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Abstract: Short-term wind forecasting is critical for the dispatch, controllability and stability of a
power grid. As a challenging but indispensable work, short-term wind forecasting has attracted
considerable attention from researchers. In this paper, Principal Component Analysis (PCA) is
applied to Computational Fluid Dynamics (CFD) calculation results for feature extraction and then
combined with sparse sensing to achieve the rapid reconstruction of a three-dimensional wind speed
field and pressure field. Before reconstruction, the relationship between the reconstruction error and
the noise level, and a number of the basis vectors is systematically studied. In the simulation, the
wind shear effect is introduced into the inlet boundary condition, and the reconstruction errors of the
uniform inlet are 0.21% and 6.46%, respectively, while the maximum reconstruction errors including
the wind shear effect are 1.21% and 6.41%, respectively, which verifies the feasibility of applying
a PCA-based reconstruction algorithm to a 3D wind field reconstruction. In addition, to solve the
time-consuming problem of most optimization algorithms based on a brute-force combinatorial
search, an innovative optimization algorithm based on the QR pivoting is investigated to determine
the sparse sensor placements. Simulation results show that when the number of sensors is equal to
the number of basis vectors, the error of random placement is even 20 times of the optimal placement,
which illustrates that QR pivoting is a powerful optimization algorithm. Finally, a wind tunnel
experiment of velocity field reconstruction is performed, to verify the practicability of the optimized
method based on QR pivoting, and the results indicate that a reasonably high accuracy 3D wind
field can be obtained with only 10 sensors (the error of most points is less than 5% and the minimum
error is only 0.74%). In general, the proposed algorithm incorporating PCA, sparse sensing and QR
pivoting can quickly reconstruct the 3D velocity and pressure fields with reduced measurement costs,
which is of great significance for the development of short-term wind forecasting methods.

Keywords: principal component analysis; computational fluid dynamics; sparse sensing; QR
pivoting; short-term wind forecasting

1. Introduction

With the acceleration of the development of modern industry, and the increasing
utilization of resources, resource scarcity has become an urgent problem to be solved.
Wind energy, as a clean renewable energy, is considered to be one of the alternatives to
conventional fuel power generation. According to the “Global Wind Report 2022” from the
Global Wind Energy Council, the global wind industry had its second-best year in 2021,
with almost 94 GW of capacity added globally, trailing behind 2020’s record growth by
only 1.8% [1]. Although wind power has great benefits in saving energy and protecting the
environment, it also has some inherent defects. For example, wind energy is vulnerable
to the instability and intermittence of random wind, which affects the stability of the
power grid and reliability of power system operation. An effective way to overcome these
difficulties is to vigorously develop short-term wind forecasting to reduce the uncertainty
of wind power.
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Wind speed forecasting is the key to a wind power system and plays an important
role in the control and operation decisions of wind turbines, and to date various reliable
and efficient forecasting methods have been developed, which can be roughly divided into
two categories: physical model [2-4] and statistical model [5-7]. The physical method is
mainly based on the large-scale weather forecasting system developed by meteorologists.
According to multiple groups of meteorological data (such as temperature, humidity, air
density, wind direction, etc.) and the surrounding environment of a wind power plant, such
as surface roughness, obstacles, etc., the physical model is comprehensively analyzed and
the prediction results are derived [8]. For example, Al-Yahyai et al. [9] proposed a nested
ensemble NWP model for wind resource assessment, which provides information on the
uncertainties of the NWP model as well as probability information compared to the current
single NWP. In practice, the traditional physical method has some limitations, such as how
researchers need to know a variety of physical properties, and substantial time is needed to
collect the information. Extensive use of computational fluid dynamics (CFD) in wind field
simulation provides a powerful means for wind forecasting [10]. However, sophisticated
grids are required when the terrain is complex, which is often time-consuming and cannot
achieve real-time wind speed prediction, hence it is more suitable for long-term wind
forecasting [11].

The technical route for statistical model prediction is to use historical datasets to
explore the relationship between input variables and output wind power. For example,
Jiang et al. [7] proposed a novel hybrid forecasting system consisting of an effective denois-
ing technique and a fuzzy time series method optimized by a multi-objective differential
evolution algorithm to improve the forecasting accuracy and stability. Significantly, as
an effective and promising tool, deep learning is expert in extracting inherent non-linear
and high-order invariant features in data and has been applied in various fields [12]. For
example, Qureshi et al. [13] developed a novel short-term wind forecasting method based
on the concepts of learning ability and transfer learning of integrated technology in a
deep neural network. It is undeniable that statistical methods play an important role in
short-term wind forecasting. However, the accuracy of statistical models is essentially
dependent on historical data, hence they are powerless in the event of dramatic changes in
weather conditions.

In general, the previous short-term wind forecasting methods focus on point prediction
and are vulnerable to the historical data. Although CFD-based physical model prediction
can obtain a large amount of wind field information, it is time consuming and cannot
achieve real-time prediction. Therefore, it is of practical value to develop a new approach
based on real-time meteorological data to obtain wind field information quickly and
accurately, which needs to solve the problems of the statistical model’s susceptibility to
weather conditions and the time-consuming nature of physical modeling.

In order to solve the above problems, the feature extraction method can be applied
to the CFD wind field calculation results with reference to the numerical reconstruction
method in the field of aerodynamics [14-16], which creatively connects wind reconstruction
to wind forecasting. The combination of wind reconstruction and wind forecasting is based
on the following assumptions: Because wind farms are generally much smaller than wind
fields, the speed distribution in wind farms is related to the wind speed beyond a certain
distance (e.g., at the boundary of the wind field), which implies that there is a time buffer
from the boundary to the wind farm. Therefore, in this period, the velocity of each point in
the wind farm can be reconstructed rapidly using the measured values at the boundary, and
the time spent in calculating the reconstruction represents the time scale in the ultra-short-
term prediction. The main feature extraction methods used in aerodynamics are Principal
Component Analysis (PCA) [17] and Proper Orthogonal Decomposition (POD) [18]. How-
ever, both feature extraction methods are applied to 2D flow field reconstruction, and
the research on 3D flow field reconstruction is relatively scarce. Moreover, in wind field
reconstruction, there are abundant studies on velocity field reconstruction, but few on
pressure field reconstruction.
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In addition, the placement of limited sensors is the key factor affecting the reconstruc-
tion results, hence optimizing sensor placement to improve reconstruction results may be
critically enabling. In recent years, several studies of optimal sensor placement have been
undertaken [19-21]. For example, Willcox [16] presented an optimization algorithm based
on a minimum condition number theory to determine the sensor placement. Significantly,
most optimization methods are generally based on a brute-force combinatorial search with
greedy algorithms, which is characterized by its ability to determine the optimal position
effectively, but its disadvantage is also very prominent, i.e., it is very time-consuming, and
the combinatorial search does not scale well to a large 3D wind field.

Based on the above issues, this paper focuses on three aspects: (1) verify the feasibility
of a PCA algorithm in 3D wind field reconstruction; (2) explore the feasibility of a 3D
pressure field reconstruction in a large wind field; and (3) attempt to develop an optimal
placement algorithm based on a mathematical matrix operation, which is different from a
greedy algorithm, to solve the time-consuming problem while ensuring the accuracy of
the reconstruction. For these proposals, sparse sensing and QR pivoting are employed
in the reconstruction. Sparse sensing is expert in reconstructing complete signals from a
small measurement subset, and QR pivoting is applied in the optimization process [22].
The reconstruction calculation is divided into two parts: First, the combination of PCA
and sparse sensing is synergistic, in which the PCA is employed to extract features from
CFD simulation results. Combining the extracted features with sparse measurements, the
3D velocity field and pressure field distribution can be obtained by using the developed
inverse process algorithm. In addition, QR pivoting and the reconstruction algorithm
are combined to determine the optimal sparse sensor placements. A simulation and an
experiment are carried out to demonstrate that drastic reductions of sensors and improved
reconstruction accuracy can be achieved using the proposed optimized algorithm.

In general, the key contribution of the innovative approach can be reflected in two
aspects: First, the combination of PCA, CFD results and sparse sensing can creatively
utilize rapid wind field reconstruction to achieve short-term wind forecasting, addressing
the instability of the statistical model and large computational load of CFD calculation.
Second, unlike a traditional brute-force combinatorial search, the proposed optimization
algorithm is developed by QR pivoting and PCA, which bring a significant improvement
of the reconstruction accuracy and the associated speedup of optimized sensing. In the
wind power industry, this innovative approach can be used in a variety of situations;
where sensors come at a high cost, or when ultra-short reconstruction time is required, the
reduction in the number of sensors can be significant.

2. Reconstruction Method Based on PCA and Sparse Sensing

Principal Component Analysis, abbreviated as PCA, is one of the most commonly
used dimension reduction methods [23], which is called Proper Orthogonal Decomposition
(POD) in mechanical engineering [24], Karhunen-Loeve (K-L) transformation in signal
processing [25] and Hotelling transformation in image analysis [26].

The core technical route of PCA is to express the high-dimensional vector x; € R™ as a
linear combination of multiple basis vectors ¢y.

p
Xi= ) 1)
k=1

The basis vector ¢, and reconstruction coefficient a; can be obtained by Singular
Value Decomposition (SVD). Given a snapshot matrix containing multiple state vectors
X =[x1,x2,..., %], X € R™" the singular value decomposition of matrix X yields:

X=9¥sp’ 2)

where ¥ and @ are left and right singular vectors of matrix X, respectively, ¥ € R™*",
® ¢ R™", ¥ e R™™. All elements of matrix X are zero except those on the diagonal, and
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the diagonal elements are called singular values. When only the first p eigenvalues are
taken, it is called truncated-PCA.

X~ X=Y,%,o, 3)

The reconstruction coefficient vector & can be obtained by minimizing the error be-
tween X and X:
x = ‘F;x 4)

Inspired by the truncated-PCA, the extracted features can be used to represent high-
dimensional data, making it possible to reconstruct an unknown state with limited mea-
surements in a wind field. Based on Equation (3), supposing there is a matrix of wind
velocity V = {vy,vs,...,0;,..., oN} (V € R"™N) which can be decomposed by SVD:

V =9z’ (5)

From Equation (1), PCA basis vectors can express high-dimensional states v as linear
combinations of ¢ that define a low-dimensional embedding space.

p
v=) appx (6)
k=1

The sparse sensing is introduced to solve 4, supposing only r (r < 1) measurements
are available, which enables the combination of sparse sensor placement and Equation (6)
to determine the sparse variable y (y € R").

P
y=Mo=M) arpp =Ma¥ )
k=1

where the measurement matrix M € R"”*" represents measurement locations of v. Point
measurements require that the measurement matrix M can be structured in the follow-
ing way:
T
M=lexien--- enl ®)

where ¢; are the canonical basis vectors for R" with a unit entry at index j and zeros
elsewhere. The form of M can be shown as follows:

1 0 --- 0 0
0O --- 0 0 1 --- 0
M= |0 1 0 --- 0 0 0 )
0 .- 0 10 :
0 --- 1 --- 0 00 0

This linear system converts the solution of the unknown state v into the determination
of the reconstruction coefficient a with the Moore-Penrose pseudoinverse. Subsequently,
the reconstruction of v is obtained using;:

O ly=(MY) 'y, r=p

10
Oty = (M¥) 'y, r>p (19

0 =a¥, wherea = {

The accuracy of reconstruction results is measured by relative reconstruction error:

[0 — 21l

RE=1"""11
o]y

x 100% (11)
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3. Preliminaries

In this paper, the validity of the reconstruction method and optimization algorithm will
be verified by a CFD simulation and a wind tunnel experiment. Therefore, the preliminaries
before the reconstruction calculation will be described in this section, mainly including
the construction of a geometric model for the simulated wind field, the construction of an
experimental wind tunnel model and the construction of a snapshot matrix.

3.1. Construction of the Simulated Wind Tunnel Model

Before the simulation validation of the reconstruction method, a wind tunnel model is
constructed, which combines two hemispheres and a sinusoidal rotation model for complex
terrain, as shown in Figure 1. The length, width and height of the model are 4, 3 and
1 m, respectively. The inlet velocity is set to be perpendicular to the X-Z plane and evenly
distributed along the x-axis. The incident angle is defined as the angle between the velocity
and the positive x-half axis. In addition, the specific dimensions of the complex terrain
composed of three obstacles are shown in Figure 2. Significantly, the wind tunnel model
designed in this section will be used in the CFD calculation below, and its size is the same
as the wind tunnel described in the next section.

3.2. Construction of an Experimental Wind Tunnel Model

In this paper, an experimental wind tunnel model is constructed to demonstrate the
feasibility of the reconstruction algorithm and its optimal placement. The obstacle models
in the experiment are a combination of two hemispheres and a sinusoidal rotation model
with the same size as the simulated geometric model. The wind tunnel experimental
equipment is shown in Figure 3.

A schematic diagram of the wind tunnel is shown in Figure 4, which includes the
side view and top view of the measurement area. The length, width and height of the
test section are 4, 3 and 1 m, respectively. To change the inlet wind speed, four regulating
baffles are installed in the variable section. As shown in Figure 4b, eighty-one measuring
locations are evenly distributed in the 1 X 1 m area; the anemometers can be fixed at the
different heights of these locations to obtain the real-time wind speed.

Direction

Figure 1. Geometric model for simulated wind field.
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Figure 3. Wind tunnel experimental equipment.

In order to compare the CFD calculated values with the experimental measurements
in Section 5, it is necessary to obtain the characteristics of the inlet wind speed distribution
in advance. Firstly, the inlet with a width of 3000 mm is equally divided into 30 parts along
the X direction, and 29 sensors are placed to measure the inlet wind speed. Next, four
heights along the z-axis, including 200 mm, 400 mm, 600 mm and 800 mm, are selected,
and the sensors are inserted in turn. Finally, after the fan is stabilized, a total of 116 speed
values are obtained for each point.

Based on the velocity values of 116 measuring points, the distribution characteristics of
wind speed at the entrance of the experimental section is shown in Figure 5. From Figure 5,
the inlet wind speed has two characteristics: (1) the speed near the center is large and stable
whereas the speed near the wall is small; (2) the wind speed increases with the measuring
position, probably due to the effect of wind shear. Therefore, based on the wind speed
distribution characteristics described above, database information with wind shear effect
and turbulence intensity of a certain value need to be added in the construction of a wind
speed database.
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Figure 4. Schematic diagram of wind tunnel test bench and measuring section.
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Figure 5. Distribution characteristics of wind speed at the entrance of the experimental section.
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3.3. Construction of Snapshot Matrix

In preparation for reconstruction, the establishment of an accurate snapshot matrix
is critical. In the present paper, the 3D wind field to be measured is expressed by five
stacked planes. Several boundary conditions are designed, and a series of speed and
relative pressure distributions are calculated by CFD, which are combined into a matrix
database. The continuity equation and the momentum equation are mainly used in the
calculation process. In this study, wind flow is considered to be stable under a constant
temperature. Thus the time term in the continuity equation can be ignored.

Continuity equation:

d(pu)  9(pv)  d(pw)
T 5 + =5 =0 (12)

Momentum equation:

Ju Ju uy ap 9pxy ap
p(uﬁ—l-v@—l-wg) —pr+ a;x +W+sz

IPyx d Py
p(u3e + oy +wgl) = pF, + 5 +%+ L (13)
a zX Z a ZZ
p(u%—l—v%—‘y‘)#—w%—f):plfz—i- P gyy+ L

where p is density; 1, v and w represent the velocity of the x, y and z directions, respectively;
p is pressure; and pF is the unit mass force.

Based on the above equations, 28 boundary conditions are designed by changing the
entrance speed and incident angle. Among them, the inlet velocity changes from 1 to 31 m/s
with an interval of 5 m/s, and the incident angles are 30°, 70°, 110° and 150°. Notably the
inlet velocity is uniformly distributed along the horizontal and vertical directions. Both
databases containing 28 wind speed and relative pressure distributions can be represented
by V, V € RN, where n stands for the number of sampling points; N is the number of
boundary conditions. In the simulation, 2500 sampling points are selected for each plane,
and the dimension of the snapshot matrix is 12,500 x 28; the following reconstruction
calculation is based on this matrix.

However, considering that the real airflow around the wind farm is much more
complex, especially the effect of wind shear on the wind speed distribution, the atmospheric
turbulence inflow of stable vertical wind shear using the Normal Wind Profile model is
introduced. The inlet speed can determined by the wind profile power law [27]:

V= Vr<z>a (14)

Zy

where V(m/s) is the wind speed at height z (m), and V, is the known wind speed at a
reference height z,. The exponent («) is an empirical coefficient, approximately 1/7, or
0.143 [27]. Furthermore, z, in the construction of the database is taken at 0.8 m. The wind
velocities at z; change from 1 to 31 m/s with an interval of 5 m/s, and the incident angles
are 30°, 70°, 110° and 150°. The turbulence intensity and viscosity ratio are set to 5% and
10%, respectively.

ANSYS ICEM is employed to generate the hexahedral structured mesh and boundary
layer. The mesh is encrypted around the boundary, and “o-block” is performed near the
three geometric models. A total of 16 boundary layers are set around the hemisphere model
with a grid spacing of 1.16 cm, and 20 boundary layers are set around the sinusoidal model
with a grid spacing of 1.44 cm. The hexahedral structured mesh and boundary layer for the
wind tunnel is shown in Figure 6. After the structured grid division is completed, the y+ of
the hemispherical model and the sinusoidal model are calculated, with the y+ values of the
hemispherical model varying from 2.41 to 84.62 and the sinusoidal model varying from
4.88 to 74.63. The calculation result of y+ proves the rationality of grid division and lays
the foundation for the following fluent calculation.
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(a) Encrypted mesh around models (b) Top view of boundary-layer mesh around models

Figure 6. Hexahedral structure grid and boundary layer grid around wind tunnel model.

ANSYS Fluent is used to generate the velocity and relative pressure distributions to
construct the database. The solution parameters of Fluent are set as follows: The ‘Pressure-
Based’ method and ‘Steady’ are selected as the Solver. For the boundary conditions, the
type of inlet is selected as ‘velocity-inlet” and the outlet is set as ‘pressure-outlet’. In the
inlet, the turbulence intensity is 5% and viscosity ratio is 10%. Standard K-¢ is chosen as the
viscous model because of its advantages such as low calculation demand, strong calculation
stability and fast convergence speed. The Solution Method and Gradient are chosen as
‘SIMPLE’ and ‘Least Squares Cell Based’, respectively; the Momentum and Turbulent
Kinetic Energy is selected as ‘Second-Order Upwind’, and the convergence residual is set
tol x 1075,

Finally, the mesh independency test is carried out, where 2,628,578 cells are considered
as the standard. Four groups of dense to sparse cells are designed for comparison: 986,523,
415,243 and 195,489. The 12,500 velocity values of five planes calculated from 2,628,578 cells
are used as the criterion, and then the results of the other three groups are compared with
this criterion. Finally the relative error is obtained by using Equation (11). The relative
errors compared to 2,628,578 cells are shown in Table 1. It is obvious that when the number
of cells reaches approximately 400,000, the relative error decreases to approximately 0.2%,
which can be considered to be within the acceptable range considering the calculation cost.
Consequently, 415,243 cells are chosen for the following calculation.

Table 1. Mesh independence test.

Mesh Number Relative Error (%)
986,523 0.12
415,243 0.22
195,489 0.58

4. Numerical Results of the Proposed Reconstruction Method
4.1. Presentation of Reconstruction Results of Velocity Field and Pressure Field

In what follows, five stacking planes with heights of 0.22, 0.25, 0.30, 0.35 and 0.4 m and
dimensions of 1 x 1 m are selected to represent the 3D wind field. The 3D velocity field and
relative pressure field corresponding to the boundary condition of 90 °, 15 m/s is selected
to validate the performance of the reconstruction algorithm. A series of parameters, such
as the number of basis vectors, the number of sensors and the measurement noise need to
be considered. In the simulation, the measurement noise - is defined by Gaussian noise:

oy~ N(O,az) (15)
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Here, o is the standard deviation and N is the normal distribution function related to
0?; the noise level is defined by o

Noise_level = o x 100% (16)

However it can be seen from Equation (10) that the selection of the number of basis
vectors is crucial for reconstruction calculation. Before reconstruction, the joint effect of
the number of basis vectors and the measurement noise on the reconstruction error will
be explored to determine the number of basis vectors. First, the number of sensors and
the noise level are determined to be 100 (only 1% of total data) and 10%, respectively, and
then the number of basis vectors is increased from 1 to 20 to obtain the reconstruction error
curve. To ensure accurate results, 1000 calculations for each reconstruction are performed
to obtain the average value. The calculation results are shown in Figure 7.

T T T T T
_ 1.0 | : {50 _
S —=— Velocity e
\‘5/ —e— Relative Pressure %/
5 0.8 F 440 5
8 8
k3t S
E06f 130 &

@]
e 100 &
2 04r 2
E E
& 110 &
02|
1 N 1 N 1 N 1 N 1 0

0 5 10 15 20

Number of basis vectors

Figure 7. Relative reconstruction error (%) corresponding to different number of basis vectors.

Figure 7 is a double y-axis diagram, from which it could be found that the reconstruc-
tion error of relative pressure is nearly ten times higher than that of velocity. This is because
the distribution of relative pressure is characterized by the fact that most of the pressure
values are very small (close to 0), and the pressure gradient is very large.

In addition, the reconstruction error of the velocity field is not monotonically reduced,
whereas the reconstruction error of the pressure field shows a steady downward trend.
This reflects the reconstruction characteristics of velocity and pressure fields: First, the
feature extraction of the velocity field is more accurate, which allows better reconstruction
results with fewer basis vectors. However, this may lead to an increase in the sensitivity of
reconstruction accuracy to noise level, i.e., when the number of basis vectors continues to
increase, the reconstruction accuracy will decrease instead. Correspondingly, when feature
extraction is more accurate, an excessive increase of the number of basis vectors will result
in reconstruction errors being more sensitive to noise level.

To verify the accuracy of PCA feature extraction, an energy proportion t € (0,1] is
specified to represent the importance of eigenvectors. If  eigenvaluesare Ay > Ap > ... >
Ay, then t is defined as follows:

(17)

Figure 8 shows the “energy proportion” of each eigenvalue in the velocity database
and the pressure database. It can be seen from Figure 8 that the energy of the eigenvalue
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decreases rapidly in both databases; the first six and eight basis eigenvalues account for
99.9% “energy” of the total system in the velocity database and the pressure database,
respectively, which is sufficient to represent the basis vectors.

fEmuans susaaS Sun e Sa
16° jplenimampmmmineung s aimeni e sonyamm Ha
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Number of basis vectors

Figure 8. The “energy proportion” of each eigenvalue in all eigenvalues.

Finally, by exploring the influence of different noise levels and the number of basis
vectors on the reconstruction error, the optimal number of basis vectors is determined for
reconstruction calculation. This section increases the noise level from 1% to 30% with an
interval of 1%. Referring to Figures 7 and 8, the number of eigenvectors of the velocity
field is set to 2, 4, 6, 8 and 10, and the number of eigenvectors of the pressure field is set to
8,9,10, 11 and 12. With a fixed number of sensors and arrangement, the corresponding
reconstruction error results are shown in Figures 9 and 10.

‘ ‘ ‘ —=a— 2 basis vectors
ok S - —o— 4 basis vectors
‘ ‘ ‘ 6 basis vectors
| | | —¥— 8 basis vectors
0.6 P o 10 basis vectors

Relative Reconstruction Error (%)

PP I N U N I

0 5 10 15 20 25 30
Noise Level (%)

Figure 9. Joint effect of the number of basis vectors and the noise level (%) on the reconstruction error
(velocity field).
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Noise Level (%)

Figure 10. Joint effect of the number of basis vectors and the noise level (%) on the reconstruction
error (pressure field).

The combined effect of eigenvectors and noise levels on reconstruction errors can be
visually seen from the two preceding figures. By comparing the results of velocity and
pressure fields, the following conclusions can be drawn:

Firstly, for velocity field reconstruction, when the number of eigenvectors is two, the
error changes most smoothly with the increase of the noise level, although the reconstruc-
tion error is the largest. This indicates that the error is less sensitive to noise when the
number of eigenvectors is small. As the eigenvector increases, the error is significantly
affected by the noise level. These two features show that the increase of the eigenvector is
beneficial to the improvement of the reconstruction error, but the excessive increase will
make the error more sensitive to noise. Therefore, referring to Figures 7-9, the number of
basis vectors used for velocity field reconstruction is determined to be six.

Secondly, for pressure field reconstruction, the trend of error with an increasing
number of basis vectors is different from that of a velocity field. As the number of basis
vectors increases, the reconstruction errors increase monotonically, which indicates that
for databases with large data gradients, the reconstruction accuracy is more susceptible
to measurement errors. In this case, the selection of the number of basis vectors should
comprehensively consider the accuracy of feature extraction and the impact of the noise
level. Therefore, referring to Figures 7, 8 and 10, the number of basis vectors used for
pressure field reconstruction is determined to be eight.

After determining the number of basis vectors, the reconstruction results of the veloc-
ity and pressure fields with the inlet boundary condition of 90°, 15 m/s are obtained in this
section. Figure 11 shows the position of five planes, i.e., the 3D velocity field to be recon-
structed. Figures 12 and 13 show the simulated and reconstructed velocity nephograms,
which show that the reconstructed velocity distribution is reasonably similar to the real
distribution, and the relative error is only 0.21%. Figures 14 and 15 show the simulated
and reconstructed relative pressure nephograms, and the relative error is 6.46%. Figure 15
shows that the low-pressure area is mainly distributed around obstacles, where the velocity
is relatively high, which is corresponding to the velocity distribution characteristics in
Figure 13, indicating that the reconstructed pressure can accurately restore the real distri-
bution characteristics. The minimal reconstruction error (0.21%) reflects the efficiency of
this method in velocity field reconstruction. Meanwhile the relatively high pressure field
reconstruction error (6.46%) seems to indicate that the method is not effective for the recon-
struction of data with a large gradient. Significantly, the boundary condition of 90°, 15 m/s
is not contained in the snapshot matrix, while the reconstruction results are satisfactory,
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which further validates the feasibility of the proposed reconstruction algorithm based on
sparse sensors. Therefore, the following conclusions can be obtained after simulation: for
the velocity field, the proposed method can accurately reconstruct the velocity distribution,
whereas for the pressure field, the pressure distribution characteristics can be basically
restored by using the proposed method.

4.2. Influence of Sensor Number and Placement on Reconstruction Performance

In the previous section, the selection of the number of basis vectors is discussed from
two aspects: reconstruction accuracy and noise effect. For the velocity field, the increase
of the eigenvector is beneficial to the improvement of the reconstruction error, but the
excessive increase will make the error more sensitive to noise, so the number of basis
vectors is determined as six. However, for the pressure field, the reconstruction accuracy
is more susceptible to measurement errors due to the large data gradient. Hence, the
selection of the number of basis vectors should comprehensively consider the accuracy of
feature extraction and the impact of noise level, and finally, the number of basis vectors is
determined as eight. After determining the number of base vectors, the factors that affect
the accuracy of reconstruction need to be further explored. By observing Equation (10), M
is the key factor affecting the solution of reconstruction coefficient a, and the number and
location of sensors determine M. Thus the effect of the number and placement of sensors
on the accuracy of reconstruction will be further discussed in this section.

Figure 11. Diagram of velocity fields in five planes (five different colors) to be reconstructed.
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Figure 12. Velocity nephograms of CFD with boundary condition of 90°, 15 m/s.
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Figure 13. Velocity nephograms of reconstruction with boundary condition of 90°, 15 m/s.
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Figure 14. Relative pressure nephograms of CFD with boundary condition of 90°, 15 m/s.
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Figure 15. Relative pressure nephograms of reconstruction with boundary condition of 90°, 15 m/s.
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In this section, four groups of sensors with the same number (100 sensors) but different
placement are determined. To ensure the credibility of the analysis, the number of basis
vectors and the noise level are the same as those in the previous section. Figure 16 shows
the relative reconstruction errors corresponding to four sensor placements of the velocity
field and the relative pressure field. As one would expect, the error and reconstruction are
improved as more samples are taken. Moreover, the sensor arrangement has a significant
impact on the reconstruction results when the number of sensors is less than 20, especially
for the pressure field; the error difference can even reach 20 times. This indicates that
when fewer sensors are available, the reconstruction accuracy depends critically on the
arrangement of the sensors.

—— Distribution 1|

|| Distribution 2 !
| |—— Distribution 3|
. |—— Distribution 4

- j——Distribution 1}
—— Distribution 2 |
| |—— Distribution 3
|- Distribution 4

Relative Reconstruction Error (%)
Relative Reconstruction Error (%)

40 60 80 100

0 20 40 60 80 100
Number of sensors Number of sensors
(a) Velocity field (b) Relative pressure field

Figure 16. Relative reconstruction error (%) for different number of sensors with four distributions.

For brevity in the following discussion, ® and its inversion are denoted by
K, = @70 (K, = @ifr = p). To show the convergence of the random sampling, in ad-
dition to RE, another error metric is considered: the condition number of the matrix K,
for a given measurement matrix M, which can be used to represent the stability of a
linear equation:

S(Ky) = [Ka[[1K; 1] = T2 (18)
Umin

where the 0max and omin represent the maximum and minimum singular values, respec-
tively. Generally, the smaller the condition number of the matrix, the more stable the linear
system is. Thus, it can be said that large condition numbers suggest poor reconstruction,
whereas values that tend towards unity should perform well. Based on the two metrics,
i.e., RE and ®(K,), the variation of both metrics is studied in detail with 1 to 20 sensors.
Given our random sampling strategy, the results that follow will be statistical in nature,
computing averages and variances for batches of randomly selected sampling.

Figures 17 and 18 depict the average over 1000 trials of the logarithm of RE, log(RE + 1)
(unity is added to avoid negative numbers) and the logarithm of the condition number
of K,, log[®(K,)]. From Figures 17 and 18, three conclusions can be drawn: First, the
relative error and condition number are largest and the most unstable when the number
of sensors is less than the number of basis vectors. Second, the variance of the 1000 trails,
depicted by the red bars is also quite large, suggesting that the reconstruction performance
for fewer sensors is highly sensitive to their placement. Third, the error and condition
number both perform better as sensors increase, and the trends of both are similar, which
supports the hypothesis that the condition number can be used to evaluate the performance
of the sparse measurements.
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Figure 17. The average and variance (red bars) over 1000 trials of logarithm of the condition number
of K, and relative errors (velocity field).
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Figure 18. The average and variance (red bars) over 1000 trials of logarithm of the condition number
of K, and relative errors (pressure field).

In particular, as shown in Figures 17 and 18, there is a large variance in the distribution
of the ®(K) and RE for six sensors in the velocity field and eight sensors in the pressure
field. Specifically, the relative errors and condition number can change by orders of
magnitude with the same sensors, but simply placed in different locations. From both
figures, it can be seen that fewer sensors can produce both exceptional results and extremely
poor performance depending upon the sensor locations, which illustrates that extremely
high variability can be generated in reconstruction using random and sparse measurements.

Thus, the sparse sensor placement is critical for accurate 3D wind field reconstruction,
which suggests that developing a principled way to determine optimal sensor placement is
of great importance.
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4.3. Reconstruction Results Considering Wind Shear Effect

Considering that the real airflow around the wind farm is much more complex, the
final section of this chapter will show the wind farm reconstruction results containing
the inlet wind shear effect to enrich the application scope of the proposed reconstruction
method. In Section 3.3, based on Equation (14), a wind field database containing wind
shear effects has been obtained. To verify the accuracy of wind field reconstruction under
different wind shear conditions, three inlet boundary conditions are set in this section for
verification, as shown in Table 2:

Table 2. Three inlet boundary conditions containing different wind shear effects.

Inlet Boundary Wind Speed

Conditions (m/s) at z, Incident Angle z; (m) Exponent (x)
1 5 50° 0.8 0.143
2 10 90° 0.8 0.2
3 15 130° 0.7 0.2

In this section, the number of basis vectors, the noise level and the number of sensors
are set the same as in Section 4.1. The reconstruction errors of the velocity field and the
pressure field under three boundary conditions are summarized in Table 3. It is worth
noting that the third boundary condition is to assume that the wind shear exponent (x),
reference height (z;), inlet velocity at z, and incident angle are not in the prepared database,
i.e,, the inlet boundary condition is completely unknown. The reconstruction calculation
under this condition is of great significance to verify the feasibility of applying this method
to the complex airflow around the real wind field. The following conclusions can be
drawn from the analysis of errors in the table: (1) Compared with the uniform entrance
boundary, the reconstruction error under the boundary condition considering the wind
shear effect is significantly larger. (2) The reconstruction errors under the second and third
boundary conditions indicate that relatively satisfactory results can still be obtained with
limited sensors under complex and unknown inlet boundary conditions. (3) Interestingly,
the reconstruction error of the pressure field is smaller than that of uniform wind speed,
probably because the pressure field distribution database built considering the wind shear
effect is closer to the actual pressure field distribution, which also indicates the importance
of database construction in the reconstruction calculation.

Table 3. Reconstruction errors (%) of velocity and pressure fields under three different wind
shear effects.

Inlet Boundarv Conditions Reconstruction Error of Reconstruction Error of
y Velocity Field Pressure Field
1 0.51 5.48
2 1.14 6.28
3 1.21 6.41

In general, based on the uniform inlet wind speed and the inlet wind speed con-
dition considering wind shear effect, the proposed method is employed to verify the
reconstruction under various unknown inlet conditions, and the factors that may affect
the reconstruction accuracy are analyzed. The reconstruction results verify the feasibility
of the proposed algorithm in a real and complex wind field environment. Sensor location
optimization in wind field reconstruction with different inlet boundary conditions will be
addressed in the next chapter.
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5. Optimal Sensor Placement and Validation Results Based on QR Pivoting
5.1. Criterions for Optimal Sensor Placement

The optimal sensor placements are those that minimize the relative errors. From
Equation (10), the problem of optimal placement of sensors is transformed into seeking
rows of ¥ which optimally condition the inversion of the matrix ©. Therefore, the condition
number of the linear system can be improved by optimizing the spectral content of K using
its determinant, trace, or spectral radius. Based on the criterion of spectral radius, the
smallest singular value of K, can be maximized by K;l.

A* = argmin|[K; ! |, = argmax oyin (K3 ) (19)
MJA|=r AJA[=r

Likewise, the criteria of optimizing the trace or determinant of its eigenvalue or
singular value spectrum are as follows:

A" = argmax tr (K/\,W:r) = argmaxz Ai(Ky) (20)
AJA|=r A
A* = argmax|detK, | = argmax ] [ 0;(K;) (21)
AJA|=r MAl=r i

However, if the above criteria are used for optimization, a combinatorial search over
(1’) is required, which is a brute-force search containing all possible sensor configura-

tions and is hence computationally intractable. Recently, with the development of EIMs
(Empirical Interpolation Methods), the study of Q-DEIMs has attracted the most attention,
where “Q” stands for QR pivoting [28-30], which provides an optimal sampling method
for nonlinear interpolation reconstruction in ROMs (Reduced-Order Models). Based on QR
factorization and column pivoting of ¥T by the Q-DEIM method, an approximate greedy
algorithm is proposed.

5.2. QR Pivoting for Sparse Sensor Placement

Inspired by Q-DEIM, the key to achieve the optimal placement of oversampling is to
apply the QR factorization with column pivoting to the basis vectors. QR pivoting was
proposed by Businger and Golub in the 1960s to solve the least-squares problems [31],
which has found utility in various measurement applications [32-34].

The QR pivoting decomposes a matrix A € R™*" into a unitary matrix Q, an upper-
triangular matrix R and a column permutation matrix C, i.e., ACT = QR. QR factorization
provides an approximate greedy method consistent with Equation (21), which can achieve
the submatrix volume maximization to maximize the determinant. QR factorization in-
creases the volume of the submatrix by choosing a new pivot column with the largest
2-norm and then subtracting its orthogonal projection onto the pivot column.

Therefore QR pivoting determines r optimal sensor locations based on the tailored
basis vectors when the number of basis vectors equals to r.

vIcT = QR (22)

Furthermore, the oversampled case, i.e., r > p, may be solved by pivoted QR factor-
ization of ¥¥7T, where the pivots are selected from an expensive QR factorization of an
n X n matrix.

(v¥T)cT = QR (23)

Based on the optimization method presented in this section, the capability of QR
factorization to control the condition number is also validated in the following sections.
Essentially the sparse sensor placement is similar to the concepts of the variable and feature
selection in machine learning. Moreover, this sensor (feature) selection technique can be



Appl. Sci. 2023,13, 2927

19 of 29

extended to data-driven classification, which has additionally been employed in the field
of signal processing to sample and estimate signals of graphs efficiently.

5.3. Simulated Reconstruction Results of the Proposed Optimal Sensor Placement

As shown in the preceding section, we have completed simulation verification of the
proposed reconstruction algorithm, proving its efficiency and stability in 3D reconstruction
performance. Moreover the ability of the proposed method in reconstruction performance
depends critically on the placement of the sensor locations. Thus it is essential to develop
an algorithm to determine the optimal sensor placement.

An overarching goal of optimal sensor placement is choosing the fewest 1 sensors
for reconstruction and inherently involves a tradeoff between the number of sensors and
reconstruction accuracy. In what follows, the reconstruction performance based on QR
pivoting is evaluated in three aspects: reconstructed nephograms, comparison of relative
reconstruction errors and the condition number of K,. In this section, the number of
optimized sensors for velocity field reconstruction and pressure field reconstruction is
respectively set as 6, 10 and 8, 15 with reference to Figures 12 and 13. In addition, the noise
level is 10%; the boundary condition with 90°, 15 m/s and boundary condition 3 in Table 2
are selected for discussion. For ease of representation, the two boundary conditions are
named Boundary Condition 1 and Boundary Condition 2, respectively. After optimizing
calculation, it is found that the optimal locations of the sensors obtained by QR pivoting
are unique for the determined database, which means that only the optimal locations of
10 and 15 sensors need to be determined, so only the location of 10 sensors in the velocity
field and the location of 15 sensors in the pressure field need to be shown in this section.

Figures 19-22 show the reconstructed nephograms of the velocity and pressure fields
with sensor locations (red and black dots) using OR pivoting, which indicate that using
limited sensors can still accurately reconstruct a wind field if the placement is reasonable.
As can be seen from these figures, the optimized sensor locations are located on the first
plane (0.22 m), so in order to more accurately observe the sensor locations, the nephograms
of the first plane and the measurement points distribution are plotted separately, as shown
in Figures 23-26. Overall, two features of the optimized sensor distribution can be drawn
from the nephograms: (1) the optimal locations are entirely distributed on the 0.22 m plane,
where the velocity, pressure and their gradient are the largest; (2) most sensors are located
near the sinusoidal model, where the gradients of velocity and pressure are relatively large.
Both features seem to indicate that better reconstruction results can be obtained by placing
the sensor in areas with large gradients of velocity and pressure, where reconstruction
errors are also typically larger.
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Figure 19. Reconstructed velocity nephograms with optimal sensor locations (Boundary Condition 1).
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Figure 20. Reconstructed pressure nephograms with optimal sensor locations (Boundary
Condition 1).
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Figure 21. Reconstructed velocity nephograms with optimal sensor locations (Boundary Condition 2).
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Figure 22. Reconstructed pressure nephograms with optimal sensor locations (Boundary Condition 2).
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Figure 23. Reconstructed velocity nephogram (boundary condition 1) of the first plane with ten
sensor positions (black points).
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Figure 24. Reconstructed pressure nephogram (boundary condition 1) of the first plane with fifteen
sensor positions (black points).
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Figure 25. Reconstructed velocity nephogram (boundary condition 2) of the first plane with ten
sensor positions (black points).
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Figure 26. Reconstructed pressure nephogram (boundary condition 2) of the first plane with fifteen
sensor positions (black points).

Given the new error metric, i.e., the matrix condition number presented in Section 4.2,
the performance of QR pivoting in reducing the condition number will be further evaluated
in this section. Tables 4-7 show the condition number and the relative reconstruction error
of two placements in the velocity field and the pressure field with two boundary conditions.
The following conclusions can be drawn from these tables: (a) The reconstruction error and
condition number can be significantly reduced when the number of sensors is greater than
the number of basis vectors. This is because once the sensors exceed the number of basis
vectors, the solution of the linear equation can be converted into an oversampling problem.
(b) When the number of sensors is equal to the number of basis vectors, the error of random
placement is even 20 times of the optimal placement, which illustrates that QR pivoting is a
powerful optimization algorithm and can significantly improve the reconstruction results.
(c) Compared with the optimization results under the two boundary conditions, although
the reconstruction error is large under complex boundary conditions the QR pivoting can
effectively reduce the reconstruction error, which proves the feasibility of the optimization
method applied in real and complex wind fields.

Table 4. Logarithm of condition number of K, and relative reconstruction errors (%) of random
placement and QR pivoting in velocity field (Boundary Condition 1).

6 Sensors 10 Sensors
Error Metric
OR Random OR Random
log[®(K))] 1.47 3.15 1.38 1.62
RE 1.23 24.15 0.66 0.80

Table 5. Logarithm of condition number of K, and relative reconstruction errors (%) of random
placement and QR pivoting in pressure field (Boundary Condition 1).

8 Sensors 15 Sensors
OR Random OR Random

log[®(K))] 2.37 3.61 1.35 1.71
RE 12.06 101.46 7.25 10.65

Error Metric
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Table 6. Logarithm of condition number of K, and relative reconstruction errors (%) of random
placement and QR pivoting in velocity field (Boundary Condition 2).

6 Sensors 10 Sensors
Error Metric
OR Random OR Random
log[®(K )] 2.36 2.84 252 2.76
RE 1.63 12.06 1.55 4.21

Table 7. Logarithm of condition number of K, and relative reconstruction errors (%) of random
placement and QR pivoting in pressure field (Boundary Condition 2).

8 Sensors 15 Sensors
Error Metric
OR Random OR Random
log[®(K )] 2.63 3.40 1.04 211
RE 15.38 83.05 6.99 18.16

In this section, we demonstrate that using the QR pivoting sensing on a tailored basis
typically achieves more accurate wind field reconstruction than random measurements,
facilitating a reduction in the number of sensors. Reducing the number of sensors may be
critically enabling when an individual sensor is expensive or difficult to place.

5.4. Experimental Results of the Proposed Optimal Sensor Placement

As described in Section 3.2, an experimental wind tunnel model is constructed to
demonstrate the feasibility of the reconstruction algorithm and its optimal placement. Due
to the limited experimental conditions and the importance of obtaining the velocity field
in a wind farm for wind power forecasting, only the reconstruction results of the velocity
field are validated in this section.

The measurement is divided into four groups: 10 QR pivoting-based sensors; 10 ran-
domly placed sensors; 15 randomly placed sensors; and 10 verification locations. Randomly
placed sensors are used for comparison, and measurements at 10 verification locations are
taken as reference values for error calculations. The steps of experimental data acquisition
are as follows:

(1) Calibrate the anemometers and insert them in the appropriate locations.
(2) Turn on the fan and adjust it to the appropriate operating frequency.

(38) After the fan works for 5 min, collect the data continuously for 10 min.
(4) Calculate the average wind speed of each anemometer.

(5) Repeat the above steps until all data acquisition is completed.

In this experiment, the number of basis vectors is 3 and the fan frequency is set to
25 Hz. The reconstructed nephograms and sensor placements are shown in Figure 27.
The nephograms can accurately show the wind speed distribution characteristics, which
verifies the reliability of the PCA-based reconstruction algorithm in practice. In addition,
the relative reconstruction errors for the three sensor placements are shown in Table 8. It
is obvious that the optimal placement based on QR pivoting can achieve a more accurate
reconstruction than random placement, no matter whether the number of random sensors
is 10 or 15. This validates that in practical applications, QR pivoting can effectively reduce
the number of sensors required while ensuring the reconstruction accuracy.
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Figure 27. Reconstructed velocity nephograms and sensor locations.
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Table 8. Relative reconstruction errors (%) for three sensor distributions.
Sensor Distribution Relative Reconstruction Error (%)
OR Pivoting 5.04
10 random sensors 7.89
15 random sensors 6.83

Similar to the error analyses in Section 4.2 and 4.3, the experimental results will be
discussed from three aspects: number of basis vectors; number of sensors; and errors of
ten verification points. First, the effect of the basis vectors on the experiment is explored,
which is also the validation of the conclusions in Section 4.2. Since the measurement error
is generally large and unavoidable in the experiment, given the conclusion of Section 4.2,
i.e., the reconstruction error with more basis vectors is sensitive to the noise, the number of
basis vectors are determined as two, three, four and five, respectively. Figure 28 shows the
reconstruction errors with a different number of basis vectors. Compared with 10 sensors,
15 sensors can significantly reduce errors, but it is still higher than the QR pivoting-based
placement. In addition, the reconstruction error of the QR pivoting-based placement has an
upward trend with the increase of 4-mode dimension, which supports the conclusion in
Section 4.2.

10 T
9 oL QR Pivoting L |
b 10 randomly placed sensors| |
L% 15 randomly placed sensors|
- sk S i
g
k3t i
= _
2 Tl o .
=} | —
3]
a7
LD S R | R N R .
=
&
s ( rrrrrrrrrrrr ( rrrrrrrrrrrrrrrrrr .
4 ’7

2 3 4 5
Number of basis vectors

Figure 28. Reconstruction errors with different numbers of basis vectors.

Next we will explore the effect of sensor increments on reconstruction errors in our
experiments. When the number of basis vectors is taken to three, the reconstruction errors
with different sensors are shown in Figure 29. It is obvious that when the sensors exceed
three, the error decreases significantly, which supports the conclusion in Section 4.2, i.e.,
once the sensors exceed the number of basis vectors, the solution of the linear equation
can be converted into an oversampling problem. Significantly, even if the number of
anemometers randomly arranged reaches 15, the reconstruction error is still higher than
that of 10 anemometers optimally arranged based on QR pivoting. Therefore the ability
of optimal placement based on QR pivoting to effectively reduce the number of required
sensors has been experimentally verified.

In addition, to visualize the differences between the CFD results and the wind tunnel
results (containing the reconstruction results and the measurements), we counted the
measurements of ten verification points, the CFD results, the reconstruction results and
the error of each point in Table 9. Notably the CFD calculation results are based on the
inlet velocity profile fitted by 116 measurements in Section 3.2. The difference between the
velocity values of each group is clear. Firstly, there is only one point in the QR-pivoting
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group with a relative error exceeding 10%, and the remaining errors are almost lower than
5% (the minimum error is only 0.74%). Secondly, the reconstruction error obtained by two
groups of randomly arranged sensors is generally large and unstable, especially when
ten sensors are employed. Finally, the average relative error between the CFD simulation
values and the ten verification points is 9.35%, which seems to have no advantages over the
reconstruction method. However, considering the measurement error of the sensor and the
fitting error of the inlet wind speed, although the final calculation result is not as accurate
as that of the reconstruction, the CFD calculation does not require the support of the wind
field database, which saves the time of offline database construction and is more suitable
for application without sufficient wind field data. In general, Table 9 strongly demonstrates
that the proposed optimized reconstruction algorithm incorporating QR pivoting has a
higher practical value than CFD in velocity field reconstruction with sufficient wind data.

Y

: | . = QR Pivoting
B L B I ~ [—*—Random Placement| 7

Relative Reconstruction Error (%)

Number of sensors

Figure 29. Reconstruction errors with a different number of sensors.

Table 9. Measured value (m/s), CFD value (m/s), reconstructed value (m/s) and error (%) of
each location.

Location Verification Points = CFD Error OR Pivoting  Error = Random 10 Error Random 15 Error

1 7.07 7.24 2.33 7.28 3.03 7.82 10.64 7.57 7.01
2 6.81 8.28 21.63 6.73 1.14 6.99 2.61 7.09 4.15
3 7.89 8.45 7.03 7.37 6.65 8.02 1.63 7.74 2.01
4 6.62 7.09 713 712 7.59 7.58 14.60 7.47 12.87
5 7.15 8.05 12.64 7.10 0.74 7.57 5.81 7.46 4.35
6 7.30 8.61 17.95 7.40 1.30 7.84 7.37 7.65 4.81
7 713 7.69 7.82 7.00 1.94 7.31 2.52 7.36 3.24
8 6.94 7.59 9.42 727 4.87 7.76 11.83 7.60 9.52
9 8.54 8.08 5.40 7.08 17.14 7.54 11.77 7.46 12.68
10 6.94 7.09 2.10 7.18 3.42 7.67 10.46 7.46 7.47

6. Conclusions

In the present paper, based on PCA and QR decomposition, a 3D field reconstruction
method combining optimal sensor placement is proposed, which can accurately reconstruct
the 3D velocity field and pressure field with limited sensor data. A PCA-based reconstruc-
tion algorithm can quickly and accurately obtain 3D velocity and pressure distribution,
while QR pivoting is efficient in greatly reducing the number of sensors and improving
the prediction accuracy. A simulation and an experiment were performed to verify the
practicability of the algorithms. The major findings are as follows:
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(1) In the simulation, the reconstruction errors of the uniform inlet are 0.21% and 6.46%,
respectively, while the maximum reconstruction errors including wind shear effect
are 1.21% and 6.41%, respectively, which indicates that the reconstruction algorithm
based on PCA and sparse sensing can accurately and quickly obtain the distribution
characteristics of the velocity and pressure of a 3D wind field.

(2) The effects of the number of basis vectors, measurement noise, number of sensors
and placement on the reconstruction results were systematically investigated. The
results show that an excessive increase of the number of basis vectors will result in
reconstruction errors being more sensitive to noise level.

(38) Reconstruction accuracy can be significantly influenced by the arrangement of sensors
when sensor costs are restricted (e.g., less than 20), especially for the pressure field,
where the difference between the maximum and minimum reconstruction errors is
even 20 times.

(4) Matrix QR pivoting was integrated into the reconstruction algorithm to determine the
optimal sensor placement, and its performance was validated by the simulation. The
results indicate that QR pivoting-based sensor placement can achieve better recon-
struction performance than random measurements, which reduces costs associated
with the purchase, placement and maintenance of sensors.

(5) Optimized sensor placement characteristics indicate that better reconstruction results
can be obtained by placing the sensor in areas with large gradients of velocity and
pressure, where reconstruction errors are also typically larger.

(6) A wind tunnel experiment of velocity field reconstruction was performed to verify
the practicability of the optimized reconstruction method based on QR pivoting, and
the results indicate that a reasonably high accuracy 3D wind field can be obtained
with only 10 sensors (the error of most points is less than 5% and the minimum error
is only 0.74%).

In this work, we have demonstrated the practical implementation of an algorithm
combining PCA and QR pivoting on a 3D wind field by a simulation and a wind tunnel
experiment. It is worth noting that there is no all-purpose strategy for the optimal sensor
placement of a high-dimensional system, whereas the optimization algorithm described
in this paper is particularly favorable, as it is fast, simple to implement and has the
potential to be an effective approach for short-term wind forecasting. Admittedly, although
wind shear effect is introduced in this paper, the real wind environment is often more
complex. Therefore, the application of this method in a real wind field still faces the
following unresolved issues: the applicability verification of the reconstruction method
under complex terrain conditions and how to ensure the reconstruction efficiency in the
case of a large dimension database caused by complex terrain, which are the directions of
future research.
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