
Citation: Lin, W.; Li, C. Review of

Studies on Emotion Recognition and

Judgment Based on Physiological

Signals. Appl. Sci. 2023, 13, 2573.

https://doi.org/10.3390/

app13042573

Academic Editor: Domenico

Lombardo

Received: 29 January 2023

Revised: 14 February 2023

Accepted: 15 February 2023

Published: 16 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Review

Review of Studies on Emotion Recognition and Judgment
Based on Physiological Signals
Wenqian Lin 1,* and Chao Li 2

1 School of Media and Design, Hangzhou Dianzi University, Hangzhou 310018, China
2 College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
* Correspondence: jiangnanshui253@126.com

Abstract: People’s emotions play an important part in our daily life and can not only reflect psy-
chological and physical states, but also play a vital role in people’s communication, cognition and
decision-making. Variations in people’s emotions induced by external conditions are accompanied
by variations in physiological signals that can be measured and identified. People’s psychological
signals are mainly measured with electroencephalograms (EEGs), electrodermal activity (EDA), elec-
trocardiograms (ECGs), electromyography (EMG), pulse waves, etc. EEG signals are a comprehensive
embodiment of the operation of numerous neurons in the cerebral cortex and can immediately express
brain activity. EDA measures the electrical features of skin through skin conductance response, skin
potential, skin conductance level or skin potential response. ECG technology uses an electrocar-
diograph to record changes in electrical activity in each cardiac cycle of the heart from the body
surface. EMG is a technique that uses electronic instruments to evaluate and record the electrical
activity of muscles, which is usually referred to as myoelectric activity. EEG, EDA, ECG and EMG
have been widely used to recognize and judge people’s emotions in various situations. Different
physiological signals have their own characteristics and are suitable for different occasions. Therefore,
a review of the research work and application of emotion recognition and judgment based on the
four physiological signals mentioned above is offered. The content covers the technologies adopted,
the objects of application and the effects achieved. Finally, the application scenarios for different
physiological signals are compared, and issues for attention are explored to provide reference and a
basis for further investigation.
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1. Introduction

Psychology defines emotion as a special form of human reflection of objective reality,
which is the experience of human attitudes towards whether objective things meet human
needs. Emotional states affect people’s daily life and work. For example, neuroscientists
found that emotional control can help people make wise choices when dealing with complex
problems. Checking and responding to emotions can modify learning outcomes [1]. Anxiety
appears in potentially dangerous circumstances and can bias a person to judge a stimulus as
more threatening [2]. Humans prefer to pursue products and make buying decisions based
on their emotional and aesthetic preferences. The analysis of emotional states involves
several disciplines, e.g., neuroscience, biomedical engineering and the cognitive sciences.
Since emotion reflects a person’s psychological and physical state, certain psychological
signals correspond to certain specific emotions.

Changes in a person’s emotions induced by environmental factors are accompanied by
changes in physiological signals (ECG, EDA, ECG, EMG, pulse wave, etc.) and behavioral
signals (facial expression, language tone, text, etc.). The behavioral signals are external
manifestations triggered by human emotions and are the indirect embodiment of emotional
information, while physiological signals belong to the internal form of expression and can
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more truly reflect human emotions. Human emotion recognition and judgment systems
are also based on the physiological and behavioral signals. Compared with the system
based on behavioral signals, the system based on physiological signals has the advantages
of high time resolution and convenient measurement, so the identification of emotions
from physiological signals has extensive applications in many fields such as education,
industrial design, medicine, rehabilitation, entertainment, pedagogy, psychology, etc. [3],
thus attracting widespread attention. In the last two years, some achievements including
new models, new approaches or methods, new algorithms, and new systems have emerged.

In terms of new models, Zhang et al. [4] presented a multimodal emotion recognition
model based on manifold learning and a convolutional neural network, and the test results
showed that the presented model achieved high identification accuracy. Quispe et al. [5]
employed a self-supervised learning paradigm to make it possible to learn representations
directly from unlabeled signals and subsequently use them to classify affective states,
and the test showed that the self-supervised representations could learn widely useful
features that improve data efficiency and do not require the data to be labeled for learning.
Dasdemir et al. [6] presented a new model to study how augmented reality systems were
effective in distinguishing the emotional states of students engaged in book reading activities
with EEG. They indicated that augmented reality-based reading had a significant discriminatory
effect and achieved higher classification performance than real reading, and the presented
model was good at classifying emotional states from EEG signals, with accuracy scores close to
100%. Hernandez-Melgarejo [7] presented a new feedback control schema to manipulate the
user state based on user–virtual reality system interaction and conducted real experiments with
a virtual reality system prototype to show the effectiveness of the presented schema.

In terms of new approaches or methods, Dissanayake et al. [8] presented a new self-
supervised method that developed an approach to learn representations of individual
physiological signals; the presented approach was more robust to losses in the input signal.
Lee et al. [9] adopted a bimodal structure to extract shared photoplethysmography and
EMG to enhance recognition performance and obtained high performance of 80.18% and
75.86% for arousal and valence, respectively. Pusarla et al. [10] presented a new deep
learning-based method to extract and classify emotion-related information from the two-
dimensional spectrograms obtained from EEG signals and offered a deep convolution
neural network for emotion recognition with dense connections among layers to uncover
the hidden deep features of EEG signals. The test results showed that the presented
model boosted the emotion recognition accuracy by 8% compared to the state-of-the-art
methods using the DEAP database. Moin et al. [11] proposed a multimodal method for
cross-subject emotion recognition based on the fusion of EEG and facial gestures and
obtained the highest accuracy of 97.25% for valence and 96.1% for arousal, respectively.
Kim et al. [12] acquired a new EEG dataset (wireless-based EEG data for emotion analysis,
WeDea) based on the discrete emotion theory and presented a new combination for WeDea
analysis. The practical results indicated that WeDea was a promising resource for emotion
analysis. Romeo et al. [13] presented a method with a framework from the machine
learning literature, which was able to model time intervals by capturing the presence or
absence of relevant states without the need to label the affective responses continuously.
They indicated that the presented method showed reliability in a gold-standard scenario and
towards real-world usage. Mert et al. [14] presented a method of converting the DEAP dataset
into a multimodal latent dataset for emotion recognition and applied the method to each
participant’s recordings to obtain a new latent encoded dataset. A naive Bayes classifier was
used to assess the encoding performance of the 100-dimensional modalities, and compared to
the original results, yielded leave-one-person-out cross-validation error rates of 0.3322 and
0.3327 for high/low arousal and valence states, while the original values were 0.349 and 0.382.

In terms of new algorithms, Fu et al. [15] built a substructure-based joint probability
domain adaptation algorithm to overcome physiological signals’ noise effects, and the new
algorithm could avoid the weaknesses of domain level matching that was too rough and
sample level matching that was susceptible to noise. Pusarla et al. [16] used a new local mean
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decomposition algorithm to decompose EEG signals into product functions and even capture
the underlying nonlinear characteristics of EEG; an emotion recognition system based on
the presented algorithm outperformed state-of-the-art methods and achieved high accuracy.
Katada and Okada [17] improved the performance of biosignal-based emotion and personality
estimations by considering individual physiological differences as a covariate shift. They
pointed out that importance weighting in machine learning models could reduce the effects of
individual physiological differences in peripheral physiological responses. Hasnul et al. [18]
presented a new multi-filtering augmentation algorithm to increase the sample size of the
ECG data. The algorithm augmented ECG signals by cleaning the data in different ways,
and the benefit of the algorithm was measured using the classification accuracy of five
machine learning algorithms. It was found that there was a significant improvement in
performance for all of the datasets and classifiers. Shi [19] provided a universal solution for
cross-domain information fusion scenarios in body sensor networks and a feasible solution
for quantitatively evaluating the domain weights; they conducted experiments to verify
the adaptability and promising performance of fusion frameworks and dynamic domain
evaluation for cross-domain information fusion in BSNs.

In terms of new systems, Anuragi et al. [20] presented an EEG signal-based automated
cross-subject emotion recognition framework that decomposed the EEG signals into four
sub-band signals; the test results showed that the presented framework had advantages
for classifying human emotions compared to other state-of-the-art emotion classification
models. Asiain et al. [21] proposed a novel platform of physiological signal acquisition
for multi-sensory emotion detection to record and analyze different physiological signals,
and the most important features of the proposed platform were compared with those of a
proven wearable device. Zontone et al. [22] built a system to assess the emotional response
in drivers while they were driving on a track with different car handling setups. The
experimental results based on the system indicated that the base car setup appeared to be
the least stressful, and that the presented system enabled one to effectively recognize stress
while the subjects were driving in the different car configurations. Xie et al. [23] constructed
a hybrid deep neural network to evaluate automobile interior acceleration sounds fused
with physiological signals, and the results showed that the constructed network contributed
to achieving accurate evaluations of automobile sound quality with EEG signals.

A review of research on emotion recognition and judgment based on physiological
signals can be carried out from different aspects. In the study of this field, the most common
approach is to establish a system or model based on physiological signals as the comparison
standard to recognize and judge emotions, so psychological signals are a basic element.
People’s psychological signals are mainly composed of EEG, EDA, ECG, EMG, pulse waves,
etc. Pulse waves have obvious mechanical characteristics of blood flow and are employed
less often in studies based on emotion recognition and judgment. Therefore, this paper
mainly offers a review of the research work and application of emotion recognition and
judgment based on EEG, EDA, ECG and EMG in recent years. It aims to provide readers
with a further understanding of the role and characteristics of different psychological signals
in emotional recognition and judgment. The rest of the paper is structured as follows. In
Section 2, we introduce the research and application of EEG. Section 3 introduces research
and application of EDA, ECG and EMG. The research and application of multimodal
physiological signals are presented in Section 4. Section 5 presents ethical and privacy
concerns related to the use of physiological signals for emotion recognition. Finally, a brief
conclusion with future prospects is presented in Section 6.

2. Research and Application of EEG

Changes in people’s emotions comprise a sophisticated process and often lead to
spatio-temporal brain activity that can be captured with EEG. The EEG signal is rich in
useful information because it is a comprehensive embodiment of the operation of numerous
neurons in the cerebral cortex and can immediately reflect brain activity. In addition, the
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EEG signal is simple to record and cost-effective. So, the EEG-based method has attracted
widespread attention and is broadly used for emotion recognition and judgment.

Yang et al. [24] put forward an approach to emotion image classification according
to the user’s experience measured with EEG signals and eye movements, and built a rela-
tionship between the psychological signals and the expected emotional experience. They
showed that the proposed approach was accurate in distinguishing images that could cause
a pleasurable experience by classifying 16 abstract art paintings as positive, negative or
neutral according to volunteers’ physiological responses. Yoon and Chung [25] studied
emotion recognition and judgment based on EEG signals. They defined emotions as two-
level and three-level classes with valence and arousal dimensions, extracted features using
fast Fourier transform, and performed feature selection with the Pearson correlation coeffi-
cient. The results showed that the mean precision for the valence and arousal estimation
was 70.9% and 70.1%, respectively, for the two-level class, and 55.4% and 55.2%, respec-
tively, for the three-level class. Andreu-Perez et al. [26] let game players play “League of
Legends” and imaged players’ brain activity through functional near infrared spectroscopy
as well as recording videos of the players’ faces. Based on the above, they decoded the ex-
pertise level of the players in a multi-modal framework, which was the first work decoding
expertise level of players with non-restrictive technology for brain imaging. They declared
that the best tri-class classification precision was 91.44%. Zhang et al. [27] first measured
the EEG signals and extracted features from the signals, then processed the EEG data using
a modified algorithm of the radial basis function neural network, and finally compared
and discussed the experimental results given by different classification models. The results
showed that the modified algorithm was better than other algorithms. Chew et al. [28]
proposed a new approach to preference-based measurement based on user’s aesthetic
preferences using EEG for a moving virtual three-dimensional object. The EEG signals
were classified into two classes of like and dislike, and the classification accuracy could
reach 80%. Chanel et al. [29] put forward a complete acquisition protocol to establish a
physiological emotional database for subjects, and then formulated arousal assessment as
2 or 3 degrees. The results confirmed the possibility of applying EEG signals to evaluate
the arousal component of emotion. Wagh and Vasanth [30] employed various classifiers
to categorize the EEG signal into three emotional states and used the discrete wavelet
transform to decompose EEG signals into different frequency bands. They also derived
time domain features from the EEG signal to recognize different emotions. The results
indicated that the maximum classification rates were 71.52% and 60.19%, respectively, when
the classification methods of decision tree and k nearest neighbor were used, and the higher
frequency spectrum performed well in emotion recognition.

Ozdemir et al. [31] presented a new approach to recognize emotions with a series
of multi-channel EEG signals by changing the EEG signals into a sequence of multi-
spectral topology images. Based on the new approach, they obtained testing accuracy
of 86.13% for arousal, 90.62% for valence, 88.48% for dominance, and 86.23% for like–unlike.
Abadi et al. [32] proposed a magnetoencephalogram-based database for decoding affective
user responses that, different from data sets, had little contact with the scalp and thus
promoted a naturalistic affective response and enabled fine-grained analysis of cognitive
reactions over brain lobes, in turn favoring emotion recognition. Tang et al. [33] presented
an EEG-based art therapy evaluation approach that could assess therapeutic effectiveness
according to the variation in emotion before and after therapy. The results indicated that the
model of emotion recognition with long short-term memory deep temporal features had
better classification effects than the state-of-the-art approach with non-temporal features,
and the classification accuracy in the high-frequency band was higher than that in the
low-frequency band. Soroush et al. [34] rebuilt EEG phase space and converted it into a
new state space, and extracted the Poincare intersections as features and then fed them
into the classification model. They declared that not only was the presented approach
effective in emotion recognition, but it also introduced a new method for nonlinear signal
processing. Halim and Rehan [35] proposed a machine learning-based approach to discern
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stress patterns induced by driving with EEG signals, and built relations between brain
dynamics and emotion. They also presented a framework to identify emotions based on
EEG patterns by recognizing specific features of the emotion from the raw EEG signal. Fifty
subjects were tested, and high classification accuracy, precision, sensitivity and specificity
were obtained. Lu et al. [36] analyzed the results of people’s physiological estimation under
different illumination levels and color temperatures based on EEG signals. The results
showed that illumination greatly affected the response of the visual center, which was
conducive to the design of light environments. In order to recognize and classify fear levels
based on EEG and databases for emotion analysis, Balan et al. [37] compared different
machine and deep learning methods with and without selecting features, and found that,
although all methods could give high classification accuracy, the highest F scores were
obtained using the random forest classifier—89.96% as shown in Table 1 and 85.33% as
shown in Table 2 for the two-level fear (0—no fear and 1—fear) and four-level fear (0—no
fear, 1—low fear, 2—medium fear, 3—high fear) evaluation modalities, respectively. In
Tables 1 and 2, F1 is fear, DNN is deep neural network, SCN is stochastic configuration
network, SVM is support vector machine, RF is random forest, LDA is linear discriminant
analysis, and KNN is k-nearest neighbors.

Table 1. Classification accuracy when input is a vector of 32 Higuchi fractal dimensions [37].

Type of
Feature

Selection
Classifier

Fear Evaluation Modality

Two-Level Four-Level

F1 Score (%) Accuracy (%) F1 Score (%) Accuracy (%)

No Feature
Selection

DNN1 81.40 81.41 59.89 62.67
DNN2 77.01 76.99 36.96 47.74
DNN3 81.09 81.14 49.11 57.12
DNN4 78.51 78.52 24.51 41.67
SCN 77.15 78.50 45.25 46.20
SVM 81.64 81.64 80.85 81.70
RF 89.96 90.07 82.59 83.24

LDA 69.09 69.10 64.96 65.32
KNN 83.38 83.36 80.52 80.73

Table 2. Classification accuracy when input is a vector of 30 alpha, beta and theta PSDs [37].

Type of
Feature

Selection
Classifier

Fear Evaluation Modality

Two-Level Four-Level

F1 Score (%) Accuracy (%) F1 Score (%) Accuracy (%)

No Feature
Selection

DNN1 81.99 81.99 67.46 68.98
DNN2 78.16 78.14 55.92 58.85
DNN3 82.21 82.26 57.70 60.94
DNN4 79.14 79.12 30.13 43.63
SCN 75.12 75.50 51.20 51.50
SVM 83.15 83.13 83.46 84.01
RF 93.11 93.13 85.33 85.74

LDA 70.46 70.52 60.98 61.46
KNN 85.84 85.82 82.94 83.24

Al Hammadi et al. [38] built an insider risk evaluation system as a fitness for duty
security assessment to assort abnormal EEG signals with a potential insider threat. They
collected data from 13 subjects in different emotional states and mapped and divided
different levels of emotions into four risk levels. High classification accuracy was obtained.
Guo et al. [39] integrated EEG and eye-tracking metrics to identify and quantify the visual
aesthetics of a product. The results showed that there existed obvious difference in the
fixation time ratio and dwell time ratio among three groups of visual aesthetic lamps;
the integrated EEG and eye-tracking metrics could improve the quantification accuracy.
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Priyasad et al. [40] proposed a new method to recognize emotion through unprocessed
EEG signals, and it was found that, with the new method, the classification accuracy for
arousal, valence and dominance could be higher than 88%. Xie et al. [41] presented an
assessment approach based on EEG signals. They first determined the brain cognition laws
by evaluating the EEG power topographic map under the effect of three types of automobile
sound, i.e., the qualities of comfort, powerfulness, and acceleration, then classified the
EEG features thus recognized as different automobile sounds, and finally employed the
Kalman smoothing and minimal redundancy maximal relevance algorithm to modify the
accuracy and reduce the amount of calculation. The results indicated that there existed
differences in the neural features of different automobile sound qualities. Yan et al. [42]
studied the issue of inducing and checking driving anger. They first collected data on brain
signals of driving anger when drivers encountered three typical scenarios that could lead to
driving anger, and then distinguished normal driving from angry driving according to the
self-reported data; finally, a classifier was used to detect angry driving based on the features,
and 85.0% detection accuracy was obtained. Li and Wang [43] described the research status
of cognitive training and analyzed the reasons for individual cognitive differences. They
investigated cognitive neural plasticity for reducing the cognitive differences, explored
the merits and drawbacks of the transfer approach in reducing cognitive differences, and
put forward future research issues. Mohsen et al. [44] proposed a long short-term memory
model for classification of positive, neutral, and negative emotions, and applied the model
to a dataset that included three classes of emotions with a total of 2100 EEG samples from
two subjects. Experimental results showed that the presented model had a testing accuracy
of 98.13% and a macro average precision of 98.14%.

3. Research and Application of EDA, ECG and EMG

EDA, used to describe variations in the conductivity of skin, measures the electrical
features of skin through skin conductance response, skin potential, skin conductance level
or skin potential response. EDA is mature and non-invasive and has many advantages
such as reliability, user-friendly acquisition, swift response, and low cost; hence, it is used
to study many issues.

Liapis et al. [45] identified specific stress regions in the valence-arousal space by
combining pairs of valence-arousal and skin conductance for 31 volunteers. The findings
showed which regions in the valence-arousal rating space could express self-reported stress
in accordance with the subject’s skin conductance. They also presented a new method for
the empirical discrimination of emotion regions in the valence-arousal space. Feng et al. [46]
proposed an automated method of classifying emotions for children using EDA. The results
quantitatively indicated that the proposed method could significantly improve emotion
classification using wavelet-based features. van der Zwaag [47] selected songs with the
most increased or decreased skin conductance levels in 10 subjects to cause an energetic or
calm motion based on the resulting user models. The results indicated that the effect of
a song on skin conductance could be reliably predicted, and skin conductance that could
kept in certain state for at least 30 min was directly related to energetic or calm mood. It
was feasible to reflect the emotional response of listeners through physiological signals.
Lin et al. [48] studied the application of data gloves with two systems: one was a system of
emotion recognition and judgment that was built based on the optimal features of EDA, and
another was a system of virtual gesture control and a manipulator propelled by emotion, as
shown in Figure 1. The test results for five subjects showed that the system could regulate the
gestures of a virtual hand through reading the signals of skin electricity when the subjects did
not change any gesture, and the manipulator could complete the steering change driven by
emotion as shown in Figure 2, where the bottom row is the duration of the music, the middle
row is the EDA signals of subjects after listening to music, and the top row is the manipulator
steering change driven by emotion based on the EDA signals.
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Hu et al. [49] studied the differences in people’s assessments of tactile sensations for
beech surfaces of different shapes and roughness using skin conductance and subjective
emotion measurement of pleasure arousal dominance. They found that, under a relatively
high level of emotional arousal, the subject’s emotional stability could be partly retained
because of a beech with arc shapes. As for perception of beech, males had a larger range
of emotional arousal and lower speed of emotional arousal than females. Yin et al. [50]
combined people’s individual EDA features and music features, and presented a network
of residual temporal and channel attention. They first applied a mechanism of channel-
temporal attention for EDA-based emotion recognition to explore dynamic and steady
temporal and channel-wise features and proved the effectiveness of the presented network
for mining EDA features. Romaniszyn-Kania et al. [51] developed a tool and presented a
set to complement psychological data based on EDA, and a comparison of accuracy of the
k-means classification with the independent division revealed the best results for negative
emotions (78.05%). The comparison of the division of the participants according to the
classifier is shown in Table 3, where JAWS is Job-related Affective Well-being Scale, “pos”
is positive, “neg” is negative, PCA is partial component analysis, ACC is accuracy.

Table 3. Comparison of the division of the participants according to the classifier [51].

JAWS JAWS_pos JAWS_neg

Without
PCA (%) With PCA (%) Without

PCA (%) With PCA (%) Without
PCA (%) With PCA (%)

ACC 65.85 73.17 60.89 73.17 63.41 78.05

ECG measures a physiological signal generated from the contraction and recovery of
the heart, and ECG technology uses an electrocardiograph to record the electrical activity
changes of the heart from the body surface in each cardiac cycle. The ECG data based on
physiological characteristics are directly related to an individual, and hence often used to
identify a person’s psychological state.

To improve the ability of emotional recognition from ECG signals, Sepulveda et al. [52]
presented a wavelet scattering algorithm to extract the features of signals based on the
AMIGOS database as inputs for different classifiers evaluating their performance, and
reported that an accuracy of 88.8%, 90.2% and 95.3% had been obtained in the valence,
arousal and two-dimensional classification, respectively, using the presented algorithm.
Wang et al. [53] applied ECG features including time-frequency domain, waveform and
non-linear characteristics, combined with their presented model of emotion recognition, to
recognize a driver’s calm and anxiety. Accuracy scores of 91.34% and 92.89% for calm and
anxiety, respectively, were obtained. Wu and Chang [54] used ECG to study experimentally
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the impact of music on emotions. The results showed that fast, intermediate and slow
music strengthened, inhibited and did not change the activity of the autonomic sympathetic
nervous system, respectively. They also suggested that music could be used to relieve
psychological pressure. Fu et al. [55] presented an approach using the human heart rate as a
new form of modality to determine human emotions with a physiological mouse measuring
photoplethysmographic data and experimentally evaluated the accuracy of the approach.
Hu and Li [56] collected 140 signal samples of ECG triggered by Self-Assessment Manikin
emotion self-assessment experiments using the International Affective Picture System, and
used Wasserstein generative adversarial network with gradient penalty to add different
numbers of samples for different classes. The results showed that the accuracy and weighted
F1 values of all three classifiers were improved after increasing the quantity of data.

EMG is a technique using electronic instruments to evaluate and record the electrical
activity of muscles, which is usually referred to as myoelectric activity. There are two kinds
of methods for EMG: one is the surface derivation method, i.e., the method of attaching an
electrode to the skin to derive the potential; the other is the needle electrode method, which
is the method of inserting a needle electrode into a muscle to derive the local potential.
Automatic analysis of EMG can be performed by using computer technology, such as
analytical EMG, single-fiber EMG and giant EMG.

Bornemann et al. [57] studied whether identification could be modified by focusing
subjects on their internal reactions, and tested how changes in expression type and presen-
tation parameters affect facial expression and recognition rate based on EMG. They found
that the participants had different EMG responses, i.e., maximal corrugator responses to
angry, then neutral, and minimum to happy faces. They declared that corrugator EMG
was sufficiently credible to predict stimulus valence statistically; the concise expression
would generate a strong bodily signal as feedback to modify the recognition ability; either
the physical and psychological reactions were mainly unconscious, or other approaches to
instruction or training were needed to utilize their feedback potential.

4. Research on and Application of Multimodal Physiological Signals

Due to the variety of expressions of human emotion, an emotion analysis using only
single-mode information is not perfect, e.g., facial expressions can be disguised through the
individual’s subjective will. However, multimodal signals can provide more discriminative
information than single modal signals. Therefore, scholars began to try to carry out further
research on emotion recognition with multimodal methods.

4.1. Two Psychological Signals

Du et al. [58] presented an approach to detect human emotions according to heart
beat and facial expressions. Through game experiments using their presented approach,
they found that it needed less computing time and had high accuracy in detecting the
emotions of excitement, sadness, anger and calmness. The intensity of emotion could
be evaluated with the values of heart beat. Lin et al. [59] conducted experiments of
emotion classification for different types of physiological signals and combinations of EEG,
and the results showed that skin electrical signals and facial EMG signals yielded better
classification results. Lin et al. [60] built a system of emotion judgment and a system of
emotion visualization based on changes in pictures and scenes, and compared the change
in emotional trends detected with systems based on sets of optimal signal features and
machine learning-based methods through skin electricity and pulse waves of 20 subjects
who were listening to music. The results indicated that the change in emotional trends
detected using the system of emotion visualization based on changes in picture and scene
were consistent with those detected using the system of emotion judgment. Meanwhile,
the interactive quality and real-time ability of the emotion visualization system based on
scene changes were better than those based on picture changes; the interactive quality of
the emotion judgment based on a set of optimal signal features was better than that based
on a machine learning-based method.
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Wu et al. [61] first presented a technique according to a fusion model of the Gaussian
mixed model with the Butterworth and Chebyshev signal filter, and calculated the features
extracted from EEG signals and eye-tracking signals, then used a max-min approach for
vector normalization, and finally proposed a deep gradient neural network for classifying
EEG and eye-tracking signals. The experimental results showed that the presented neural
network could predict emotions with 88.10% accuracy, and the presented approach also
performed with high efficiency in several indices compared with other typical neural
networks. Tang et al. [62] used ECG and EEG signals to assess the impact of music on
the generation of ideas by subjects with design experience under individual and group
conditions. The results indicated that the subjects produced more but worse design ideas
in response to music that aroused positive emotions, and pleasant emotions were more
likely to be evoked under group conditions. At the initial stage of design, the positive
music was beneficial for producing more design ideas, but non-music was better when
designers needed to think deeply. Singh et al. [63] put forward a neural network driven by
a solution to learning driving-induced stress modes, related it with time–frequency changes
observed from galvanic skin response and photoplethysmography, and obtained precision
of 89.23%, specificity of 94.92% and sensitivity of 88.83%. They summarized that the layer
recurrent neural network was most suitable for the detection of stress degree. Katsigiannis
and Ramzan [64] built a multimodal database of EEG and ECG signals obtained during
emotional arousal through audio-visual stimuli from 23 subjects along with the subjects’
self-evaluations of their respective emotional states based on valence, arousal and dominance,
and established a baseline for subject-wise emotion identification using the features extracted
from EEG and ECG signals as well as their fusion. They also assessed the self-evaluations
of the subjects by comparing them with other self-evaluations. The results showed that the
classification effect for valence, arousal and dominance based on the presented database could
be matched with databases obtained using expensive and medical-grade devices, pointing
out the prospects of using low-cost equipment for emotion recognition.

4.2. Multiple Physiological Signals

Laparra-Hernandez et al. [65] assessed human perceptions by recording subjects’
EMG, EMG and galvanic skin response signals while neutral, smiling and frowning faces
as well as eight images of ceramic flooring were projected. The results indicated that the
forms of ceramic tile flooring could be distinguished by values of galvanic skin response,
and there was a sharp distinction in the EMG signals induced by the calibration images.
Zhang et al. [66] presented a regularized deep fusion framework for use in emotion recogni-
tion based on the physiological signals of EEG, EMG, galvanic skin response and respiratory
rate. They extracted effective features from the above signals and built ensemble-dense
embeddings of multimodal features from which they applied a deep network framework to
learn task-specific representations for each signal, and then designed a global fusion layer
with a regularization term to blend the produced representations. There results showed
that the presented framework could modify the effect of emotion recognition, and the
blended representation could exhibit higher class separability for emotion recognition.
Jang et al. [67] evaluated the reliability of physiological variations produced by six different
basic emotions with measurements of physiological signals of skin conductance level, blood
volume pulse and fingertip temperature when 12 subjects watched emotion-provoking film
clips and self-assessed their emotions under the stimuli in the films. It was found that the
physiological signals obtained in the emotion-arousing period displayed good internal con-
sistency. Yoo et al. [68] presented an approach to assess, analyze, and fix human emotions
using signals of EEG, ECG, galvanic skin response, photoplethysmograms and respiration.
Using the presented approach, six different emotional states could be recognized, and high
accuracy performance was obtained. Khezri et al. [69] presented a new adaptive approach
to modify the system of emotion recognition with measurements of skin conductance,
blood volume pressure and inter-beat intervals along with three-channel forehead biosig-
nals as emotional modalities. Six different emotions were stimulated by showing video
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clips to each of the 25 subjects. The results indicated that the presented approach was
better than conventional methods, and overall emotion classification accuracy of 84.7% and
80% was obtained, respectively, using support vector machine and K-nearest neighbors
classifications. Zhou et al. [70] studied experimentally whether auditory stimulation could
be used as a stimulus source for emotion judgment by recording signals of human EEG,
facial EMG, EDA and respiration. The results showed that auditory stimulation was as
effective as visual stimulation. They also presented culture-specific, i.e., Chinese vs. Indian,
prediction models, and no major differences in prediction accuracy were observed between
the presented culture-specific models.

Yan et al. [71] first proposed an approach using hybrid feature extraction to extract
statistical- and event-related features from ECG, EDA, EMG and blood volume pulse, then
presented a method of adaptive decision fusion to integrate signal modalities for emotion
classification, and finally assessed the presented framework through a comparative analysis
based on a dataset. The results showed that it was necessary to use event-related features
and emphasized the significance of improving the adaptive decision fusion method for
emotion classification. Anolli et al. [72] developed an E-learning system endowed with
emotion computing ability for the cultivation of relational skills based on 10 different kinds
of emotions detected from the facial expressions, vocal nonverbal features and postures
of 34 subjects. Picard et al. [73] developed a machine with the ability to recognize daily
eight emotional states from EMG, EDA, blood volume pressure and respiration signals
over multiple weeks. It was found that the characteristics of different emotions on the
same day were inclined to aggregate more closely than the characteristics of the same
emotion on different days. They also presented new features and algorithms to deal with
the daily variations. Fleureau et al. [74] presented an approach to establish a real-time
emotion detector that included EMG, heart rate and galvanic skin response for application
in entertainment and video viewing. They intended to detect the emotional effects of a video
in a new manner by recognizing emotional states in the motion stream and by providing
the associated binary valence of each detected state. Kim et al. [75] built a user-independent
system of emotion recognition based on ECG, EDA and skin temperature variations that
could reflect the effect of emotions on the nervous system. They designed an approach with
preprocessing and extraction features to draw the emotion-specific features from signals
with short segments, and used a support vector machine as a pattern classifier to solve the
classification problems, i.e., large overlap among clusters and large variance within clusters.
Pour et al. [76] studied how positive, neutral and negative feedback responses from an
intelligent tutoring system based on EDA, EMG and ECG signals affect learners’ physiology
and emotions. The results showed that learners mostly presented expressions of delight when
receiving positive feedback, but expressions of surprise when receiving negative feedback.

Liu et al. [77] presented an approach to determine operators’ emotional states at-
tributed to a set of CAD design tasks based on EEG, galvanic skin resistance, and ECG
signals. The stimulation and interpretation of each operator’s emotions were performed suc-
cessfully, through various task action chains, with obvious correlations confirmed between
the operator’s CAD experience and their emotional states. Pinto et al. [78] processed ECG,
EMG and EDA signals with unimodal and multimodal methods to develop a physiological
model of emotions in 55 subjects. The results showed that the ECG signal was the best in
emotion classification, and fusion of all signals could provide the most effective emotion
identification. Zhuang et al. [79] developed a novel approach for valence-arousal model
emotion assessment with multiple physiological signals to determine human emotional
states using various algorithms. It was found that the deep neural network approach could
precisely identify human emotional states. Garg et al. [80] presented a model using a ma-
chine learning method for the calibration of the mood of the song according to audio signals
and human emotions based on EEG, ECG, EDA and pulse wave signals. They performed
extensive experiments using songs that induced different moods and emotions and tried to
detect emotions with a certain degree of efficiency and accuracy. Zhuang et al. [81] built a
system of emotion recognition based on the EEG, ECG and EMG signals and used the T
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method of the Mahalanobis–Taguchi system to handle the signals and further identify emo-
tional states. The results indicated that, although the T method only modified the accuracy
on the valence state, it still identified the emotion intensity in different states. Lin et al. [82]
studied a model of emotion recognition and judgment based on ECG, EDA, facial EMG and
pulse wave signals monitored in 40 subjects playing a computer game. The subjects were
required to complete a questionnaire including typical scenarios appearing in the game
and subjects’ evaluations of the scenarios. Relationships between the signal features and
emotion states were established with a statistical approach and the questionnaire responses.
They obtained a set of optimal features from the physiological EDA and pulse wave signals,
reduced the dimensionality features, chose features with a significance of 0.01 according
to the relationship between the features and emotional states, and finally built a model of
emotion recognition and judgment as shown in Figure 3, where BpNN50 means percentage
of main wave interval > 50 ms, 1dmean is the mean value of first-order difference, HVLA is
high valence-low arousal, LVHA is low valence-high arousal, HVHA is high valence-high
arousal and LVLA is low valence-low arousal.
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Albraikan et al. [83] built a real-time emotional biofeedback system based on EDA,
ECG, blood volume pulse and skin temperature signals and presented the experimental
results for the system based on the above physiological signals. It was found that the
system could help improve emotional self-awareness by decreasing error rate by 16.673%
and 3.333% for men and women, respectively. Chen et al. [84] presented a multi-stage
multimodal dynamical fusion network based on EEG, EMG and electrooculography signals
to solve the problem of cross-modal interaction appearing in one-stage fusion. They
obtained the joint representation according to cross-modal correlation using the presented
network, which was verified on a multimodal benchmark. The experimental results
showed that the method of multi-stage, multi-modal dynamical fusion was better than
the related one-stage, multi-modal methods. Niu et al. [85] performed an experiment
to explore subjects’ emotional experience of virtual reality by comparing feelings and
ECG, EDA and skin temperature signals. The results showed that a higher arousal level
was obtained for virtual reality than that for a two-dimensional (2D) case. Eye fatigue
occurred easily in both the virtual reality and 2D environments, while the former was
more likely to lead to symptoms of dizziness and vertigo. Subjects had higher excitement
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levels in the virtual reality environment as well as more frequent and stronger emotional
fluctuations. Chung and Yang [86] presented an integrated system of emotion evaluation.
The system, which detected and analyzed variations in human objective and emotional
states in an integrative way, consisted of subsystems of real-time subjective and objective
emotionality evaluation based on EEG, ECG, EDA and skin temperature. They declared
that the presented system would be conducive to the construction of a human emotion
evaluation index by assembling the measured data into a database. Uluer et al. [87]
proposed an assisted robotic system for children with hearing disabilities to improve
emotion identification ability based on EDA, blood volume pulse and skin temperature
signals. Situations concerned with a conventional setup, a tablet, and robot + tablet were
assessed with 16 subjects with cochlear implants or hearing aids. The results indicated that
the collected physiological signals could be divided, and the positive and negative emotions
could be more effectively distinguished when subjects interacted with the robot than in the
other two setups. Kiruba and Sharmila [88] identified a preferable framework of artificial
intelligent ensemble feature selection and model of heterogeneous ensemble classification.
Three base classifiers were applied to make decisions aimed at improving the classification
performance of health-related messages. The results showed that the integration of the
above framework and the model presented the highest accuracy in emotion classification
based on the signal features of ECG, EDA, respiration and skin temperature. Habibifar and
Salmanzadeh [89] studied the effectiveness of physiological signals, i.e., EEG, ECG, EMG
and EDA, in detecting negative emotions in 43 subjects driving in different scenarios. They
extracted 58 features from the physiological signals and calculated the assessment criteria
for sensitivity, accuracy, specificity and precision. The results showed that the ECG and EDA
signals were best in detecting negative emotions, with 88% and 90% accuracy, respectively.
Hssayeni and Ghoraani [90] studied the application of ECG, EDA, EMG and respiration
signals for evaluating positive and negative emotions using data-driven feature extraction.
They put forward two methods of multimodal data fusion with deep convolutional neural
networks and evaluated positive and negative emotions using the proposed architecture.
The results indicated that the presented model had better performance than traditional
machine learning, i.e., using only two modalities, the presented model evaluated positive
emotions with a correlation of 0.69 (p < 0.05) vs. 0.59 (p < 0.05) with traditional machine
learning, and negative emotions with a correlation of 0.79 (p < 0.05) vs. 0.73 (p < 0.05).
Chen et al. [91] proposed a new system to detect driving stress based on the features extracted
from time and spectral and wavelet domains of physiological signals including ECG, EDA
and respiration. They employed sparse Bayesian learning and principal component analysis
to seek optimal feature sets and used kernel-based classifiers to increase accuracy. The results
showed that driver stress could be characterized by peculiar signal sets that could be utilized
by in-vehicle intelligent systems in various ways to assist drivers in controlling their negative
emotions while driving.

Saffaryazdi et al. [92] presented an experimental setup for stimulating spontaneous
emotions with a face-to-face conversation and a dataset of physiological signals from EEG,
EDA and photoplethysmography, and pointed out new directions for future research in
conversational emotion recognition. Ma et al. [93] studied how sex differences affected
recognition under three different sleep conditions using EEG and eye movements. The
results showed that sleep deprivation impaired the stimulation of happy emotions and
also notably weakened the ability to discriminate sad emotions in males, while females
maintained the same emotions as under common sleep. Singson et al. [94] identified and
recognized emotions of happy, sad, neutral, fear, and anger using facial expressions, ECG
and heart rate variability, and the accuracy obtained was 68.42% based on the results from
ECG. Hinduja et al. [95] studied recognizing context over time using physiological signals,
and indicated that the fusion of EMG signals was more accurate compared to the fusion of
non-EMG signals. Although the fusion of non-EMG signals yielded comparatively higher
accuracy, ECG data resulted in the highest unimodal accuracy.
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5. Ethical and Privacy Concerns Related to the Use of Physiological Signals for
Emotion Recognition

Ethical and privacy issues should be given attention in emotion recognition and judg-
ment because they relate to relevant data extracted from people along with their personal
and behavioral information [96]. The former may reflect physical and psychological health,
whereas the latter may include health, location, and other highly confidential informa-
tion [97]. In addition, emotion research based on physiological signals could reveal the
internal characteristics of individuals [98]. Therefore, ethical issues including the protection
of user privacy deserve more attention. Sarma and Barma [99] indicated that such private
information could be exploited, causing violations of personal rights, so ethical approval
is imperative before data acquisition. Namely ethical consent, which includes general,
personal and researcher concerns, must be obtained from the participant. They also detailed
the specific contents of the three levels of concern.

In daily life and work, there is a potential privacy problem with the leakage of phys-
iological information, including physiological signals and facial expressions. Sun and
Li [100] presented a new approach based on a pre-trained 3D convolutional neural network,
i.e., Privacy-Phys, to modify remote photoplethysmography in facial videos for privacy.
The results showed that the approach was more effective and efficient than the previous
baseline. Pal et al. [101] pointed out that digital identity and identity management must be
taken into consideration because of the dynamic nature and scale of the number of devices,
applications, and associated services in a large-scale emotion recognition system.

Liao et al. [102] presented a new affective virtual reality system by adopting the im-
mersion, privacy and design flexibility of virtual reality based on EEG, EDA and heart rate
signals. The results proved that virtual reality scenes could achieve the same emotion elicita-
tion as video. Preethi et al. [103] developed a complete product to use the detected emotions
in a real-time application based on ECG, EMG, respiration and skin temperature data. The
signals were obtained with personal wearable technology while not compromising privacy.
Accuracy of 91.81% was obtained in an experiment with 150 participants.

Monitoring of the elderly using visual and physiological devices is likely to breach
privacy. Reading distress emotions with speech would provide effective monitoring while
preserving the privacy of the elderly. Machanje et al. [104] presented a new method where
association rules drawn from speech features were used to derive the correlation between
features and feed these correlations to machine learning techniques for distress detection.
Chen et al. [105] presented a privacy-preserving representation-learning variational genera-
tive adversarial network to learn an image representation that was explicitly disentangled
from the identity information, and the test results showed quantitatively and qualitatively
that the presented approach could reach a balance between the preservation of privacy
and data utility. Nakashima et al. [106] presented an image melding-based method that
altered facial regions in a visually unintrusive way while preserving facial expression,
and the test results indicated that the presented approach could retain facial expression
while protecting privacy. Ullah et al. [107] presented an effective and robust solution for
facial expression recognition under an unconstrained environment that could classify facial
images in the client/server model while preserving privacy, and by validating the results
on four popular and versatile databases, they elaborated that the effectiveness of the pre-
sented approach remained unchanged by preserving privacy. Can and Ersoy [108] applied
federated learning, a candidate for developing high-performance models while preserving
privacy, to heart activity data collected with smart bands for stress-level monitoring and
achieved satisfying results for an IoT-based wearable biomedical monitoring system that
preserves the privacy of the data.

6. Conclusions and Prospects

Emotion recognition and judgment based on physiological signals has been widely
studied and applied. This review covers research work on and applications of emotion
recognition and judgment based on individual EEG, EDA, ECG, and EMG signals and their
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combination in recent years. Different physiological signals have their own characteristics,
so they are suitable for different occasions. As a summary, Table 4 lists the practical
occasions for the use of different physiological signals in the research described in this
paper, so as to understand the scenarios for the use of physiological signals for emotion
recognition from a local perspective. From the previous description and Table 1, we can see
that EEG is used alone in many cases, and EDA and ECG are often used in multimodal
cases. Pulse wave is used less often.

Table 4. Applications of different physiological signals discussed in this paper.

Signals Applications

EEG
CAD activity; Cognitive level; Driver’s mentality; Environmental design; Insider
risk evaluation; Playing games; Product aesthetics; Product design; Response to
automobile sound; Response to songs and music; Viewing paintings, videos, films.

EDA

CAD activity; Completing arithmetic tasks; Driving stress; Driver’s mentality;
Experience of virtual reality; Hearing aid systems; Learners’ physiology; Making
decisions in response to health-related messages; Playing games; Pleasure caused
by tactile sensations; Response to songs and music; Social and communicative
behavior of children; Viewing paintings, films, videos, scenery.

ECG

CAD activity; Completing arithmetic tasks; Driving stress; Driver’s mentality;
Experience of virtual reality; Learners’ physiology; Making decisions in response
to health-related messages; Playing games; Product design; Response to songs and
music; Viewing paintings, films, videos.

EMG Completing arithmetic tasks; Driver’s mentality; Learners’ physiology; Playing
games; Response to songs and music; Viewing paintings, films, videos.

Pulse wave Response to songs and music; Viewing paintings, scenery.

Given their current status, we believe that the following, as well as other, aspects of
emotion recognition and judgment based on physiological signals need further study.

A single physiological signal comprises limited information and possesses weak
representation ability. Establishing data fusion models of psychological signals, seeking
universal training algorithms for cross-individual conversion, and developing a criterion
index for assessments of individual differences are all needed.

The influence of the external environment on people’s emotions is multifaceted. More
accurate, rigorous and detailed methods of emotion stimulation and acquisition approaches
based on psychological signals should be pursued in order to comprehensively reflect the
impact of environmental factors on people’s emotions.

The methods of machine learning and deep learning are generally applied to emotion
recognition and classification in various fields. However, psychological signals of emotion
have their own properties, e.g., the time dimension and space dimension, so it is necessary
to search for a more suitable approach to emotion recognition.

There is no targeted difference between functional scopes of application and object-
oriented products when theoretical achievements are used for the establishment of systems
or related products, so more-targeted models of emotion recognition and classification
need to be built.

Natural emotion communication between users and systems is still lacking. Some
systems with which users can communicate emotionally and manipulate according to their
emotional status are mandatory, rather than natural interaction.

Different people have different cognition and evaluation criteria for the same external
things. Factors influencing these criteria include beliefs, ideas, experiences, personal
preferences, etc. Investigations of individual cognitive distinctions and cross-individual
cognitive domains based on psychological signals are still needed. A large number of
different physiological signals are needed to establish models and systems that can meet
the needs of users as well as possible.
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