulator was used in
our experiment to drive the gripper from the initial pose to the target pose. To always
maintain a clear view of the object without any occlusion, we attached an in-hand camera
at the bottom of the gripper so that the object could always be fully observed during the
grasping process.

To train the agent, we used a computing server with an Intel i7-12700F CPU, NVIDIA
RTX3080 GPU and 32 GB of memory. The Webots simulator was run in fast mode, and
rendering was off during the training process. We leveraged the Deepbots [25] framework
to implement our environment as well as the learning algorithm due to its convenience in
integrating the simulator and the RL algorithm. The robot-supervisor scheme was applied
to provide full control capability during the training process.

4.2. The Prototype Experiment

We 3D printed eight objects to validate the effectiveness of the proposed gripper. As
shown in Figure 6, all the objects shared a column-like structure. In this experiment, the
objects would be grasped along the column axis, and the 2.5D form closure would be
achieved. For each object, a random disturbance force in a certain range would be applied
for 5 s. If the object stayed stable after the disturbance, then we believe that the design of
the gripper achieved the goal of forming stable grasps.

(1)

(8)

(2) (3) (4)

(5) (6) (7)

Figure 6. Eight objects were 3D printed to validate the effectiveness of the proposed gripper.
(1) H shape, (2) X shape, (3) S shape, (4) Z shape, (5) gear, (6) cross, (7) cube and (8) star.

The results are shown in Table 1. All the objects could be grasped by the proposed
gripper with a success rate of 95.0%. When a disturbance in the range of 0.0–1.0 N was
applied, the gear and Z-shaped objects failed to maintain a form closure grasp, since the
former had curved surfaces and the latter had limited high-score form closure configura-
tions. When a disturbance in the range of 1.0–5.0 N was applied, the star and S-shaped
objects could be grasped with a success rate of 95.0% for a similar reason.

https://github.com/cyberbotics/urdf2webots
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Table 1. The success rate of the proposed four-pin gripper.

Object Name
Experiments

[No. Successful Trials/No. Total Trials]

No Disturbance 1.0 N Disturbance 5.0 N Disturbance

H shape 20/20 20/20 20/20
X shape 20/20 20/20 20/20
S shape 20/20 20/20 19/20
Z shape 20/20 19/20 19/20

Gear 19/20 19/20 18/20
Cross 20/20 20/20 20/20
Cube 20/20 20/20 20/20
Star 20/20 20/20 19/20

4.3. The End-to-End Grasping Simulation

In this simulation experiment, we trained the gripper to grasp 1000 randomly gener-
ated objects in a form closure manner using the proposed method.

We set the parameters for the autoencoder and the PPO as follows. (1) For the
autoencoder, we set the input image size to 256× 256× 3 and the latent size to 128. We
used a convolutional variational-type autoencoder. The size of the dataset was 120,000,
which indicates that there were 120,000 randomly generated top-view images of objects
extracted by the in-hand camera. (2) For the PPO, we set the buffer size to 512, batch size to
64 and layer size to 256. We used two hidden layers in the actor and critic networks. The
loss clipping was set to 0.2, and the step for each episode was set to 1. The average training
time was approximately 30 h, and the model size was approximately 110 M.

We first trained an autoencoder which aimed to extract the object pose from the raw
image. To speed up the training process, we scaled the image size down to 256× 256× 3.
Since we were in a simulated environment, the autoencoder showed good results in
recognizing the poses of the objects.

We then trained the reinforcement learning model using the PPO policy. The model
was trained over 1000 epochs, and we observed that the training results converged. Using
the latest trained weight, we observed that the manipulator could grasp an object using the
four-pin gripper after the training process, similar to the prototype experiment.

We compared the experimental results with our previous work [12], in which a syn-
thetic method was adopted to grasp the object as shown in Table 2. Since we performed the
experiment in a simulation environment, we extended the number of test objects to 100. We
followed the same experimental process in the previous work to find the success rate and
also the average planning time of the proposed grasping method. We observed that the
proposed method in this paper achieved a success rate of 94.4% without a disturbance and
84.8% with a 5 N disturbance, which was lower than the results in [12]. This was because
the end-to-end framework brought uncertainty in various processes (e.g., the autoencoder
bringing in errors during the pose estimation of the object and the actor network bringing
in errors during the control of the gripper). However, there was an improvement in adapta-
tion to the number of objects, and the average planning time was greatly reduced. A better
result may be expected if the resolution of the image is increased.

Table 2. Comparison of the methods.

Methods No. Objects
Success Rate

Avg. Planning Time [s]
No Disturbance 5.0 N Disturbance

[12] 12 57/60 (95.0%) 54/60 (90.0%) 12.0
This work 100 472/500 (94.4%) 424/500 (84.8%) 3.1
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5. Conclusions and Future Work

Form closure grasping has practical value for post-grasp manipulation. However,
the synthetic form closure grasping method suffers from poor efficiency and unmodeled
uncertainties. In this work, we extended our previous work from the aspects of the
hardware and method: (a) we introduce an improved design of a four-pin gripper which
was optimized for immobilizing objects relative to the gripper by form closure, and (b) we
used the proximal policy optimization (PPO) algorithm to train our gripper to grasp any
given object in the way of forming a closure by form. With this work, our previous work
can benefit from deep learning and reinforcement learning by encoding the state of the
object into the autoencoder and the grasping strategy into the policy network.

Since we have adequate a priori knowledge regarding the whole grasping process,
this algorithm is good at training a satisfactory strategy with slight adjustment to a good
result at the initial steps. Since the environmental constraint-based grasping quality score
function requires many computational resources, the trained model is expected to encode
this knowledge in the neural network, thus speeding up the grasping process.

In the experiment section, we implemented a real-world experiment regarding the
effectiveness of the gripper design and a comparison between the proposed method in a
simulation and our previous work [12] from the aspects of the success rate and average
planning time. The comparison result showed that the proposed method had the advantage
of improving the efficiency of the previous work. We will try to transfer the learning results
from the simulation to a real-world set-up using transfer learning policies in our future
work. Our future work will also focus on developing a complete grasping system that
could fully utilize the four-pin gripper for dexterous manipulation tasks.
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